List monads

Dylan McDermott

Maciej Piróg
Tarmo Uustalu

Outline

How many monad structures are there on the functor List : Set \rightarrow Set?

Outline

How many monad structures are there on the functor List : Set \rightarrow Set?

1. How many powerset monads are there?
2. How many list monads are there?
3. Degradings of graded monads

A monad consists of

- an endofunctor T;
- a natural transformation $\eta_{X}: X \rightarrow T X$;
- a natural transformation $\mu_{X}: T(T X) \rightarrow T X$;
such that the monad laws hold:

Example: the usual list monad is given by

$$
\begin{aligned}
& T=\text { List : Set } \rightarrow \text { Set } \\
& X \mapsto \text { set of finite possibly-empty lists over } \mathrm{X} \\
& f \mapsto \lambda\left[x_{1}, \ldots, x_{n}\right] .\left[f x_{1}, \ldots, f x_{n}\right] \\
& \eta_{X}=\lambda x .[x] \quad \mu_{X}=\lambda\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right] . \mathrm{xs}_{1}+\cdots+\mathrm{xs}_{n}
\end{aligned}
$$

The usual list monad is given by

$$
\begin{aligned}
& T=\text { List : Set } \rightarrow \text { Set } \\
& X \mapsto \text { set of finite possibly-empty lists over } \mathrm{X} \\
& f \mapsto \lambda\left[x_{1}, \ldots, x_{n}\right] .\left[f x_{1}, \ldots, f x_{n}\right] \\
& \eta_{X}=\lambda x .[x] \quad \mu_{X}=\lambda\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right] . \mathrm{xs}_{1}+\cdots+\mathrm{xs}_{n}
\end{aligned}
$$

Question: if the functor $T:$ Set \rightarrow Set is one of

$$
\begin{aligned}
\text { List } & - \text { finite lists } \\
\text { List }_{+} & - \text {nonempty finite lists } \\
\mathcal{P} & - \text { subsets } \\
\mathcal{P}_{+} & - \text {nonempty subsets }
\end{aligned}
$$

are there any monad structures other than the usual one?

All of the powerset monads

The covariant powerset functor $\mathcal{P}:$ Set \rightarrow Set, with

$$
\mathcal{P} f=\lambda S .\{f x \mid x \in S\}
$$

forms a monad in exactly two ways.
The unit $\eta_{X}: X \rightarrow \mathcal{P} X$ is always

$$
\eta_{X}=\lambda x .\{x\}
$$

The multiplication $\mu_{X}: \mathcal{P}(\mathcal{P} X) \rightarrow \mathcal{P} X$ is one of

$$
\mu_{X}=\lambda S . \bigcup S \quad \mu_{X}=\lambda S . \begin{cases}\emptyset & \text { if } \emptyset \in S \\ \bigcup S & \text { otherwise }\end{cases}
$$

The nonempty powerset functor $\mathcal{P}_{+}:$Set \rightarrow Set forms a monad in exactly one way.

All of the powerset monads

There are exactly two natural transformations $\alpha_{X}: \mathcal{P} X \rightarrow \mathcal{P} X$.
Proof

1. For every $S \in \mathcal{P} X, \alpha_{X} S \subseteq S$, because

$$
\begin{aligned}
& \mathcal{P} S \xrightarrow{\alpha_{S}} \mathcal{P} S \\
& \mathcal{P} \subseteq \downarrow \quad \downarrow^{\mathcal{P} \subseteq} \\
& \mathcal{P} X \underset{\alpha_{X}}{\longrightarrow} \mathcal{P} X
\end{aligned}
$$

All of the powerset monads

There are exactly two natural transformations $\alpha_{X}: \mathcal{P} X \rightarrow \mathcal{P} X$.
Proof

1. For every $S \in \mathcal{P} X, \alpha_{X} S \subseteq S$.
2. For every S, if $\alpha_{X} S$ is non-empty then $\alpha_{X} S=S$: if $x \in \alpha_{X} S \subseteq S$ then for every $y \in S$,

$$
\begin{aligned}
& \mathcal{P}_{X} \xrightarrow{\alpha_{X}} \mathcal{P}_{X} \\
& \mathcal{P} X \underset{\alpha_{X}}{\longrightarrow} \mathcal{P} X
\end{aligned}
$$

so $y \in \mathcal{P}_{\operatorname{swap}_{x, y}}\left(\alpha_{X} S\right)=\alpha_{X} S$.

All of the powerset monads

There are exactly two natural transformations $\alpha_{X}: \mathcal{P} X \rightarrow \mathcal{P} X$.
Proof

1. For every $S \in \mathcal{P} X, \alpha_{X} S \subseteq S$.
2. For every S, if $\alpha_{X} S$ is non-empty then $\alpha_{X} S=S$.
3. For every S, either $\alpha_{X} S=\emptyset$ or $\alpha_{X} S=S$.

All of the powerset monads

There are exactly two natural transformations $\alpha_{X}: \mathcal{P} X \rightarrow \mathcal{P} X$.

Proof

1. For every $S \in \mathcal{P} X, \alpha_{X} S \subseteq S$.
2. For every S, if $\alpha_{X} S$ is non-empty then $\alpha_{X} S=S$.
3. For every S, either $\alpha_{X} S=\emptyset$ or $\alpha_{X} S=S$.
4. Either $\alpha_{X} S=\emptyset$ for every S, or $\alpha_{X} S=S$ for every S, because

$$
\begin{aligned}
& \mathcal{P} X \xrightarrow{\alpha_{X}} \mathcal{P} X \\
& \mathcal{P}\left\rangle \downarrow \downarrow^{\mathcal{P}\langle \rangle}\right. \\
& \mathcal{P}_{1} \underset{\alpha_{1}}{ } \mathcal{P}_{1}
\end{aligned}
$$

So α is one of

$$
\alpha_{X}=\lambda S . \emptyset \quad \alpha_{X}=\lambda S . S
$$

All of the powerset monads

By similar proofs, the unit and multiplication

$$
\eta_{X}: X \rightarrow \mathcal{P} X \quad \mu_{X}: \mathcal{P}(\mathcal{P} X) \rightarrow \mathcal{P} X
$$

are completely determined by

$$
\eta_{1}: 1 \rightarrow \mathcal{P}_{1} \quad \mu_{1}: \mathcal{P}\left(\mathcal{P}_{1}\right) \rightarrow \mathcal{P}_{1}
$$

but only two pairs $\left(\eta_{1}, \mu_{1}\right)$ satisfy the monad laws.

Lists are harder

Natural transformations

$$
\alpha_{X}: \operatorname{List} X \rightarrow \operatorname{List} X
$$

are not completely determined by

$$
\alpha_{1}: \text { List } 1 \rightarrow \text { List } 1
$$

For example

$$
\mathrm{id}_{1}=\text { reverse }_{1} \quad \text { but } \quad \text { id } \neq \text { reverse }
$$

Lists are harder

Natural transformations

$$
\alpha_{X}: \operatorname{List} X \rightarrow \operatorname{List} X
$$

are not completely determined by

$$
\alpha_{1}: \text { List } 1 \rightarrow \text { List } 1
$$

They are completely determined by

$$
\alpha_{2}: \text { List2 } \rightarrow \text { List2 }
$$

but this doesn't seem to help much.

What we can say for certain

For $T=$ List:

- $\eta_{X} x=\underbrace{[x, \ldots, x]}_{e}$ for some $e>0$ that doesn't depend on X, x.
- If x appears somewhere in μ_{X} xss, then x appears somewhere in xss.
- Every monad structure has a presentation with (maybe infinitely many) operators of finite arity. These will do when $e=1$:

$$
\left(\lambda\left(\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right) \cdot \mu_{X}\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right]\right):(\operatorname{List} X)^{n} \rightarrow \operatorname{List} X
$$

Similar things hold for $T=$ List $_{+}$.

Some possibly-empty list monads

For $\eta_{X}=\lambda x .[x]$ we can define $\mu_{X}: \operatorname{List}(\operatorname{List} X) \rightarrow \operatorname{List} X$ by:

$$
\mu_{X}=\lambda \text { xss. concat xss } \quad \mu_{X}=\lambda \text { xss. } \begin{cases}{[]} & \text { if }[] \in \text { xss } \\ \text { concat xss } & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
\varepsilon \cdot x=x=x \cdot \varepsilon \\
(x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{gathered}
$$

$$
\begin{gathered}
\varepsilon \cdot x=\varepsilon=x \cdot \varepsilon \\
(x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{gathered}
$$

Some possibly-empty list monads

The monad presented by $\varepsilon: 1$ and $(\cdot): 2$ with equations

$$
\begin{aligned}
\varepsilon \cdot x & =\varepsilon=x \cdot \varepsilon \\
(x \cdot y) \cdot z & =x \cdot(y \cdot(x \cdot z))
\end{aligned}
$$

has List $:$ Set \rightarrow Set as the underlying functor, and $\eta_{X}=\lambda x .[x]$.

Some possibly-empty list monads

Equations Multiplication (μ xss $=\ldots$)		
$\begin{aligned} & \varepsilon \cdot x=x \\ & x \cdot \varepsilon=x \\ & (x \cdot y) \cdot z=x \cdot(y \cdot z) \end{aligned}$	concat xss	
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=\varepsilon \\ & (x \cdot y) \cdot z=x \cdot(y \cdot z) \end{aligned}$	concat $^{\prime}$ xss $=\left\{\begin{array}{l}{[]} \\ \text { concat xss }\end{array}\right.$	if exists nullxss otherwise
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=\varepsilon \\ & (x \cdot y) \cdot z=x \cdot(y \cdot(x \cdot z)) \end{aligned}$	[] concat (map palindromise (init xss)) + last xss	if null xss or exists null xss otherwise
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=\varepsilon \\ & (x \cdot y) \cdot z=\varepsilon \end{aligned}$	```[] map head (init xss) + last xss```	if null xss or exists null xss else if exists (not \circ sglt) (init xss) otherwise
$\begin{aligned} & \varepsilon \cdot x=x \\ & x \cdot \varepsilon=\varepsilon \\ & (x \cdot y) \cdot z=y \cdot z \end{aligned}$	[] concat (map safeLast (init xss)) + last xss	if null xss else if null (last xss) otherwise
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=x^{n+2} \\ & (x \cdot y) \cdot z=x \cdot y \end{aligned}$	```[] replicateLast (n+1) (map head (takeWhile sglt (init xss))) map head (takeWhile sglt (init xss)) + head (dropWhile sglt (init xss) ++ [last xss])```	```if null xss else if null (head (dropWhile sglt (init xss) ++[last xss])) otherwise```
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=x^{n+2} \\ & (x \cdot y) \cdot z=x^{m+2} \end{aligned}$	```[] replicateLast (n+1) (map head (takeWhile sglt (init xss))) map head (takeWhile sglt (init xss)) + replicate (}m+2\mathrm{) (head (head (dropWhile sglt (init xss)))) map head (init xss) ++ last xss```	```if null xss else if null (head (dropWhile sglt (init xss) ++[last xss])) else if exists (not o sglt) (init xss) or null (last xss)``` otherwise
$\begin{aligned} & \varepsilon \cdot x=\varepsilon \\ & x \cdot \varepsilon=x^{n+2} \\ & (x \cdot y) \cdot z=\varepsilon \end{aligned}$	```[] replicateLast (n+1) (map head (takeWhile sglt (init xss))) map head (init xss) + last xss```	```if null xss else if exists (not \circ sglt) (init xss) or null (last xss) otherwise```
$\text { sglt xs }=\left\{\begin{array}{l} \text { False } \\ \text { null (tail xs) } \end{array}\right.$	$\begin{aligned} & \hline \begin{array}{l} \text { if null xs } \\ \text { otherwise } \end{array} \text { safeLast } x s= \begin{cases}{[]} & \text { if null } x s \\ {[\text { last } x s]} & \text { otherwise }\end{cases} \\ & \text { palindromise } x s=x s++ \text { rever } \end{aligned}$	$\begin{aligned} & \text { replicateLast } n \times s= \begin{cases}{[]} & \text { if null } x s \\ \mathrm{xs}++ \text { replicate } n \text { (last } \mathrm{xs} \text {) } & \text { otherwise }\end{cases} \\ & \text { rse (init } x s \text {) } \end{aligned}$

Figure 1: Examples of monads on List with unit [-] from theories presentable with ε and

Some possibly-empty list monads

For $\eta_{X}=\lambda x .[x]$ we can define $\mu_{X}: \operatorname{List}(\operatorname{List} X) \rightarrow \operatorname{List} X$ by:

$$
\mu_{X}=\lambda_{\mathrm{xss} .} \begin{cases}{[]} & \text { if xss is not a singleton } \\ \text { concat xss } & \text { and xss contains a non-singleton } \\ \text { otherwise }\end{cases}
$$

No presentation with finitely many operators, because for fixed p the algebraic operations

$$
\left(\lambda\left(\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right) \cdot \mu_{X}\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right]\right):(\operatorname{List} X)^{n} \rightarrow \operatorname{List} X \quad(n \leq p)
$$

generate lists of length $\leq p$.

How many list monads are there?

Answer: infinitely many

- Can discard elements
- Can duplicate elements
- Can have no finite presentation

Some non-empty list monads

For $T=$ List $_{+}$and $\eta_{X}=[x]$, can define μ_{X} by

$$
\mu\left[\mathrm{xs}_{1}, \ldots, \mathrm{xs}_{n}\right]=\text { head } \mathrm{xs}_{1}:: \cdots:: \text { head } \mathrm{xs}_{n-1}:: \mathrm{xs}_{n}
$$

Some non-empty list monads

For $T=$ List $_{+}$and $\eta_{X}=[x]$, can define μ_{X} by
$\mu_{X}= \begin{cases}\text { concat xss } & \text { if xss is a singleton, or all-singletons } \\ \text { take } 11 \text { (concat xss) } & \text { otherwise }\end{cases}$

Requires infinitely many operators!

Some non-empty list monads

For $T=$ List $_{+}$and $\eta_{X}=[x, x]$, can define μ_{X} by

$$
\mu \mathrm{xss}=\operatorname{head}(\text { head xss }):: \text { concat }\left(\text { tail }\left(\text { List }_{+} \text {tail xss }\right)\right)
$$

This arises from List $_{+} \cong$ Id \times List

How many non-empty list monads are there?

Answer: infinitely many

- Can discard elements
- Can duplicate elements
- Can have no finite presentation
- Can have $\eta x \neq[x]$

What is the relationship between monads and graded monads?

What is the relationship between monads and graded monads?

- Monads T organize computations into sets $T X$ (e.g. $T X=$ lists over X)
- Graded monads organize computations into sets $T_{g} X$ (e.g. $T_{g} X=$ lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

What is the relationship between monads and graded monads?

- Monads T organize computations into sets $T X$ (e.g. $T X=$ lists over X)
- Graded monads organize computations into sets $T_{g} X$ (e.g. $T_{g} X=$ lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

(More generally, a monoidal category ($\mathcal{G}, \cdot, 1$).)
A \mathcal{G}-graded monad consists of

- An endofunctor T_{g} for each grade $g \in \mathcal{G}$ (with $T_{g} f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A natural transformation $\eta_{X}: X \rightarrow T_{1} X$
- A natural transformation $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}
(satisfying unit and associativity laws)

Alternatively, have

$$
\frac{f: X \rightarrow T_{g^{\prime}} Y}{\gg f: T_{g} X \rightarrow T_{g \cdot g^{\prime}} Y}
$$

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

(More generally, a monoidal category ($\mathcal{G}, \cdot, 1$).)
A \mathcal{G}-graded monad consists of

- An endofunctor T_{g} for each grade $g \in \mathcal{G}$ (with $T_{g} f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A natural transformation $\eta_{X}: X \rightarrow T_{1} X$
- A natural transformation $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}
(satisfying unit and associativity laws)
Example (possibly-empty lists)
- Grades are natural numbers with multiplication ($\mathbb{N}, \cdot, 1$)
- Graded monad is:

$$
T_{n} X=\text { List }_{=n} X \quad \eta x=[x] \quad \mu \text { xss }=\text { concat xss }
$$

Monads and graded monads

Given a monoid of grades:

$$
(\mathcal{G}, \cdot, 1)
$$

(More generally, a monoidal category ($\mathcal{G}, \cdot, 1$).)
A \mathcal{G}-graded monad consists of

- An endofunctor T_{g} for each grade $g \in \mathcal{G}$ (with $T_{g} f: T_{g} X \rightarrow T_{g} Y$ for each $f: X \rightarrow Y$)
- A natural transformation $\eta_{X}: X \rightarrow T_{1} X$
- A natural transformation $\mu_{g, g^{\prime}, X}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X$ for each g, g^{\prime}
(satisfying unit and associativity laws)
Example (non-empty lists)
- Grades are positive integers with multiplication $\left(\mathbb{N}_{+}, \cdot, 1\right)$
- Graded monad is:

$$
T_{n} X=\text { List }_{+=n} X \quad \eta x=[x] \quad \mu \text { xss }=\text { concat xss }
$$

Monads from graded monads

Can we turn graded monads T into non-graded monads \hat{T} ?

For example:

- Can we construct a monad by constructing the corresponding graded monad first?
(e.g. [Fritz and Perrone '18]'s Kantorovich monad)
- If we can model a language with grades, can we model the language without grades?

$$
\begin{array}{ccc}
\vdash_{g} M: \text { int } & \longmapsto & \llbracket M \rrbracket \in T_{g} \mathbb{Z} \\
\downarrow & & \downarrow \lambda_{g} \\
\vdash \underline{M}: \text { int } & \longmapsto & \llbracket \underline{M} \rrbracket \in \hat{T} \mathbb{Z}
\end{array}
$$

- Do we have

$$
\text { List }_{+}=\mapsto \text { List }_{+} \quad \text { List }=\mapsto \text { List }
$$

Degradings

A degrading of a graded monad (T, η, μ) consists of

- A monad $(\hat{T}, \hat{\eta}, \hat{\mu})$
- Functions $\lambda_{g, X}: T_{g} X \rightarrow \hat{T} X$ preserving the structure, e.g. the multiplications:

$$
\begin{aligned}
& T_{g}\left(T_{g^{\prime}} X\right) \xrightarrow{\mu} T_{g \cdot g^{\prime}} X \\
& \lambda_{g} \circ T_{g} \lambda_{g^{\prime}} \downarrow \quad \downarrow_{g \cdot g^{\prime}} \\
& \hat{T}(\hat{T} X) \xrightarrow[\hat{\mu}]{ } \hat{T} X
\end{aligned}
$$

Example: (List ${ }_{+},[-]$, concat) forms a degrading of (List ${ }_{+=,}[-]$, concat)

$$
\lambda_{n, X}: \text { List }_{+=n} X \subseteq \operatorname{List}_{+} X
$$

Constructing degradings

Take the coproduct of $g \mapsto T_{g}$:

$$
\begin{array}{lrl}
\hat{T}: \text { Set } \rightarrow \text { Set } & \lambda_{g}: T_{g} X & \rightarrow \hat{T} X \\
\hat{T} X=\sum_{g \in \mathcal{G}} T_{g} X & t & \mapsto(g, t)
\end{array}
$$

so that elements of $\hat{T} X$ are pairs $\left(g \in \mathcal{G}, t \in T_{g} X\right)$

- Have a unit

$$
\begin{aligned}
\hat{\eta}: X & \rightarrow \sum_{g \in \mathcal{G}} T_{g} X \\
x & \mapsto(1, \eta x)
\end{aligned}
$$

- But what about the multiplication?

$$
\hat{\mu}: \sum_{g \in \mathcal{G}} T_{g}\left(\sum_{g^{\prime} \in \mathcal{G}} T_{g^{\prime}} X\right) \xrightarrow{?} \sum_{g^{\prime \prime} \in \mathcal{G}} T_{g^{\prime \prime}} X
$$

from

$$
\mu_{g, g^{\prime}}: T_{g}\left(T_{g^{\prime}} X\right) \rightarrow T_{g \cdot g^{\prime}} X
$$

Algebraic coproducts

The coproduct \hat{T} is an algebraic coproduct if:

- It forms a degrading
- For every other degrading T^{\prime}, there are unique structure-preserving functions $\hat{T} X \rightarrow T^{\prime} X$
(more generally: algebraic Kan extension)

For models of effectful languages:

- A computation would be a pair of a g and a computation of grade g
- For any other model given by a degrading T^{\prime}, the unique functions preserve interpretations of terms

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors
but often don't

- Neither List ${ }_{+=}$nor List= has an algebraic coproduct

Algebraic coproducts

Algebraic Kan extensions sometimes exist:
Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors
but often don't

- Neither List ${ }_{+=}$nor List= has an algebraic coproduct

Introduce two weakenings:

- Unique shallow degrading: don't require structure-preservation for $\hat{T} X \rightarrow T^{\prime} X$
- Initial degrading: don't require a coproduct

Algebraic coproduct \Leftrightarrow unique shallow degrading \wedge initial degrading

First weakening: unique shallow degrading

If the coproduct \hat{T} uniquely forms a degrading, call it the unique shallow degrading

- There are unique λ-preserving functions $\hat{T} X \rightarrow T^{\prime} X$, but they don't preserve all of the structure

Non-example
List does not form the unique shallow degrading of List=

$$
\hat{\mu} \mathrm{xss}=\text { concat xss } \quad \text { or } \quad \hat{\mu} \mathrm{xss}= \begin{cases}{[]} & \text { if }[] \in \mathrm{xss} \\ \text { concat xss } & \text { otherwise }\end{cases}
$$

Example
(List ${ }_{+},[-]$, concat) is the unique shallow degrading of List $_{+=}$

List $_{+}$is a unique shallow degrading

If a non-empty list monad satisfies

$$
\mu \text { xss }=\text { concat xss }
$$

then $\mu=$ concat
Proof sketch:

1. Show that μ xss cannot discard elements, by considering elements of List $_{+}^{3} X$
2. Implies μ cannot duplicate elements
3. Prove $\mu[[x, y],[z]]=[x, y, z]=\mu[[x],[y, z]]$ by brute force
4. So μ just concatenates, then permutes the result based on the length
5. These permutations must be identities

Second weakening: initial degrading

\hat{T} is the initial degrading of a graded monad T if:

- It is a degrading
- For any other degrading T^{\prime}, there are unique structure-preserving functions

$$
\hat{T} X \rightarrow T^{\prime} X
$$

But: \hat{T} does not have to be the coproduct (it is actually a Kan extension in MonCat instead of Cat)

Constructing initial degradings

Start with a graded monad T

1. Take the (ordinary) coproduct of $g \mapsto T_{g}$
2. Construct the free monad on the coproduct
3. Quotient to get a degrading

These often exist, but are not intuitive:

- List= and List ${ }_{+=}$have initial degradings
- They don't have simple descriptions: they are not List or List+

Conclusions

There are:

- 2 monad structures on \mathcal{P},
- a lot of monad structures on List.

Degradings are much more complicated than they first seem

- List $_{+}$is the unique shallow degrading, but not the initial degrading, of List $_{+=}$
- List isn't the unique shallow degrading or the initial degrading of List=
Neither is an algebraic coproduct

See our PPDP'20 paper, and the Haskell code at
https://github.com/maciejpirog/exotic-list-monads

