Higher-order algebraic theories

Nathanael Arkor University of Cambridge Dylan McDermott Reykjavik University

TallCat seminar June 2020 First-order theories have operators op $: s^k \Rightarrow s$

$$\frac{\Gamma \vdash t_1 \cdots \Gamma \vdash t_k}{\Gamma \vdash \mathsf{op}(t_1, \dots, t_k)}$$

Example: monoids have multiplication $(\cdot): s^2 \Rightarrow s$, unit $e: 1 \Rightarrow s$

$$\frac{\Gamma \vdash t_1 \qquad \Gamma \vdash t_2}{\Gamma \vdash t_1 \cdot t_2} \qquad \qquad \overline{\Gamma \vdash e}$$

First-order theories have operators op $: s^k \Rightarrow s$

$$\frac{\Gamma \vdash t_1 \cdots \Gamma \vdash t_k}{\Gamma \vdash \mathsf{op}(t_1, \dots, t_k)}$$

Example: monoids have multiplication $(\cdot): s^2 \Rightarrow s$, unit $e: 1 \Rightarrow s$

$$\frac{\Gamma \vdash t_1 \qquad \Gamma \vdash t_2}{\Gamma \vdash t_1 \cdot t_2} \qquad \qquad \overline{\Gamma \vdash e}$$

Non-example: the untyped λ -calculus

$$\frac{\Gamma \vdash t_1 \quad \Gamma \vdash t_2}{\Gamma \vdash \mathsf{app}(t_1, t_2)} \qquad \frac{\Gamma, x : s \vdash t}{\Gamma \vdash \mathsf{abs}(x, t_1)}$$

- First-order theories
 - $\checkmark\,$ Presentations/equational logic
 - ✓ Lawvere theories
 - ✓ Finitary monads on Set
 - $\checkmark~$ Abstract clones, monoids in $[\mathbb{F},Set]$
 - \checkmark Various constructions, generalizations, metatheory

- First-order theories
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - $\checkmark\,$ Finitary monads on Set
 - $\checkmark~$ Abstract clones, monoids in $[\mathbb{F},Set]$
 - \checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
 - ✓ Presentations/equational logic
 - \checkmark Lawvere theories

- First-order theories
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - $\checkmark\,$ Finitary monads on Set
 - $\checkmark~$ Abstract clones, monoids in $[\mathbb{F},Set]$
 - \checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - \times Some class of monads?
 - × Clones? Monoids?
 - × Constructions? Generalizations? Metatheory?

- First-order theories
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - $\checkmark\,$ Finitary monads on Set
 - $\checkmark~$ Abstract clones, monoids in $[\mathbb{F},Set]$
 - \checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - $\times\,$ Some class of monads?
 - × Clones? Monoids?
 - × Constructions? Generalizations? Metatheory?

× Higher-order theories?

- First-order theories
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - $\checkmark\,$ Finitary monads on Set
 - $\checkmark~$ Abstract clones, monoids in $[\mathbb{F},Set]$
 - \checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
 - ✓ Presentations/equational logic
 - ✓ Lawvere theories
 - × Some class of monads?
 - × Clones? Monoids?
 - × Constructions? Generalizations? Metatheory?

× Higher-order theories?

First-order presentations

A (monosorted) first-order presentation is a signature with a set of equations, where:

- First-order arities are natural numbers k
- Signatures Σ are sets of operators op with arities
- Contexts $\Gamma = x_1, \ldots, x_n$ are lists of variables
- Terms t are generated by

$$\frac{x \in \Gamma}{\Gamma \vdash x} \qquad \qquad \frac{(\mathsf{op}:k) \in \Sigma \quad \Gamma \vdash t_1 \quad \cdots \quad \Gamma \vdash t_k}{\Gamma \vdash \mathsf{op}(t_1, \dots, t_k)}$$

• Equations $\Gamma \vdash t \equiv t'$

Example: monoids have operators $(\cdot): 2$ and e: 0, and equations

$$x \vdash e \cdot x \equiv x \qquad \qquad x \vdash x \equiv x \cdot e$$
$$x_1, x_2, x_3 \vdash (x_1 \cdot x_2) \cdot x_3 \equiv x_1 \cdot (x_2 \cdot x_3)$$

Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]

A (monosorted) second-order presentation is a signature with a set of equations, where:

- Second-order arities are lists (n_1, \ldots, n_k) of natural numbers
- Signatures Σ are sets of operators op with arities
- Variable contexts Γ and metavariable contexts Θ:

$$\Gamma = x_1, \ldots, x_n$$
 $\Theta = M_1 : m_1, \ldots, M_p : m_p$

Terms t are generated by

$x \in \Gamma$	$(M:m) \in \mathbf{Q}$	θ Θ Ι	$\vdash t_1$	$\Theta \mid \Gamma \vdash t_m$	
$\overline{\Theta \mid \Gamma \vdash x}$		$\Theta \mid \Gamma \vdash \mathrm{M}(t_1, \ldots, t_m)$			
$(op:(n_1,\ldots,n_k))$	$\in \Sigma \qquad \Theta \mid I$	$\vec{x}, \vec{x_1} \vdash t_1$		$\Theta \mid \Gamma, \vec{x_k} \vdash t_k$	
$\Theta \mid \Gamma \vdash op(\vec{x_1}.t_1,\ldots,\vec{x_k}.t_k)$					

• Equations $\Theta \mid \Gamma \vdash t \equiv t'$

Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]

$$\frac{(\mathsf{op}:(n_1,\ldots,n_k))\in\Sigma\quad\Theta\mid\Gamma,\vec{x_1}\vdash t_1\quad\cdots\quad\Theta\mid\Gamma,\vec{x_n}\vdash t_n}{\Theta\mid\Gamma\vdash\mathsf{op}(\vec{x_1}.t_1,\ldots,\vec{x_n}.t_n)}$$

Example: untyped λ -calculus has operators app : (0, 0) and abs : (1)

$$\frac{\Theta \mid \Gamma \vdash t_1 \quad \Theta \mid \Gamma \vdash t_2}{\Theta \mid \Gamma \vdash \mathsf{app}(t_1, t_2)} \qquad \qquad \frac{\Theta \mid \Gamma, x \vdash t}{\Theta \mid \Gamma \vdash \mathsf{abs}(x, t)}$$

and equations

$$M_1: 1, M_2: 0 | \diamond \vdash \mathsf{app}(\mathsf{abs}(x, M_1(x)), M_2()) \equiv M_1(M_2()) \qquad (\beta)$$
$$M: 0 | \diamond \vdash \mathsf{abs}(x, \mathsf{app}(M(), x)) \equiv M() \qquad (\eta)$$

Moving to higher orders

Both first-order and second-order presentations use part of STLC

- First-order: no functions
- Second-order: only first-order functions (argument is s^m)

Instead of

$$\frac{(\mathsf{op}:(k)) \in \Sigma \qquad \Theta \mid \Gamma, \vec{x} \vdash t}{\Theta \mid \Gamma \vdash \mathsf{op}(\vec{x}.t)}$$

have

$$\frac{(\mathsf{op}:(s^k\to s)\Rightarrow s)\in\Sigma \qquad \Theta\mid \Gamma, \overrightarrow{x:s}\vdash t:s}{\Theta\mid \Gamma\vdash \mathsf{op}(\lambda \vec{x}.t):s}$$

Higher-order presentations

Fix a set S of sorts

$$A, B ::= s \qquad \text{ord } s = 0$$

$$| 1 \qquad \text{ord } 1 = -1$$

$$| A_1 \times A_2 \qquad \text{ord } (A_1 \times A_2) = \max\{\text{ord } A_1, \text{ord } A_2\}$$

$$| A \to B \qquad \text{ord } (A \to B) = \max\{\text{ord } A + 1, \text{ord } B\}$$

Definition

For $n \in \mathbb{N} \cup \{\omega\}$, an *n*th-order signature Σ is:

- a set of operators op
- each with an arity $A \Rightarrow s$ such that $\operatorname{ord} A < n$.

Example
$$(S = \{s\}, n = 2)$$
:
 $\Sigma = \{app : s \times s \Rightarrow s, abs : (s \rightarrow s) \Rightarrow s\}$

Higher-order presentations

Given an nth-order signature, generate STLC terms t in the usual way

$$(\operatorname{op} : A \Longrightarrow s) \in \Sigma \qquad \Gamma \vdash t : A$$

$$\Gamma \vdash \operatorname{op} t : s$$

Definition

An *n*th-order presentation consists of:

- An nth-order signature Σ
- A set of equations

$$x_1: A_1, \ldots, x_n: A_n \vdash t \equiv t': s$$

such that $\max{\text{ord } A_1, \ldots, \text{ord } A_n} < n$.

Monoids are first-order, with $S = \{s\}$

Operators

$$(\cdot): s \times s \Rightarrow s \qquad e: 1 \Rightarrow s$$

Equations

$$x:s, y:s, z:s \vdash (x \cdot y) \cdot z \equiv x \cdot (y \cdot z) : s$$
$$x:s \vdash e \cdot x \equiv x:s \qquad x:s \vdash x \cdot e \equiv x:s$$

Untyped λ -calculus is second-order, with $S = \{s\}$

Operators

$$app: s \times s \Rightarrow s$$
 $abs: (s \rightarrow s) \Rightarrow s$

Equations

$$\begin{array}{rcl} f:s \rightarrow s, \, a:s \vdash & \operatorname{app}\left(\operatorname{abs} f, a\right) \equiv f \, a \, : \, s & \left(\beta\right) \\ f:s \vdash & \operatorname{abs}\left(\lambda x:s.\operatorname{app}\left(f,x\right)\right) \equiv f & : \, s & \left(\eta\right) \end{array}$$

Untyped λ -calculus is second-order, with $S = \{s\}$

Operators

$$app: s \times s \Rightarrow s$$
 $abs: (s \rightarrow s) \Rightarrow s$

Equations

$$f: s \to s, a: s \vdash \operatorname{app} (\operatorname{abs} f, a) \equiv f a : s \qquad (\beta)$$
$$f: s \vdash \operatorname{abs} (\lambda x: s. \operatorname{app} (f, x)) \equiv f : s \qquad (\eta)$$

Can do typed λ -calculus with more sorts:

$$s := b | \operatorname{Fun}(s, s')$$

Propositional logic/boolean algebras, with $S = {prop}$

Operators

Many equations

(zeroth-order) (first-order) (first-order) (second-order)

Many equations

Second-order logic, with $S = \{prop, thing\}$

Operators

 $\top \perp : 1 \Rightarrow \text{prop}$ (zeroth-order) $\land \lor : \text{prop} \times \text{prop} \Rightarrow \text{prop}$ (first-order) $\neg : \text{prop} \Rightarrow \text{prop}$ (first-order) $\forall : (thing \rightarrow \text{prop}) \Rightarrow \text{prop}$ (second-order) $\forall_2 : ((thing \rightarrow \text{prop}) \rightarrow \text{prop}) \Rightarrow \text{prop}$ (third-order)

Many equations

Formula $\forall P. \forall x. (Px) \lor \neg (Px)$ encoded as

 $\forall_2 (\lambda P : \text{thing} \rightarrow \text{prop.} \forall (\lambda x : \text{thing.} Px \lor \neg (Px)))$

- Parameterized algebraic theories [Staton '13] are two-sorted second-order theories
- Partial differentiation has a monosorted second-order presentation [Plotkin '20]

First-order Lawvere theories

For $S = \{s\}$, first-order arities form a category \mathcal{R}_1 , which:

- is the opposite of a skeleton of FinSet
- is the free strict cartesian category on S
- has objects s^k for k ∈ N, morphisms t : s^k → s^m are STLC terms x : s^k ⊢ t : s^m up to βη (with no operators)

A first-order Lawvere theory is a strict cartesian identity-on-objects functor

$$L:\mathcal{A}_1\to\mathcal{L}$$

An element of $t \in \mathcal{L}(s^k, s^m)$ "is" a term

 $x:s^k \vdash t:s^m$

(possibly with operators)

Higher-order Lawvere theories

Category of *n*-order arities \mathcal{A}_n , for $n \in \mathbb{N}_+ \cup \{\omega\}$:

Objects are some representative subset of types A such that ord A < n, with strict products and exponentials:</p>

$$1 \times A = A = A \times 1 \qquad (A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3)$$
$$1 \Rightarrow A = A \qquad A \Rightarrow (A' \Rightarrow A'') = A \times A' \Rightarrow A''$$
$$A \Rightarrow 1 = 1 \qquad A \Rightarrow (B_1 \times B_2) = (A \Rightarrow B_1) \times (A \Rightarrow B_2)$$

• Morphisms $A \rightarrow B$ are STLC terms $x : A \vdash t : B$ up to $\beta \eta$

Some facts:

- A_{n+1} is the "free strict cartesian category on S in which S is exponentiable n times"
- ▶ A₁ is the free strict cartesian category on S
- \mathcal{A}_{ω} is the free strict CCC on S
- *A_{n+1}* has A ⇒ − for A ∈ *A_n*, corresponding to adding a free variable of type A

Higher-order Lawvere theories

Definition

For $n \in \mathbb{N}_+ \cup \{\omega\}$, an *n*th-order Lawvere theory is a strict structure-preserving identity-on-objects functor

$$L:\mathcal{A}_n\to\mathcal{L}$$

Morphisms $F: L \rightarrow L'$ are commuting triangles

Form a category Law_n .

Theories from presentations

Given an *n*th-order presentation (Σ, E) , have an *n*th-order Lawvere theory $L : \mathcal{R}_n \to \mathcal{L}$:

- Objects of \mathcal{L} are same as \mathcal{R}_n
- Morphisms $t : A \rightarrow B$ in \mathcal{L} are terms

 $x:A \vdash t:B$

up to equivalence relation generated by E

• $L_{A,B} : \mathcal{A}_n(A,B) \to \mathcal{L}(A,B)$ is inclusion

Coreflective subcategories of theories

$$\mathbf{Set}^{S} \xrightarrow[]{[-]]{\perp}} \mathbf{Law}_{1}$$

Set^S is a coreflective subcategory of Law₁:

• If $L: \mathcal{A}_1 \to \mathcal{L}$ is a first-order Lawvere theory, then

$$\lfloor L \rfloor_s = \mathcal{L}(1,s)$$

- If X ∈ Set^S, then [L] has nullary operators op_x : 1 ⇒ s for each x ∈ X_s
- [-] is fully faithful

Coreflective subcategories of theories

$$\operatorname{Set}^{S} \xrightarrow[]{-]}{\overset{\perp}{\longleftarrow}} \operatorname{Law}_{1} \xrightarrow[]{-]}{\overset{\perp}{\longleftarrow}} \cdots \xrightarrow[]{-]}{\overset{[-]}{\longleftarrow}} \operatorname{Law}_{n} \xrightarrow[]{-]}{\overset{[-]}{\longleftarrow}} \cdots \xrightarrow[]{-]}{\overset{[-]}{\longleftarrow}} \operatorname{Law}_{\omega}$$

Law_n is a coreflective subcategory of Law_{n'} for $n, n' \in \mathbb{N}_+ \cup \{\omega\}$, $n \leq n'$:

▶ If $L : \mathcal{A}_{n'} \to \mathcal{L}$ is an *n*'th-order Lawvere theory, then $\lfloor L \rfloor : \mathcal{A}_n \to \lfloor \mathcal{L} \rfloor$ has

$$\lfloor \mathcal{L} \rfloor (A, B) = \mathcal{L} (A, B)$$

- If L ∈ Law_n, then [L] ∈ Law_n is given by "freely adding some exponentials"
- [-] is fully faithful

Theories from arities

For
$$S = \{s\}$$
,
 $p: \mathcal{A}_1^{\mathrm{op}} \simeq \operatorname{FinSet} \hookrightarrow \operatorname{Set}$

Theories from arities

For
$$S = \{s\}$$
,
 $p: \mathcal{A}_1^{\mathrm{op}} \hookrightarrow \mathbf{Set}^S$

Theories from arities

For
$$S = \{s\}$$
,
 $p: \mathcal{A}_1^{\mathrm{op}} \hookrightarrow \mathbf{Set}^S$

For $n \in \mathbb{N}_+ \cup \{\omega\}$, define $p : \mathcal{R}_{n+1}^{\mathrm{op}} \to \operatorname{Law}_n$ so that $pA(B, B') = \mathcal{R}_{n+1}(A \times B, B')$

▶ Objects of $A \in \mathcal{A}_{n+1}$ "are" finite *n*th-order signatures:

$$\begin{pmatrix} (s \times s \Rightarrow s) \times \\ ((s \Rightarrow s) \Rightarrow s) \end{pmatrix} \in \mathcal{A}_3 \quad \text{is} \quad \begin{array}{c} \Sigma = \{ \mathsf{app} : s \times s \Rightarrow s, \\ \mathsf{abs} : (s \to s) \Rightarrow s \} \end{cases}$$

p satisfies a universal property:

$$\operatorname{Law}_n(pA, L) \cong \lceil \mathcal{L} \rceil(1, A)$$

Local presentability

 $p: \mathcal{A}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$ has many useful properties:

- ► Law_n(pA, L) \cong $\lceil \mathcal{L} \rceil(1, A)$
- p is fully faithful
- ▶ p is dense $(L \mapsto \mathbf{Law}_n(p-, L)$ is fully faithful)
- ▶ pA is finitely presentable (Law_n(pA, -) preserves filtered colimits)

And Law_n has limits and filtered colimits:

$$(\lim_i \mathcal{L}_i)(A, B) = \lim_i (\mathcal{L}_i(A, B))$$

So:

Theorem

Law_n is locally presentable for $n \in \mathbb{N}_+ \cup \{\omega\}$.

Monad-theory correspondence

(monosorted) first-order Lawvere theories

 \simeq finitary monads on Set

Monad-theory correspondence

(monosorted) first-order Lawvere theories

- \simeq relative monads on $p: \mathcal{A}_1^{\mathrm{op}} \simeq \mathbf{FinSet} \hookrightarrow \mathbf{Set}$
- \simeq finitary monads on Set

Relative monads [Altenkirch, Chapman, Uustalu '10]

Definition

A relative monad T on $J : \mathbf{J} \to \mathbf{C}$ consists of

- An object $TX \in \mathbf{C}$ for each $X \in \mathbf{J}$
- A morphism $\eta_X : JX \to TX$ for each $X \in \mathbf{J}$

• A morphism $f^{\dagger}: TX \to TY$ for each $f: JX \to TY$ Subject to some laws Relative monads [Altenkirch, Chapman, Uustalu '10]

Definition

A relative monad T on $J : \mathbf{J} \to \mathbf{C}$ consists of

- An object $TX \in \mathbf{C}$ for each $X \in \mathbf{J}$
- A morphism $\eta_X : JX \to TX$ for each $X \in \mathbf{J}$

• A morphism $f^{\dagger}: TX \to TY$ for each $f: JX \to TY$ Subject to some laws

If $p: C_{\mathrm{f}} \rightarrow C$ is locally finitely presentable, then

$$[C_{\rm f}, {\rm C}] \xrightarrow[]{\operatorname{Lan}_p} [{\rm C}, {\rm C}]_{\rm f}$$

extends to an equivalence

relative monads on $p \simeq$ finitary monads on C

Relative monads from theories

Given a monosorted first-order Lawvere theory $L: \mathcal{A}_1 \rightarrow \mathcal{L}$, define

$$T_L: \mathcal{A}_1^{\mathrm{op}} \to \operatorname{Set} \\ A \mapsto \mathcal{L}(A, s)$$

Then

$$Kl(T_L)(B,A) = Set (pB, T_LA) \cong \mathcal{L}(A,B)$$

so T_L forms a relative monad on $p: \mathcal{R}_1^{\mathrm{op}} \to \mathbf{Set}$:

$$\frac{\operatorname{id}_A : A \to A \text{ in } \mathcal{L}}{\eta_A : pA \to T_L A \text{ in Set}} \qquad \qquad \frac{F : pB \to T_L A \text{ in Set}}{A \to B \text{ in } \mathcal{L}}$$
$$\frac{F : pB \to T_L A \text{ in Set}}{F^{\dagger} : T_L B \to T_L A \text{ in Set}}$$

Relative monads from theories

Given a monosorted first-order Lawvere theory $L: \mathcal{A}_1 \rightarrow \mathcal{L}$, define

$$T_L: \ \mathcal{A}_1^{\mathrm{op}} \rightarrow \operatorname{Set}^S$$
$$A \quad \mapsto \quad \mathcal{L}(A, -)$$

Then

$$\mathbf{Kl}(T_L)(B,A) = \mathbf{Set}^S(pB,T_LA) \cong \mathcal{L}(A,B)$$

so T_L forms a relative monad on $p: \mathcal{A}_1^{\mathrm{op}} \to \mathbf{Set}^S$:

$$\frac{\operatorname{id}_A: A \to A \text{ in } \mathcal{L}}{\eta_A: pA \to T_LA \text{ in } \operatorname{Set}^S} \qquad \qquad \frac{F: pB \to T_LA \text{ in } \operatorname{Set}^S}{A \to B \text{ in } \mathcal{L}}$$
$$\frac{F: pB \to T_LA \text{ in } \operatorname{Set}^S}{F^{\dagger}: T_LB \to T_LA \text{ in } \operatorname{Set}^S}$$

_ _

Relative monads from theories

Given an (n + 1)th-order Lawvere theory $L : \mathcal{A}_{n+1} \rightarrow \mathcal{L}$, define

$$T_L : \mathcal{A}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$$
$$T_L A (B, B') = \mathcal{L}(A \times B, B')$$
$$\cong \mathcal{L}(A, B \Rightarrow B')$$

Then

$$\mathbf{Kl}(T_L)(B,A) = \mathbf{Law}_n(pB,T_LA) \cong \mathcal{L}(A,B)$$

so T_L forms a relative monad on $p: \mathcal{R}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$:

$$\frac{\operatorname{id}_A: A \to A \text{ in } \mathcal{L}}{\eta_A: pA \to T_L A \text{ in } \operatorname{Law}_n} \qquad \qquad \frac{F: pB \to T_L A \text{ in } \operatorname{Law}_n}{A \to B \text{ in } \mathcal{L}}$$
$$\frac{F^{\dagger}: T_L B \to T_L A \text{ in } \operatorname{Law}_n}{F^{\dagger}: T_L B \to T_L A \text{ in } \operatorname{Law}_n}$$

Monads from theories

Given an (n + 1)th-order Lawvere theory $L : \mathcal{A}_{n+1} \to \mathcal{L}$, have a fintary monad $\hat{T}_L = \operatorname{Lan}_p T_L : \operatorname{Law}_n \to \operatorname{Law}_n$, where

$$(\hat{T}_L L')(B, B') \cong \int^{A \in \mathcal{A}_{n+1}} \mathcal{L}(A, B \Rightarrow B') \times \lceil \mathcal{L}' \rceil(1, A)$$

If *L* is the second-order theory of untyped lambda calculus, then $L'' = \hat{T}_L L' \in \mathbf{Law}_1$ freely adds app and abs to *L*':

$$\eta : \mathcal{L}'(A, s) \to \mathcal{L}''(A, s)$$

$$\llbracket \mathsf{app} \rrbracket : \mathcal{L}''(A, s) \times \mathcal{L}''(A, s) \to \mathcal{L}''(A, s)$$

$$\llbracket \mathsf{abs} \rrbracket : \mathcal{L}''(A \times s, s) \to \mathcal{L}''(A, s)$$

The Kleisli category of a relative monad $T: \mathbf{J} \to \mathbf{C}$ has

- Objects $X \in \mathbf{J}$
- Morphisms Kl(T)(X, Y) = C(JX, TY)

If $T: \mathcal{A}_1^{\mathrm{op}} \to \mathbf{Set}^S$ is a relative monad on $p: \mathcal{A}_1^{\mathrm{op}} \to \mathbf{Set}^S$, then

$$L_T: \quad \mathcal{A}_1 \quad \to \quad \mathbf{Kl}(T)^{\mathrm{op}}$$
$$A \quad \mapsto \quad A$$
$$f \quad \mapsto \quad \eta \circ pf$$

is a first-order Lawvere theory.

If $T : \mathcal{A}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$ is a relative monad on $p : \mathcal{A}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$, then $L_T : \mathcal{A}_{n+1} \to \mathbf{Kl}(T)^{\mathrm{op}}$ $A \mapsto A$ $f \mapsto \eta \circ pf$

is a strict cartesian identity-on-objects functor.

Want $\mathbf{Kl}(T)(B \Rightarrow B', A) \cong \mathbf{Kl}(T)(B', A \times B)$ for $B \in \mathcal{R}_n$:

 $\frac{p(B \Rightarrow B') \to TA \text{ in } \mathbf{Law}_n}{pB' \to T(A \times B) \text{ in } \mathbf{Law}_n}$

If $T : \mathcal{A}_{n+1}^{\mathrm{op}} \to \mathbf{Law}_n$ is a relative monad, and $TA + pB \cong T(A \times B)$ (for all $A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_n$)

then $L_T : \mathcal{A}_{n+1} \to \mathrm{Kl}(T)^{\mathrm{op}}$ is an (n+1)th-order Lawvere theory.

If $T = T_L$ for $L \in \mathbf{Law}_{n+1}$:

$B' \rightarrow B''$ in $TA + pB$
$B \times B' \to B''$ in TA
$A \times B \times B' \to B''$ in \mathcal{L}
$B' \to B''$ in $T(A \times B)$

Theorem

There are equivalences between

- ► (*n* + 1)th-order Lawvere theories
- ▶ Relative monads T on $p : \mathcal{R}_{n+1}^{\mathrm{op}} \to \operatorname{Law}_n$ such that

 $TA + pB \cong T(A \times B)$ (for all $A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_n$)

Finitary monads $T : Law_n \rightarrow Law_n$ such that

 $TL + pB \cong T(L + pB)$ (for all $L \in Law_n, B \in \mathcal{A}_n$)

Algebras and models

If $L \in Law_{n+1}$ corresponds to $T : Law_n \rightarrow Law_n$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \rightarrow Set$
- ▶ *T*-algebras $(M, m : TM \to M)$

Algebras and models

If $L \in Law_{n+1}$ corresponds to $T : Law_n \rightarrow Law_n$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \rightarrow \mathbf{Set}$
- T-algebras $(M, m: TM \rightarrow M)$

Each cartesian $M : \mathcal{L} \rightarrow \mathbf{Set}$ induces a Lawvere theory

$$L_M:\mathcal{A}_n\to\mathcal{L}_M$$

with $\mathcal{L}_M(A, B) = M(A \Rightarrow B)$. For products and exponentials:

$$\mathcal{L}_M(A, \prod_i B_i) = M(\prod_i (A \Rightarrow B_i)) \cong \prod_i \mathcal{L}_M(A, B_i)$$
$$\mathcal{L}_M(A, B \Rightarrow B') = M(A \Rightarrow (B \Rightarrow B')) = M(A \times B \Rightarrow B') = \mathcal{L}_M(A \times B, B')$$

Algebras and models

If $L \in Law_{n+1}$ corresponds to $T : Law_n \rightarrow Law_n$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \to \operatorname{Set}$
- T-algebras $(M, m: TM \rightarrow M)$

Each cartesian $M : \mathcal{L} \rightarrow \mathbf{Set}$ induces a Lawvere theory

$$L_M:\mathcal{A}_n\to\mathcal{L}_M$$

with $\mathcal{L}_M(A, B) = M(A \Rightarrow B)$. For products and exponentials:

$$\mathcal{L}_{M}(A, \prod_{i} B_{i}) = M(\prod_{i} (A \Rightarrow B_{i})) \cong \prod_{i} \mathcal{L}_{M}(A, B_{i})$$
$$\mathcal{L}_{M}(A, B \Rightarrow B') = M(A \Rightarrow (B \Rightarrow B')) = M(A \times B \Rightarrow B') = \mathcal{L}_{M}(A \times B, B')$$

But a model of L in C is a cartesian-closed functor $M : \mathcal{L} \to C$?

Conclusions

Have a notion of *n*th-order Lawvere theory for $n \in \mathbb{N}_+ \cup \{\omega\}$

- Form a chain of coreflective subcategories
- Law_n is locally presentable
- Equivalences between
 - (n + 1)th-order Lawvere theories
 - ▶ Relative monads T on $p: \mathcal{R}_{n+1}^{op} \to \mathbf{Law}_n$ such that

 $TA + pB \cong T(A \times B)$ (for all $A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_n$)

Finitary monads
$$T : Law_n \rightarrow Law_n$$
 such that

 $TL + pB \cong T(L + pB)$ (for all $L \in \mathbf{Law}_n, B \in \mathcal{A}_n$)

all analogous to the first-order case.

dylanm@ru.is