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A monad consists of
▶ an endofunctor 𝑇 ;
▶ a natural transformation 𝜂𝑋 : 𝑋 → 𝑇𝑋 ;
▶ a natural transformation 𝜇𝑋 : 𝑇 (𝑇𝑋 ) → 𝑇𝑋 ;

such that the monad laws hold:

𝑇𝑋 𝑇 (𝑇𝑋 )

𝑇 (𝑇𝑋 ) 𝑇𝑋

𝜂𝑇𝑋

𝑇𝜂𝑋 𝜇𝑋

𝜇𝑋

𝑇 (𝑇 (𝑇𝑋 )) 𝑇 (𝑇𝑋 )

𝑇 (𝑇𝑋 ) 𝑇𝑋

𝜇𝑇𝑋

𝑇 𝜇𝑋 𝜇𝑋

𝜇𝑋

Example: the usual list monad is given by

𝑇 = List : Set → Set
𝑋 ↦→ set of finite possibly-empty lists over X
𝑓 ↦→ 𝜆[𝑥1, . . . , 𝑥𝑛] . [𝑓 𝑥1, . . . , 𝑓 𝑥𝑛]

𝜂𝑋 = 𝜆𝑥. [𝑥] 𝜇𝑋 = 𝜆[xs1, . . . , xs𝑛] . xs1 ++ · · · ++ xs𝑛
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The usual list monad is given by

𝑇 = List : Set → Set
𝑋 ↦→ set of finite possibly-empty lists over X
𝑓 ↦→ 𝜆[𝑥1, . . . , 𝑥𝑛] . [𝑓 𝑥1, . . . , 𝑓 𝑥𝑛]

𝜂𝑋 = 𝜆𝑥. [𝑥] 𝜇𝑋 = 𝜆[xs1, . . . , xs𝑛] . xs1 ++ · · · ++ xs𝑛

Question: if the functor 𝑇 : Set → Set is one of

List – finite lists
List+ – nonempty finite lists

P – subsets
P+ – nonempty subsets

. . .

are there any monad structures other than the usual one?
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All of the powerset monads
The covariant powerset functor P : Set → Set, with

P 𝑓 = 𝜆𝑆. {𝑓 𝑥 | 𝑥 ∈ 𝑆} (𝑓 : 𝑋 → 𝑌 )

forms a monad in exactly two ways.

The unit 𝜂𝑋 : 𝑋 → P𝑋 is always

𝜂𝑋 = 𝜆𝑥. {𝑥}

The multiplication 𝜇𝑋 : P(P𝑋 ) → P𝑋 is one of

𝜇𝑋 = 𝜆𝑆.
⋃

𝑆 𝜇𝑋 = 𝜆𝑆.

{
∅ if ∅ ∈ 𝑆⋃
𝑆 otherwise

The nonempty powerset functor P+ : Set → Set forms a monad in
exactly one way.
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All of the powerset monads
There are exactly two natural transformations 𝛼𝑋 : P𝑋 → P𝑋 .
Proof

1. For every 𝑆 ∈ P𝑋 , 𝛼𝑋𝑆 ⊆ 𝑆, because

P𝑆 P𝑆

P𝑋 P𝑋
P⊆

𝛼𝑆

P⊆

𝛼𝑋

2. For every 𝑆, if 𝛼𝑋𝑆 is non-empty then 𝛼𝑋𝑆 = 𝑆.
3. For every 𝑆, either 𝛼𝑋𝑆 = ∅ or 𝛼𝑋𝑆 = 𝑆.
4. Either 𝛼𝑋𝑆 = ∅ for every 𝑆, or 𝛼𝑋𝑆 = 𝑆 for every 𝑆, because

P𝑋 P𝑋

P1 P1

𝛼𝑋

P ⟨⟩ P ⟨⟩

𝛼1

So 𝛼 is one of

𝛼𝑋 = 𝜆𝑆. ∅ 𝛼𝑋 = 𝜆𝑆. 𝑆
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P𝑋 P𝑋

P𝑋 P𝑋
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Pswap𝑥,𝑦

𝛼𝑋
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All of the powerset monads

By similar proofs, the unit and multiplication

𝜂𝑋 : 𝑋 → P𝑋 𝜇𝑋 : P(P𝑋 ) → P𝑋

are completely determined by

𝜂1 : 1 → P1 𝜇1 : P(P1) → P1

but only two pairs (𝜂1, 𝜇1) satisfy the monad laws.
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Lists are harder
Natural transformations

𝛼𝑋 : List𝑋 → List𝑋

are not completely determined by

𝛼1 : List1 → List1

For example

id1 = reverse1 but id ≠ reverse

They are completely determined by

𝛼2 : List2 → List2

but this doesn’t seem to help much.
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What we can say for certain

For 𝑇 = List:
▶ 𝜂𝑋𝑥 = [𝑥, . . . , 𝑥]︸     ︷︷     ︸

𝑒

for some 𝑒 > 0 that doesn’t depend on 𝑋, 𝑥 .

▶ If 𝑥 appears somewhere in 𝜇𝑋xss, then 𝑥 appears somewhere
in xss.

▶ Every monad structure has a presentation with (maybe
infinitely many) operators of finite arity. These will do when
𝑒 = 1:

(𝜆(xs1, . . . , xs𝑛) . 𝜇𝑋 [xs1, . . . , xs𝑛]) : (List𝑋 )𝑛 → List𝑋

Similar things hold for 𝑇 = List+.
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Some possibly-empty list monads
For 𝜂𝑋 = 𝜆𝑥. [𝑥] we can define 𝜇𝑋 : List(List𝑋 ) → List𝑋 by:

𝜇𝑋 = 𝜆xss. concat xss 𝜇𝑋 = 𝜆xss.

{
[] if [] ∈ xss

concat xss otherwise

𝜀 · 𝑥 = 𝑥 = 𝑥 · 𝜀 𝜀 · 𝑥 = 𝜀 = 𝑥 · 𝜀
(𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧) (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧)
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Some possibly-empty list monads
The monad presented by 𝜀 : 1 and (·) : 2 with equations

𝜀 · 𝑥 = 𝜀 = 𝑥 · 𝜀
(𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · (𝑥 · 𝑧))

has List : Set → Set as the underlying functor, and 𝜂𝑋 = 𝜆𝑥. [𝑥].
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Some possibly-empty list monads
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Some possibly-empty list monads
For 𝜂𝑋 = 𝜆𝑥. [𝑥] we can define 𝜇𝑋 : List(List𝑋 ) → List𝑋 by:

𝜇𝑋 = 𝜆xss.


[] if xss is not a singleton

and xss contains a non-singleton
concat xss otherwise

No presentation with finitely many operators, because for fixed 𝑝
the algebraic operations

(𝜆(xs1, . . . , xs𝑛). 𝜇𝑋 [xs1, . . . , xs𝑛]) : (List𝑋 )𝑛 → List𝑋 (𝑛 ≤ 𝑝)

generate lists of length ≤ 𝑝.
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How many list monads are there?

Answer: infinitely many
▶ Can discard elements
▶ Can duplicate elements
▶ Can have no finite presentation
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Some non-empty list monads

For 𝑇 = List+ and 𝜂𝑋 = [𝑥], can define 𝜇𝑋 by

𝜇 [xs1, . . . , xs𝑛] = head xs1 :: · · · :: head xs𝑛−1 :: xs𝑛
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Some non-empty list monads

For 𝑇 = List+ and 𝜂𝑋 = [𝑥], can define 𝜇𝑋 by

𝜇𝑋 =

{
concat xss if xss is a singleton, or all-singletons
take 11 (concat xss) otherwise

Requires infinitely many operators!
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Some non-empty list monads

For 𝑇 = List+ and 𝜂𝑋 = [𝑥, 𝑥], can define 𝜇𝑋 by

𝜇 xss = head (head xss) :: concat(tail (List+ tail xss))

This arises from List+ � Id × List
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How many non-empty list monads are there?

Answer: infinitely many
▶ Can discard elements
▶ Can duplicate elements
▶ Can have no finite presentation
▶ Can have 𝜂 𝑥 ≠ [𝑥]
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What is the relationship between monads and graded
monads?

▶ Monads 𝑇 organize computations into sets 𝑇𝑋
(e.g. 𝑇𝑋 = lists over 𝑋 )

▶ Graded monads organize computations into sets 𝑇𝑔𝑋
(e.g. 𝑇𝑔𝑋 = lists over 𝑋 of length 𝑔)

▶ The grades 𝑔 provide quantitative information
(e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?
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Monads and graded monads
Given a monoid of grades:

(G, ·, 1)
(More generally, a monoidal category (G, ·, 1).)
A G-graded monad consists of
▶ An endofunctor 𝑇𝑔 for each grade 𝑔 ∈ G

(with 𝑇𝑔 𝑓 : 𝑇𝑔𝑋 → 𝑇𝑔𝑌 for each 𝑓 : 𝑋 → 𝑌 )
▶ A natural transformation 𝜂𝑋 : 𝑋 → 𝑇1𝑋
▶ A natural transformation 𝜇𝑔,𝑔′,𝑋 : 𝑇𝑔 (𝑇𝑔′𝑋 ) → 𝑇𝑔 ·𝑔′𝑋 for each

𝑔,𝑔′

(satisfying unit and associativity laws)

Alternatively, have
𝑓 : 𝑋 → 𝑇𝑔′𝑌

≫=𝑓 : 𝑇𝑔𝑋 → 𝑇𝑔 ·𝑔′𝑌
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𝑔,𝑔′

(satisfying unit and associativity laws)

Example (possibly-empty lists)
▶ Grades are natural numbers with multiplication (N, ·, 1)
▶ Graded monad is:

𝑇𝑛𝑋 = List=𝑛𝑋 𝜂 𝑥 = [𝑥] 𝜇 xss = concat xss
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Monads and graded monads
Given a monoid of grades:

(G, ·, 1)
(More generally, a monoidal category (G, ·, 1).)
A G-graded monad consists of
▶ An endofunctor 𝑇𝑔 for each grade 𝑔 ∈ G
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𝑔,𝑔′

(satisfying unit and associativity laws)

Example (non-empty lists)
▶ Grades are positive integers with multiplication (N+, ·, 1)
▶ Graded monad is:

𝑇𝑛𝑋 = List+=𝑛𝑋 𝜂 𝑥 = [𝑥] 𝜇 xss = concat xss
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Monads from graded monads
Can we turn graded monads 𝑇 into non-graded monads 𝑇?

For example:
▶ Can we construct a monad by constructing the corresponding

graded monad first?
(e.g. [Fritz and Perrone ’18]’s Kantorovich monad)

▶ If we can model a language with grades, can we model the
language without grades?

⊢𝑔 𝑀 : int J𝑀K ∈ 𝑇𝑔 Z

⊢ 𝑀 : int J𝑀K ∈ 𝑇 Z

𝜆𝑔

▶ Do we have

List+= ↦→ List+ List= ↦→ List
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Degradings
A degrading of a graded monad (𝑇, 𝜂, 𝜇) consists of
▶ A monad (𝑇, 𝜂, 𝜇)
▶ Functions 𝜆𝑔,𝑋 : 𝑇𝑔𝑋 → 𝑇𝑋 preserving the structure, e.g. the

multiplications:

𝑇𝑔 (𝑇𝑔′𝑋 ) 𝑇𝑔 ·𝑔′𝑋

𝑇 (𝑇𝑋 ) 𝑇𝑋

𝜇

𝜆𝑔 ◦𝑇𝑔 𝜆𝑔′ 𝜆𝑔·𝑔′

𝜇

Example: (List+, [−], concat) forms a degrading of
(List+=, [−], concat)

𝜆𝑛,𝑋 : List+=𝑛𝑋 ⊆ List+𝑋
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Constructing degradings
Take the coproduct of 𝑔 ↦→ 𝑇𝑔:

𝑇 : Set → Set

𝑇 𝑋 =
∑

𝑔∈G 𝑇𝑔𝑋

𝜆𝑔 : 𝑇𝑔𝑋 → 𝑇𝑋

𝑡 ↦→ (𝑔, 𝑡)

so that elements of 𝑇𝑋 are pairs (𝑔 ∈ G, 𝑡 ∈ 𝑇𝑔𝑋 )
▶ Have a unit

𝜂 : 𝑋 → ∑
𝑔∈G 𝑇𝑔𝑋

𝑥 ↦→ (1, 𝜂 𝑥)
▶ But what about the multiplication?

𝜇 :
∑

𝑔∈G 𝑇𝑔
( ∑

𝑔′∈G 𝑇𝑔′𝑋
) ?−→ ∑

𝑔′′∈G 𝑇𝑔′′𝑋

from
𝜇𝑔,𝑔′ : 𝑇𝑔 (𝑇𝑔′𝑋 ) → 𝑇𝑔 ·𝑔′𝑋
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Algebraic coproducts

The coproduct 𝑇 is an algebraic coproduct if:
▶ It forms a degrading
▶ For every other degrading 𝑇 ′, there are unique

structure-preserving functions 𝑇𝑋 → 𝑇 ′𝑋

(more generally: algebraic Kan extension)

For models of effectful languages:
▶ A computation would be a pair of a 𝑔 and a computation of

grade 𝑔

▶ For any other model given by a degrading 𝑇 ′, the unique
functions preserve interpretations of terms
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Algebraic coproducts

Algebraic Kan extensions sometimes exist:

Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don’t
▶ Neither List+= nor List= has an algebraic coproduct

Introduce two weakenings:
▶ Unique shallow degrading: don’t require structure-preservation

for 𝑇𝑋 → 𝑇 ′𝑋

▶ Initial degrading: don’t require a coproduct

Algebraic coproduct ⇔ unique shallow degrading ∧ initial degrading
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First weakening: unique shallow degrading

If the coproduct 𝑇 uniquely forms a degrading, call it the unique
shallow degrading
▶ There are unique 𝜆-preserving functions 𝑇𝑋 → 𝑇 ′𝑋 , but they

don’t preserve all of the structure

Non-example
List does not form the unique shallow degrading of List=

𝜇 xss = concat xss or 𝜇 xss =

{
[] if [] ∈ xss

concat xss otherwise

Example
(List+, [−], concat) is the unique shallow degrading of List+=
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List+ is a unique shallow degrading

If a non-empty list monad satisfies

𝜇 xss = concat xss (for balanced xss)

then 𝜇 = concat

Proof sketch:
1. Show that 𝜇 xss cannot discard elements, by considering

elements of List3+𝑋
2. Implies 𝜇 cannot duplicate elements
3. Prove 𝜇 [[𝑥,𝑦], [𝑧]] = [𝑥,𝑦, 𝑧] = 𝜇 [[𝑥], [𝑦, 𝑧]] by brute force
4. So 𝜇 just concatenates, then permutes the result based on the

length
5. These permutations must be identities
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Second weakening: initial degrading

𝑇 is the initial degrading of a graded monad 𝑇 if:
▶ It is a degrading
▶ For any other degrading 𝑇 ′, there are unique

structure-preserving functions

𝑇𝑋 → 𝑇 ′𝑋

But: 𝑇 does not have to be the coproduct
(it is actually a Kan extension in MonCat instead of Cat)

28



Constructing initial degradings

Start with a graded monad 𝑇

1. Take the (ordinary) coproduct of 𝑔 ↦→ 𝑇𝑔

2. Construct the free monad on the coproduct
3. Quotient to get a degrading

These often exist, but are not intuitive:
▶ List= and List+= have initial degradings
▶ They don’t have simple descriptions: they are not List or List+
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Conclusions

There are :
▶ 2 monad structures on P,
▶ a lot of monad structures on List.

Degradings are much more complicated than they first seem
▶ List+ is the unique shallow degrading, but not the initial

degrading, of List+=
▶ List isn’t the unique shallow degrading or the initial degrading

of List=
Neither is an algebraic coproduct

See our PPDP’20 paper, and the Haskell code at

https://github.com/maciejpirog/exotic-list-monads
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