List monads

Dylan McDermott

Maciej Piróg

Tarmo Uustalu

How many monad structures are there on the functor List : Set \rightarrow Set?

Outline

How many monad structures are there on the functor List : Set \rightarrow Set?

- 1. How many powerset monads are there?
- 2. How many list monads are there?
- 3. Degradings of graded monads

A monad consists of

- an endofunctor T;
- a natural transformation $\eta_X : X \to TX$;
- ▶ a natural transformation $\mu_X : T(TX) \rightarrow TX$;

such that the monad laws hold:

Example: the usual list monad is given by

$$T = \text{List} : \text{Set} \longrightarrow \text{Set}$$

$$X \mapsto \text{set of finite possibly-empty lists over X}$$

$$f \mapsto \lambda[x_1, \dots, x_n] \cdot [fx_1, \dots, fx_n]$$

$$\eta_X = \lambda x \cdot [x] \qquad \mu_X = \lambda[xs_1, \dots, xs_n] \cdot xs_1 + \dots + xs_n$$

The usual list monad is given by

$$T = \text{List} : \text{Set} \rightarrow \text{Set}$$

$$X \mapsto \text{set of finite possibly-empty lists over X}$$

$$f \mapsto \lambda[x_1, \dots, x_n]. [fx_1, \dots, fx_n]$$

$$\eta_X = \lambda x. [x] \qquad \mu_X = \lambda[xs_1, \dots, xs_n]. xs_1 + \dots + xs_n$$

Question: if the functor $T : \mathbf{Set} \to \mathbf{Set}$ is one of

List – finite lists List₊ – nonempty finite lists \mathcal{P} – subsets \mathcal{P}_{+} – nonempty subsets

. . .

are there any monad structures other than the usual one?

The covariant powerset functor $\mathcal{P} : \mathbf{Set} \to \mathbf{Set}$, with

$$\mathcal{P}f = \lambda S. \{ fx \mid x \in S \} \qquad (f: X \to Y)$$

forms a monad in exactly two ways.

The unit $\eta_X : X \to \mathcal{P}X$ is always

 $\eta_X = \lambda x. \{x\}$

The multiplication $\mu_X : \mathcal{P}(\mathcal{P}X) \to \mathcal{P}X$ is one of

$$\mu_X = \lambda S. \bigcup S \qquad \mu_X = \lambda S. \begin{cases} \emptyset & \text{if } \emptyset \in S \\ \bigcup S & \text{otherwise} \end{cases}$$

The nonempty powerset functor \mathcal{P}_+ : Set \rightarrow Set forms a monad in exactly one way.

There are exactly two natural transformations $\alpha_X : \mathcal{P}X \to \mathcal{P}X$. Proof

1. For every $S \in \mathcal{P}X$, $\alpha_X S \subseteq S$, because

$$\begin{array}{ccc} \mathcal{P}S & \xrightarrow{\alpha_S} \mathcal{P}S \\ \mathcal{P} \subseteq & & \downarrow^{\mathcal{P}} \subseteq \\ \mathcal{P}X & \xrightarrow{\alpha_X} \mathcal{P}X \end{array}$$

There are exactly two natural transformations $\alpha_X : \mathcal{P}X \to \mathcal{P}X$. Proof

- 1. For every $S \in \mathcal{P}X$, $\alpha_X S \subseteq S$.
- 2. For every *S*, if $\alpha_X S$ is non-empty then $\alpha_X S = S$: if $x \in \alpha_X S \subseteq S$ then for every $y \in S$,

$$\begin{array}{ccc} \mathcal{P}X & \xrightarrow{\alpha_X} & \mathcal{P}X \\ \mathcal{P}_{swap_{x,y}} & & & \downarrow \mathcal{P}_{swap_{x,y}} \\ \mathcal{P}X & \xrightarrow{\alpha_X} & \mathcal{P}X \end{array}$$

so $y \in \mathcal{P}swap_{x,y}(\alpha_X S) = \alpha_X S$.

There are exactly two natural transformations $\alpha_X : \mathcal{P}X \to \mathcal{P}X$. Proof

- 1. For every $S \in \mathcal{P}X$, $\alpha_X S \subseteq S$.
- 2. For every *S*, if $\alpha_X S$ is non-empty then $\alpha_X S = S$.
- 3. For every *S*, either $\alpha_X S = \emptyset$ or $\alpha_X S = S$.

There are exactly two natural transformations $\alpha_X : \mathcal{P}X \to \mathcal{P}X$. Proof

- 1. For every $S \in \mathcal{P}X$, $\alpha_X S \subseteq S$.
- 2. For every *S*, if $\alpha_X S$ is non-empty then $\alpha_X S = S$.
- 3. For every *S*, either $\alpha_X S = \emptyset$ or $\alpha_X S = S$.
- 4. Either $\alpha_X S = \emptyset$ for every *S*, or $\alpha_X S = S$ for every *S*, because

$$\begin{array}{ccc} \mathcal{P}X & \xrightarrow{\alpha_X} & \mathcal{P}X \\ \mathcal{P}\langle \rangle & & & \downarrow \mathcal{P}\langle \rangle \\ \mathcal{P}1 & \xrightarrow{\alpha_1} & \mathcal{P}1 \end{array}$$

So α is one of

$$\alpha_X = \lambda S. \emptyset \qquad \qquad \alpha_X = \lambda S. S$$

By similar proofs, the unit and multiplication

$$\eta_X: X \to \mathcal{P}X \qquad \mu_X: \mathcal{P}(\mathcal{P}X) \to \mathcal{P}X$$

are completely determined by

$$\eta_1: 1 \to \mathcal{P}1 \qquad \mu_1: \mathcal{P}(\mathcal{P}1) \to \mathcal{P}1$$

but only two pairs (η_1, μ_1) satisfy the monad laws.

Lists are harder

Natural transformations

 α_X : List $X \rightarrow$ ListX

are not completely determined by

 α_1 : List1 \rightarrow List1

For example

 $id_1 = reverse_1$ but $id \neq reverse$

Lists are harder

Natural transformations

 α_X : List $X \rightarrow$ ListX

are not completely determined by

 α_1 : List1 \rightarrow List1

They are completely determined by

 α_2 : List2 \rightarrow List2

but this doesn't seem to help much.

What we can say for certain

For T = List:

- $\eta_X x = \underbrace{[x, \dots, x]}_{e}$ for some e > 0 that doesn't depend on X, x.
- If x appears somewhere in μ_X xss, then x appears somewhere in xss.
- Every monad structure has a presentation with (maybe infinitely many) operators of finite arity. These will do when e = 1:

 $(\lambda(\mathbf{xs}_1,\ldots,\mathbf{xs}_n).\ \mu_X[\mathbf{xs}_1,\ldots,\mathbf{xs}_n]):(\mathrm{List}\,X)^n\to\mathrm{List}\,X$

Similar things hold for $T = \text{List}_+$.

For $\eta_X = \lambda x$. [x] we can define $\mu_X : \text{List}(\text{List}X) \rightarrow \text{List}X$ by:

$$\mu_X = \lambda xss. \text{ concat } xss$$
 $\mu_X = \lambda xss. \begin{cases} [] & \text{if } [] \in xss \\ \text{concat } xss & \text{otherwise} \end{cases}$

The monad presented by ε : 1 and (\cdot) : 2 with equations

$$\varepsilon \cdot x = \varepsilon = x \cdot \varepsilon$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot (x \cdot z))$$

has List : Set \rightarrow Set as the underlying functor, and $\eta_X = \lambda x$. [x].

Equations	Multiplication ($\mu xss =$)		
$ \begin{split} \varepsilon \cdot x &= x \\ x \cdot \varepsilon &= x \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{split} $	concat xss		
$ \begin{split} \varepsilon \cdot x &= \varepsilon \\ x \cdot \varepsilon &= \varepsilon \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{split} $	$concat' xss = \begin{cases} [] \\ concat xss \end{cases}$	if exists null xss otherwise	
$\begin{array}{l} \varepsilon \cdot x = \varepsilon \\ x \cdot \varepsilon = \varepsilon \\ (x \cdot y) \cdot z = x \cdot (y \cdot (x \cdot z)) \end{array}$	[] concat (map palindromise (init xss)) ++ last xss	if null xss or exists null xss otherwise	
$\varepsilon \cdot x = \varepsilon$ $x \cdot \varepsilon = \varepsilon$ $(x \cdot y) \cdot z = \varepsilon$	[] [] map head (init xss) ++ last xss	if null xss or exists null xss else if exists (not o sglt) (init xss) otherwise	
$ \begin{array}{l} \varepsilon \cdot x = x \\ x \cdot \varepsilon = \varepsilon \\ (x \cdot y) \cdot z = y \cdot z \end{array} $	[] [] concat (map safeLast (init xss)) ++ last xss	if null xss else if null (last xss) otherwise	
$ \begin{split} \varepsilon \cdot x &= \varepsilon \\ x \cdot \varepsilon &= x^{n+2} \\ (x \cdot y) \cdot z &= x \cdot y \end{split} $	[] replicateLast (n + 1) (map head (takeWhile sglt (init xss))) map head (takeWhile sglt (init xss)) ++ head (dropWhile sglt (init xss) ++ [last xss])	if null xss else if null (head (dropWhile sglt (init xss) ++[last xss])) otherwise	
$ \begin{split} \varepsilon \cdot x &= \varepsilon \\ x \cdot \varepsilon &= x^{n+2} \\ (x \cdot y) \cdot z &= x^{m+2} \end{split} $	[] replicateLast (n + 1) (map head (takeWhile sglt (init xss)))) map head (takeWhile sglt (init xss))) + replicate (n + 2) (head (head (dropWhile sglt (init xss)))) map head (init xss) + hast xss	if null xss else if null (head (dropWhile sglt (init xss) ++[last xss])) else if exists (not o sglt) (init xss) or null (last xss) otherwise	
$ \begin{split} \varepsilon \cdot x &= \varepsilon \\ x \cdot \varepsilon &= x^{n+2} \\ (x \cdot y) \cdot z &= \varepsilon \end{split} $	[] replicateLast (n + 1) (map head (takeWhile sglt (init xss))) map head (init xss) ++ last xss	if null xss else if exists (not o sglt) (init xss) or null (last xss) otherwise	
$sglt xs = {$	if null xs otherwise safeLast xs = $\begin{cases} [] & \text{if null xs} \\ [last xs] & \text{otherwise} \end{cases}$	replicateLast $n xs = \begin{cases} [] \\ xs ++ replicate n (last xs) \end{cases}$	if null xs otherwise

For $\eta_X = \lambda x$. [x] we can define $\mu_X : \text{List}(\text{List}X) \to \text{List}X$ by:

$$\mu_X = \lambda \text{xss.} \begin{cases} \text{if xss is not a singleton} \\ \text{and xss contains a non-singleton} \\ \text{concat xss} & \text{otherwise} \end{cases}$$

No presentation with finitely many operators, because for fixed \boldsymbol{p} the algebraic operations

$$(\lambda(\mathbf{xs}_1,\ldots,\mathbf{xs}_n), \mu_X[\mathbf{xs}_1,\ldots,\mathbf{xs}_n]) : (\mathrm{List}\,X)^n \to \mathrm{List}\,X \quad (n \le p)$$

generate lists of length $\leq p$.

How many list monads are there?

Answer: infinitely many

- Can discard elements
- Can duplicate elements
- Can have no finite presentation

Some non-empty list monads

For $T = \text{List}_+$ and $\eta_X = [x]$, can define μ_X by

 $\mu [xs_1, \dots, xs_n] = head xs_1 :: \dots :: head xs_{n-1} :: xs_n$

Some non-empty list monads

For $T = \text{List}_+$ and $\eta_X = [x]$, can define μ_X by

Requires infinitely many operators!

Some non-empty list monads

For $T = \text{List}_+$ and $\eta_X = [x, x]$, can define μ_X by

 $\mu xss = head (head xss) :: concat(tail (List_+ tail xss))$

This arises from $List_+ \cong Id \times List$

How many non-empty list monads are there?

Answer: infinitely many

- Can discard elements
- Can duplicate elements
- Can have no finite presentation
- Can have $\eta x \neq [x]$

What is the relationship between monads and graded monads?

What is the relationship between monads and graded monads?

- Monads T organize computations into sets TX (e.g. TX = lists over X)
- Graded monads organize computations into sets T_gX (e.g. T_gX = lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

What is the relationship between monads and graded monads?

- Monads T organize computations into sets TX (e.g. TX = lists over X)
- Graded monads organize computations into sets T_gX (e.g. T_gX = lists over X of length g)
- The grades g provide quantitative information (e.g. number of alternatives in a nondeterministic computation)

Specifically: can we construct monads from graded monads?

Monads and graded monads

Given a monoid of grades:

 $(\mathcal{G}, \cdot, 1)$

(More generally, a monoidal category $(\mathcal{G},\cdot,1).$)

A G-graded monad consists of

- An endofunctor T_g for each grade $g \in \mathcal{G}$ (with $T_g f : T_g X \to T_g Y$ for each $f : X \to Y$)
- A natural transformation $\eta_X : X \to T_1 X$
- ▶ A natural transformation $\mu_{g,g',X} : T_g(T_{g'}X) \to T_{g \cdot g'}X$ for each g, g'

(satisfying unit and associativity laws)

Alternatively, have

$$\frac{f: X \to T_{g'}Y}{\gg} f: T_g X \to T_{g \cdot g'}Y$$

Monads and graded monads

Given a monoid of grades:

 $(\mathcal{G}, \cdot, 1)$

(More generally, a monoidal category $(\mathcal{G},\cdot,1).$)

A G-graded monad consists of

- An endofunctor T_g for each grade $g \in \mathcal{G}$ (with $T_g f : T_g X \to T_g Y$ for each $f : X \to Y$)
- A natural transformation $\eta_X : X \to T_1 X$
- ▶ A natural transformation $\mu_{g,g',X} : T_g(T_{g'}X) \to T_{g \cdot g'}X$ for each g, g'

(satisfying unit and associativity laws)

Example (possibly-empty lists)

- Grades are natural numbers with multiplication $(\mathbb{N}, \cdot, 1)$
- Graded monad is:

$$T_n X = \text{List}_{=n} X$$
 $\eta x = [x]$ $\mu xss = \text{concat} xss$

Monads and graded monads

Given a monoid of grades:

 $(\mathcal{G}, \cdot, 1)$

(More generally, a monoidal category $(\mathcal{G},\cdot,1).$)

A G-graded monad consists of

- An endofunctor T_g for each grade $g \in \mathcal{G}$ (with $T_g f : T_g X \to T_g Y$ for each $f : X \to Y$)
- A natural transformation $\eta_X : X \to T_1 X$
- ▶ A natural transformation $\mu_{g,g',X} : T_g(T_{g'}X) \to T_{g \cdot g'}X$ for each g, g'

(satisfying unit and associativity laws)

Example (non-empty lists)

- Grades are positive integers with multiplication $(\mathbb{N}_+, \cdot, 1)$
- Graded monad is:

$$T_n X = \text{List}_{+=n} X$$
 $\eta x = [x]$ $\mu xss = \text{concat} xss$

Monads from graded monads

Can we turn graded monads T into non-graded monads \hat{T} ?

For example:

Can we construct a monad by constructing the corresponding graded monad first?

(e.g. [Fritz and Perrone '18]'s Kantorovich monad)

If we can model a language with grades, can we model the language without grades?

$$\begin{array}{cccc} \vdash_{g} M : \mathbf{int} & \longmapsto & \llbracket M \rrbracket \in T_{g} \mathbb{Z} \\ & & & & \downarrow^{\lambda_{g}} \\ \vdash \underline{M} : \mathbf{int} & \longmapsto & \llbracket \underline{M} \rrbracket \in \widehat{T} \mathbb{Z} \end{array}$$

Do we have

$$List_{+=} \mapsto List_{+}$$
 $List_{=} \mapsto List$

Degradings

A degrading of a graded monad (T, η, μ) consists of

- A monad $(\hat{T}, \hat{\eta}, \hat{\mu})$
- ► Functions $\lambda_{g,X} : T_g X \to \hat{T}X$ preserving the structure, e.g. the multiplications:

$$\begin{array}{ccc} T_g(T_{g'}X) & \stackrel{\mu}{\longrightarrow} & T_{g \cdot g'}X \\ \lambda_g \circ T_g \lambda_{g'} & & & \downarrow \lambda_{g \cdot g'} \\ \hat{T}(\hat{T}X) & \stackrel{\mu}{\longrightarrow} & \hat{T}X \end{array}$$

Example: (List₊, [-], concat) forms a degrading of $(List_{+=}, [-], concat)$

$$\lambda_{n,X}$$
 : List_{+=n} $X \subseteq$ List₊ X

Constructing degradings

Take the coproduct of $g \mapsto T_g$:

$$\begin{split} \hat{T} : \mathbf{Set} &\to \mathbf{Set} & \lambda_g : T_g X \to \hat{T} X \\ \hat{T} X &= \sum_{g \in \mathcal{G}} T_g X & t \mapsto (g, t) \end{split}$$

so that elements of $\hat{T}X$ are pairs $(g \in \mathcal{G}, t \in T_gX)$

Have a unit

$$\hat{\eta}: X \to \sum_{g \in \mathcal{G}} T_g X$$
$$x \mapsto (1, \eta x)$$

But what about the multiplication?

$$\hat{\mu}: \sum_{g \in \mathcal{G}} T_g \big(\sum_{g' \in \mathcal{G}} T_{g'} X \big) \xrightarrow{?} \sum_{g'' \in \mathcal{G}} T_{g''} X$$

from

$$\mu_{g,g'}: T_g(T_{g'}X) \to T_{g \cdot g'}X$$

Algebraic coproducts

The coproduct \hat{T} is an algebraic coproduct if:

- It forms a degrading
- For every other degrading T', there are unique structure-preserving functions $\hat{T}X \rightarrow T'X$

(more generally: algebraic Kan extension)

For models of effectful languages:

- A computation would be a pair of a g and a computation of grade g
- For any other model given by a degrading T', the unique functions preserve interpretations of terms

Algebraic coproducts

Algebraic Kan extensions sometimes exist:

Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don't

▶ Neither List₊₌ nor List₌ has an algebraic coproduct

Algebraic coproducts

Algebraic Kan extensions sometimes exist:

Fritz and Perrone, A Criterion for Kan Extensions of Lax Monoidal Functors

but often don't

Neither List₊₌ nor List₌ has an algebraic coproduct

Introduce two weakenings:

- Unique shallow degrading: don't require structure-preservation for $\hat{T}X \rightarrow T'X$
- Initial degrading: don't require a coproduct

Algebraic coproduct \Leftrightarrow unique shallow degrading \land initial degrading

First weakening: unique shallow degrading

If the coproduct \hat{T} uniquely forms a degrading, call it the unique shallow degrading

► There are unique λ -preserving functions $\hat{T}X \rightarrow T'X$, but they don't preserve all of the structure

Non-example

List does not form the unique shallow degrading of List=

$$\hat{\mu} xss = \text{concat } xss$$
 or $\hat{\mu} xss = \begin{cases} [] & \text{if } [] \in xss \\ \text{concat } xss & \text{otherwise} \end{cases}$

Example

 $(List_{+}, [-], concat)$ is the unique shallow degrading of $List_{+=}$

List₊ is a unique shallow degrading

If a non-empty list monad satisfies

 $\mu xss = concat xss$ (for balanced xss)

then $\mu = \text{concat}$

Proof sketch:

- 1. Show that μxss cannot discard elements, by considering elements of $\text{List}_{+}^{3}X$
- 2. Implies μ cannot duplicate elements
- 3. Prove $\mu[[x, y], [z]] = [x, y, z] = \mu[[x], [y, z]]$ by brute force
- 4. So μ just concatenates, then permutes the result based on the length
- 5. These permutations must be identities

Second weakening: initial degrading

 \hat{T} is the initial degrading of a graded monad T if:

- It is a degrading
- For any other degrading T', there are unique structure-preserving functions

$$\hat{T}X \to T'X$$

But: \hat{T} does not have to be the coproduct (it is actually a Kan extension in MonCat instead of Cat)

Constructing initial degradings

Start with a graded monad \boldsymbol{T}

- 1. Take the (ordinary) coproduct of $g \mapsto T_g$
- 2. Construct the free monad on the coproduct
- 3. Quotient to get a degrading

These often exist, but are not intuitive:

- List= and List+= have initial degradings
- They don't have simple descriptions: they are not List or List₊

Conclusions

There are :

- 2 monad structures on *P*,
- a lot of monad structures on List.

Degradings are much more complicated than they first seem

- List₊ is the unique shallow degrading, but not the initial degrading, of List₊₌
- List isn't the unique shallow degrading or the initial degrading of List_

Neither is an algebraic coproduct

See our PPDP'20 paper, and the Haskell code at

https://github.com/maciejpirog/exotic-list-monads