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First-order theories have operators op : sk ⇒ s

Γ ⊢ t1 · · · Γ ⊢ tk
Γ ⊢ op(t1, . . . , tk )

Example: monoids have multiplication (·) : s2 ⇒ s, unit e : 1 ⇒ s

Γ ⊢ t1 Γ ⊢ t2
Γ ⊢ t1 · t2 Γ ⊢ e

Non-example: the untyped λ-calculus

Γ ⊢ t1 Γ ⊢ t2
Γ ⊢ app(t1, t2)

Γ,x : s ⊢ t
Γ ⊢ abs(x . t)
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▶ First-order theories
✓ Presentations/equational logic
✓ Lawvere theories
✓ Finitary monads on Set
✓ Abstract clones, monoids in [F, Set]
✓ Various constructions, generalizations, metatheory

▶ Second-order theories: have variable-binding operators
[Fiore and Hur ’10, Fiore and Mahmoud ’10]:
✓ Presentations/equational logic
✓ Lawvere theories
× Some class of monads?
× Clones? Monoids?
× Constructions? Generalizations? Metatheory?

× Higher-order theories?
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First-order presentations
A (monosorted) first-order presentation is a signature with a set of
equations, where:
▶ First-order arities are natural numbers k
▶ Signatures Σ are sets of operators op with arities
▶ Contexts Γ = x1, . . . ,xn are lists of variables
▶ Terms t are generated by

x ∈ Γ

Γ ⊢ x
(op : k) ∈ Σ Γ ⊢ t1 · · · Γ ⊢ tk

Γ ⊢ op(t1, . . . , tk )

▶ Equations Γ ⊢ t ≡ t ′

Example: monoids have operators (·) : 2 and e : 0, and equations
x ⊢ e · x ≡ x x ⊢ x ≡ x · e

x1,x2,x3 ⊢ (x1 · x2) · x3 ≡ x1 · (x2 · x3)
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Second-order presentations [Fiore and Hur ’10, Fiore and Mahmoud ’10]

A (monosorted) second-order presentation is a signature with a set
of equations, where:
▶ Second-order arities are lists (n1, . . . ,nk ) of natural numbers
▶ Signatures Σ are sets of operators op with arities
▶ Variable contexts Γ and metavariable contexts Θ:

Γ = x1, . . . ,xn Θ = m1 :m1, . . . ,mp :mp

▶ Terms t are generated by

x ∈ Γ

Θ | Γ ⊢ x
(m :m) ∈ Θ Θ | Γ ⊢ t1 Θ | Γ ⊢ tm

Θ | Γ ⊢ m(t1, . . . , tm)

(op : (n1, . . . ,nk )) ∈ Σ Θ | Γ, ®x1 ⊢ t1 · · · Θ | Γ, ®xk ⊢ tk
Θ | Γ ⊢ op( ®x1. t1, . . . , ®xk . tk )

▶ Equations Θ | Γ ⊢ t ≡ t ′
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Second-order presentations [Fiore and Hur ’10, Fiore and Mahmoud ’10]

(op : (n1, . . . ,nk )) ∈ Σ Θ | Γ, ®x1 ⊢ t1 · · · Θ | Γ, ®xn ⊢ tn
Θ | Γ ⊢ op( ®x1. t1, . . . , ®xn . tn)

Example: untyped λ-calculus has operators app : (0, 0) and abs : (1)

Θ | Γ ⊢ t1 Θ | Γ ⊢ t2
Θ | Γ ⊢ app(t1, t2)

Θ | Γ,x ⊢ t
Θ | Γ ⊢ abs(x . t)

and equations

m1 : 1,m2 : 0 | ⋄ ⊢ app(abs(x .m1(x)),m2()) ≡ m1(m2()) (β)
m : 0 | ⋄ ⊢ abs(x . app(m(),x)) ≡ m() (η)
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Moving to higher orders

Both first-order and second-order presentations use part of STLC
▶ First-order: no functions
▶ Second-order: only first-order functions (argument is sm)

Instead of
(op : (k)) ∈ Σ Θ | Γ, ®x ⊢ t

Θ | Γ ⊢ op(®x . t)
have

(op : (sk → s) ⇒ s) ∈ Σ Θ | Γ,−−→x : s ⊢ t : s
Θ | Γ ⊢ op(λ®x . t) : s
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Higher-order presentations
Fix a set S of sorts

A,B F s ord s = 0

| 1 ord 1 = −1
| A1 ×A2 ord (A1×A2) = max{ordA1, ordA2}
| A → B ord (A → B) = max{ordA + 1, ordB}

Definition
For n ∈ N ∪ {ω}, an nth-order signature Σ is:
▶ a set of operators op
▶ each with an arity A ⇒ s such that ordA < n.

Example (S = {s}, n = 2):
Σ = {app : s × s ⇒ s,

abs : (s → s) ⇒ s}
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Higher-order presentations

Given an nth-order signature, generate STLC terms t in the usual
way

(op : A ⇒ s) ∈ Σ Γ ⊢ t : A
Γ ⊢ op t : s

Definition
An nth-order presentation consists of:
▶ An nth-order signature Σ

▶ A set of equations

x1 : A1, . . . ,xn : An ⊢ t ≡ t ′ : s

such that max{ordA1, . . . , ordAn} < n.
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Examples

Monoids are first-order, with S = {s}
▶ Operators

(·) : s × s ⇒ s e : 1 ⇒ s

▶ Equations

x : s,y : s, z : s ⊢ (x · y) · z ≡ x · (y · z) : s

x : s ⊢ e · x ≡ x : s x : s ⊢ x · e ≡ x : s
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Examples

Untyped λ-calculus is second-order, with S = {s}
▶ Operators

app : s × s ⇒ s abs : (s → s) ⇒ s

▶ Equations

f : s → s, a : s ⊢ app (abs f ,a) ≡ f a : s (β)
f : s ⊢ abs (λx : s . app (f ,x)) ≡ f : s (η)

Can do typed λ-calculus with more sorts:

s F b | Fun(s, s ′)
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Examples

Propositional logic/boolean algebras, with S = {prop}
▶ Operators

⊤⊥ : 1 ⇒ prop (zeroth-order)
∧∨ : prop × prop ⇒ prop (first-order)
¬ : prop ⇒ prop (first-order)

∀ : (thing → prop) ⇒ prop (second-order)
∀2 : ((thing → prop) → prop) ⇒ prop (third-order)

▶ Many equations

Formula ∀P .∀x . (Px) ∨ ¬(Px) encoded as

∀2 (λP : thing → prop. ∀ (λx : thing. Px ∨ ¬(Px)))
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Examples

First-order logic, with S = {prop, thing}
▶ Operators
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Examples

▶ Parameterized algebraic theories [Staton ’13] are two-sorted
second-order theories

▶ Partial differentiation has a monosorted second-order
presentation [Plotkin ’20]
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First-order Lawvere theories
For S = {s}, first-order arities form a category A1, which:
▶ is the opposite of a skeleton of FinSet
▶ is the free strict cartesian category on S

▶ has objects sk for k ∈ N, morphisms t : sk → sm are STLC
terms x : sk ⊢ t : sm up to βη (with no operators)

A first-order Lawvere theory is a strict cartesian identity-on-objects
functor

L : A1 → L

An element of t ∈ L(sk , sm) “is” a term

x : sk ⊢ t : sm

(possibly with operators)
14



Higher-order Lawvere theories
Category of n-order arities An , for n ∈ N+ ∪ {ω}:
▶ Objects are some representative subset of types A such that

ordA < n, with strict products and exponentials:

1 ×A = A = A × 1 (A1 ×A2) ×A3 = A1 × (A2 ×A3)
1 ⇒ A = A A ⇒ (A′ ⇒ A′′) = A ×A′ ⇒ A′′

A ⇒ 1 = 1 A ⇒ (B1 × B2) = (A ⇒ B1) × (A ⇒ B2)

▶ Morphisms A → B are STLC terms x : A ⊢ t : B up to βη

Some facts:
▶ An+1 is the “free strict cartesian category on S in which S is

exponentiable n times”
▶ A1 is the free strict cartesian category on S

▶ Aω is the free strict CCC on S

▶ An+1 has A ⇒ − for A ∈ An , corresponding to adding a free
variable of type A
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Higher-order Lawvere theories

Definition
For n ∈ N+ ∪ {ω}, an nth-order Lawvere theory is a strict
structure-preserving identity-on-objects functor

L : An → L

Morphisms F : L → L′ are commuting triangles

L L ′

An

F

L L′

Form a category Lawn .
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Theories from presentations

Given an nth-order presentation (Σ,E), have an nth-order Lawvere
theory L : An → L:
▶ Objects of L are same as An

▶ Morphisms t : A → B in L are terms

x : A ⊢ t : B

up to equivalence relation generated by E

▶ LA,B : An(A,B) → L(A,B) is inclusion
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Coreflective subcategories of theories

SetS Law1

⌈−⌉

⌊−⌋

⊣

SetS is a coreflective subcategory of Law1:
▶ If L : A1 → L is a first-order Lawvere theory, then

⌊L⌋s = L(1, s)

▶ If X ∈ SetS , then ⌈L⌉ has nullary operators opx : 1 ⇒ s for
each x ∈ Xs

▶ ⌈−⌉ is fully faithful
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Coreflective subcategories of theories

SetS Law1 · · · Lawn · · · Lawω

⌈−⌉

⌊−⌋

⌈−⌉

⌊−⌋

⌈−⌉

⌊−⌋

⌈−⌉

⌊−⌋

⌈−⌉

⌊−⌋

⊣ ⊣ ⊣ ⊣ ⊣

Lawn is a coreflective subcategory of Lawn′ for n,n′ ∈ N+ ∪ {ω},
n ≤ n′:
▶ If L : An′ → L is an n′th-order Lawvere theory, then

⌊L⌋ : An → ⌊L⌋ has

⌊L⌋(A,B) = L(A,B)

▶ If L ∈ Lawn , then ⌈L⌉ ∈ Lawn′ is given by “freely adding some
exponentials”

▶ ⌈−⌉ is fully faithful
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Theories from arities

For S = {s},
p : Aop

1 ≃ FinSet ↪→ Set

For n ∈ N+ ∪ {ω}, define p : Aop
n+1 → Lawn so that

pA(B,B′) = An+1(A × B,B′)

▶ Objects of A ∈ An+1 “are” finite nth-order signatures:(
(s × s ⇒ s) ×
((s ⇒ s) ⇒ s)

)
∈ A3 is Σ = {app : s × s ⇒ s,

abs : (s → s) ⇒ s}

▶ p satisfies a universal property:

Lawn(pA, L) � ⌈L⌉(1,A)
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Local presentability

p : Aop
n+1 → Lawn has many useful properties:

▶ Lawn(pA, L) � ⌈L⌉(1,A)
▶ p is fully faithful
▶ p is dense (L 7→ Lawn(p−,L) is fully faithful)
▶ pA is finitely presentable (Lawn(pA,−) preserves filtered

colimits)
And Lawn has limits and filtered colimits:

(limi Li )(A,B) = limi (Li (A,B))

So:

Theorem
Lawn is locally presentable for n ∈ N+ ∪ {ω}.
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Monad–theory correspondence

(monosorted) first-order Lawvere theories

≃ relative monads on p : Aop
1 ≃ FinSet ↪→ Set

≃ finitary monads on Set
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Relative monads [Altenkirch, Chapman, Uustalu ’10]

Definition
A relative monad T on J : J → C consists of
▶ An object TX ∈ C for each X ∈ J

▶ A morphism ηX : JX → TX for each X ∈ J

▶ A morphism f † : TX → TY for each f : JX → TY

Subject to some laws

If p : Cf → C is locally finitely presentable, then

[Cf ,C] [C,C]f
Lanp

−◦p
≃

extends to an equivalence
relative monads on p ≃ finitary monads on C
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Relative monads from theories

Given a monosorted first-order Lawvere theory L : A1 → L, define

TL : Aop
1 → Set

S

A 7→ L(A, s )

Then
Kl(TL)(B,A) = Set

S

(pB,TLA) � L(A,B)

so TL forms a relative monad on p : Aop
1 → Set

S

:

idA : A → A in L

ηA : pA → TLA in Set

S

F : pB → TLA in Set

S

A → B in L
F † : TLB → TLA in Set

S
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Relative monads from theories

Given an (n + 1)th-order Lawvere theory L : An+1 → L, define

TL : Aop
n+1 → Lawn

TLA (B,B′) = L(A × B, B′)
� L(A, B ⇒ B′)

Then
Kl(TL)(B,A) = Lawn(pB,TLA) � L(A,B)

so TL forms a relative monad on p : Aop
n+1 → Lawn :

idA : A → A in L
ηA : pA → TLA in Lawn

F : pB → TLA in Lawn

A → B in L
F † : TLB → TLA in Lawn
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Monads from theories

Given an (n + 1)th-order Lawvere theory L : An+1 → L, have a
fintary monad T̂L = LanpTL : Lawn → Lawn , where

(T̂L L′)(B,B′) �
∫ A∈An+1

L(A,B ⇒ B′) × ⌈L ′⌉(1,A)

If L is the second-order theory of untyped lambda calculus, then
L′′ = T̂LL′ ∈ Law1 freely adds app and abs to L′:

η : L ′(A, s) → L ′′ (A, s)

⟦app⟧ : L ′′(A, s) × L ′′(A, s) → L ′′(A, s)
⟦abs⟧ : L ′′(A × s, s) → L ′′(A, s)
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Theories from relative monads

The Kleisli category of a relative monad T : J → C has
▶ Objects X ∈ J

▶ Morphisms Kl(T )(X ,Y ) = C(JX ,TY )
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Theories from relative monads

If T : Aop
1 → SetS is a relative monad on p : Aop

1 → SetS , then

LT : A1 → Kl(T )op

A 7→ A
f 7→ η ◦ p f

is a first-order Lawvere theory.

Want Kl(T )(B ⇒ B′,A) � Kl(T )(B′,A × B) for B ∈ An :

p(B ⇒ B′) → TA in Lawn

pB′ → T (A × B) in Lawn
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Theories from relative monads

If T : Aop
n+1 → Lawn is a relative monad, and

TA + pB � T (A × B) (for all A ∈ An+1, B ∈ An)

then LT : An+1 → Kl(T )op is an (n + 1)th-order Lawvere theory.

If T = TL for L ∈ Lawn+1:

B′ → B′′ in TA + pB

B × B′ → B′′ in TA

A × B × B′ → B′′ in L
B′ → B′′ in T (A × B)
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Theorem
There are equivalences between
▶ (n + 1)th-order Lawvere theories
▶ Relative monads T on p : Aop

n+1 → Lawn such that

TA + pB � T (A × B) (for all A ∈ An+1, B ∈ An)

▶ Finitary monads T : Lawn → Lawn such that

TL + pB � T (L + pB) (for all L ∈ Lawn , B ∈ An)
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Algebras and models

If L ∈ Lawn+1 corresponds to T : Lawn → Lawn , there is an
equivalence between:
▶ Cartesian functors L → Set

▶ T -algebras (M, m : TM → M)

Each cartesian M : L → Set induces a Lawvere theory

LM : An → LM

with LM (A,B) = M(A ⇒ B). For products and exponentials:

LM (A,∏i Bi ) = M(∏i (A ⇒ Bi )) �
∏

i LM (A,Bi )
LM (A,B ⇒ B′) = M(A ⇒ (B ⇒ B′)) = M(A × B ⇒ B′) = LM (A × B,B′)

But a model of L in C is a cartesian-closed functor M : L → C?
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Conclusions
Have a notion of nth-order Lawvere theory for n ∈ N+ ∪ {ω}
▶ Form a chain of coreflective subcategories
▶ Lawn is locally presentable
▶ Equivalences between

▶ (n + 1)th-order Lawvere theories
▶ Relative monads T on p : Aop

n+1 → Lawn such that

TA + pB � T (A × B) (for all A ∈ An+1, B ∈ An)

▶ Finitary monads T : Lawn → Lawn such that

TL + pB � T (L + pB) (for all L ∈ Lawn , B ∈ An)

all analogous to the first-order case.

dylanm@ru.is
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