Higher-order algebraic theories

Nathanael Arkor
University of Cambridge

Dylan McDermott
Reykjavik University

TallCat seminar
June 2020

First-order theories have operators op : $s^{k} \Rightarrow s$

$$
\frac{\Gamma \vdash t_{1} \quad \ldots \quad \Gamma \vdash t_{k}}{\Gamma \vdash \mathrm{op}\left(t_{1}, \ldots, t_{k}\right)}
$$

Example: monoids have multiplication $(\cdot): s^{2} \Rightarrow s$, unit e : $1 \Rightarrow s$
$\frac{\Gamma \vdash t_{1} \quad \Gamma \vdash t_{2}}{\Gamma \vdash t_{1} \cdot t_{2}} \quad \overline{\Gamma \vdash \mathrm{e}}$

First-order theories have operators op : $s^{k} \Rightarrow s$

$$
\frac{\Gamma \vdash t_{1} \quad \ldots \quad \Gamma \vdash t_{k}}{\Gamma \vdash \mathrm{op}\left(t_{1}, \ldots, t_{k}\right)}
$$

Example: monoids have multiplication $(\cdot): s^{2} \Rightarrow s$, unit e : $1 \Rightarrow s$
$\frac{\Gamma \vdash t_{1} \Gamma \vdash t_{2}}{\Gamma \vdash t_{1} \cdot t_{2}} \quad \overline{\Gamma \vdash \mathrm{e}}$

Non-example: the untyped λ-calculus

$$
\frac{\Gamma \vdash t_{1} \quad \Gamma \vdash t_{2}}{\Gamma \vdash \operatorname{app}\left(t_{1}, t_{2}\right)}
$$

$$
\frac{\Gamma, x: s \vdash t}{\Gamma \vdash \operatorname{abs}(x . t)}
$$

- First-order theories
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\checkmark Finitary monads on Set
\checkmark Abstract clones, monoids in [\mathbb{F}, Set]
\checkmark Various constructions, generalizations, metatheory
- First-order theories
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\checkmark Finitary monads on Set
\checkmark Abstract clones, monoids in [F, Set]
\checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
\checkmark Presentations/equational logic
\checkmark Lawvere theories
- First-order theories
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\checkmark Finitary monads on Set
\checkmark Abstract clones, monoids in [F, Set]
\checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\times Some class of monads?
\times Clones? Monoids?
\times Constructions? Generalizations? Metatheory?
- First-order theories
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\checkmark Finitary monads on Set
\checkmark Abstract clones, monoids in [F, Set]
\checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\times Some class of monads?
\times Clones? Monoids?
\times Constructions? Generalizations? Metatheory?
\times Higher-order theories?
- First-order theories
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\checkmark Finitary monads on Set
\checkmark Abstract clones, monoids in [F, Set]
\checkmark Various constructions, generalizations, metatheory
- Second-order theories: have variable-binding operators [Fiore and Hur '10, Fiore and Mahmoud '10]:
\checkmark Presentations/equational logic
\checkmark Lawvere theories
\times Some class of monads?
\times Clones? Monoids?
\times Constructions? Generalizations? Metatheory?
\times Higher-order theories?

First-order presentations

A (monosorted) first-order presentation is a signature with a set of equations, where:

- First-order arities are natural numbers k
- Signatures Σ are sets of operators op with arities
- Contexts $\Gamma=x_{1}, \ldots, x_{n}$ are lists of variables
- Terms t are generated by

$$
\frac{x \in \Gamma}{\Gamma \vdash x} \quad \frac{(\mathrm{op}: k) \in \Sigma \quad \Gamma \vdash t_{1} \quad \cdots}{\Gamma \vdash \mathrm{op}\left(t_{1}, \ldots, t_{k}\right)}
$$

- Equations $\Gamma \vdash t \equiv t^{\prime}$

Example: monoids have operators $(\cdot): 2$ and $e: 0$, and equations

$$
\begin{array}{cr}
x \vdash e \cdot x \equiv x & x \vdash x \equiv x \cdot e \\
x_{1}, x_{2}, x_{3} \vdash\left(x_{1} \cdot x_{2}\right) \cdot x_{3} \equiv x_{1} \cdot\left(x_{2} \cdot x_{3}\right)
\end{array}
$$

Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]

A (monosorted) second-order presentation is a signature with a set of equations, where:

- Second-order arities are lists $\left(n_{1}, \ldots, n_{k}\right)$ of natural numbers
- Signatures Σ are sets of operators op with arities
- Variable contexts Γ and metavariable contexts Θ :

$$
\Gamma=x_{1}, \ldots, x_{n} \quad \Theta=\mathrm{M}_{1}: m_{1}, \ldots, \mathrm{M}_{p}: m_{p}
$$

- Terms t are generated by

$$
\begin{aligned}
& \frac{x \in \Gamma}{\Theta \mid \Gamma \vdash x} \quad \frac{(\mathrm{M}: m) \in \Theta \quad \Theta\left|\Gamma \vdash t_{1} \quad \Theta\right| \Gamma \vdash t_{m}}{\Theta \mid \Gamma \vdash \mathrm{M}\left(t_{1}, \ldots, t_{m}\right)} \\
& \frac{\left(\mathrm{op}:\left(n_{1}, \ldots, n_{k}\right)\right) \in \Sigma \quad \Theta\left|\Gamma, \overrightarrow{x_{1}} \vdash t_{1} \quad \cdots \quad \Theta\right| \Gamma, \overrightarrow{x_{k}} \vdash t_{k}}{\Theta \mid \Gamma \vdash \operatorname{op}\left(\vec{x}_{1} \cdot t_{1}, \ldots, \overrightarrow{x_{k}} \cdot t_{k}\right)}
\end{aligned}
$$

- Equations $\Theta \mid \Gamma \vdash t \equiv t^{\prime}$

Second-order presentations [Fiore and Hur '10, Fiore and Mahmoud '10]

$$
\left.\frac{\left(\mathrm{op}:\left(n_{1}, \ldots, n_{k}\right)\right) \in \Sigma \quad \Theta \mid \Gamma, \vec{x}_{1} \vdash t_{1} \quad \cdots}{}+\Theta \right\rvert\, \Gamma, \vec{x}_{n} \vdash t_{n}
$$

Example: untyped λ-calculus has operators app : $(0,0)$ and abs : (1)

$$
\frac{\Theta\left|\Gamma \vdash t_{1} \quad \Theta\right| \Gamma \vdash t_{2}}{\Theta \mid \Gamma \vdash \operatorname{app}\left(t_{1}, t_{2}\right)} \quad \frac{\Theta \mid \Gamma, x \vdash t}{\Theta \mid \Gamma \vdash \operatorname{abs}(x . t)}
$$

and equations

$$
\begin{gather*}
\mathrm{M}_{1}: 1, \mathrm{M}_{2}: 0 \mid \diamond \vdash \operatorname{app}\left(\operatorname{abs}\left(x \cdot \mathrm{M}_{1}(x)\right), \mathrm{M}_{2}()\right) \equiv \mathrm{M}_{1}\left(\mathrm{M}_{2}()\right) \\
\mathrm{M}: 0 \mid \diamond \vdash \operatorname{abs}(x \cdot \operatorname{app}(\mathrm{M}(), x)) \equiv \mathrm{M}()
\end{gather*}
$$

Moving to higher orders

Both first-order and second-order presentations use part of STLC

- First-order: no functions
- Second-order: only first-order functions (argument is s^{m})

Instead of

$$
\frac{(\mathrm{op}:(k)) \in \Sigma \quad \Theta \mid \Gamma, \vec{x} \vdash t}{\Theta \mid \Gamma \vdash \operatorname{op}(\vec{x} \cdot t)}
$$

have

$$
\frac{\left(\mathrm{op}:\left(s^{k} \rightarrow s\right) \Rightarrow s\right) \in \Sigma \quad \Theta \mid \Gamma, \overrightarrow{x: s} \vdash t: s}{\Theta \mid \Gamma \vdash \operatorname{op}(\lambda \vec{x} . t): s}
$$

Higher-order presentations

Fix a set S of sorts

$$
\begin{array}{rlrl}
A, B: & =s & \operatorname{ord} s & =0 \\
\mid 1 & \operatorname{ord} 1 & =-1 \\
\mid A_{1} \times A_{2} & \operatorname{ord}\left(A_{1} \times A_{2}\right) & =\max \left\{\operatorname{ord} A_{1}, \operatorname{ord} A_{2}\right\} \\
\mid A \rightarrow B & \operatorname{ord}(A \rightarrow B) & =\max \{\operatorname{ord} A+1, \operatorname{ord} B\}
\end{array}
$$

Definition

For $n \in \mathbb{N} \cup\{\omega\}$, an n th-order signature Σ is:

- a set of operators op
- each with an arity $A \Rightarrow s$ such that ord $A<n$.

Example $(S=\{s\}, n=2)$:

$$
\begin{aligned}
& \Sigma=\{\text { app }: s \times s \Rightarrow s, \\
&\text { abs }:(s \rightarrow s) \Rightarrow s\}
\end{aligned}
$$

Higher-order presentations

Given an n th-order signature, generate STLC terms t in the usual way

$$
\frac{(\mathrm{op}: A \Rightarrow s) \in \Sigma \quad \Gamma \vdash t: A}{\Gamma \vdash \mathrm{op} t: s}
$$

Definition

An n th-order presentation consists of:

- An n th-order signature Σ
- A set of equations

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t \equiv t^{\prime}: s
$$

such that $\max \left\{\operatorname{ord} A_{1}, \ldots, \operatorname{ord} A_{n}\right\}<n$.

Examples

Monoids are first-order, with $S=\{s\}$

- Operators

$$
(\cdot): s \times s \Rightarrow s \quad e: 1 \Rightarrow s
$$

- Equations

$$
\begin{array}{ll}
x: s, y: s, z: s \vdash(x \cdot y) \cdot z \equiv x \cdot(y \cdot z): s \\
x: s \vdash e \cdot x \equiv x: s & x: s \vdash x \cdot e \equiv x: s
\end{array}
$$

Examples

Untyped λ-calculus is second-order, with $S=\{s\}$

- Operators

$$
\text { app }: s \times s \Rightarrow s \quad \text { abs }:(s \rightarrow s) \Rightarrow s
$$

- Equations

$$
\begin{array}{rlrl}
f: s \rightarrow s, a: s \vdash & \operatorname{app}(\operatorname{abs} f, a) & \equiv f a: s \\
f: s \vdash \operatorname{abs}(\lambda x: s . \operatorname{app}(f, x)) & \equiv f: s
\end{array}
$$

Examples

Untyped λ-calculus is second-order, with $S=\{s\}$

- Operators

$$
\text { app }: s \times s \Rightarrow s \quad \text { abs }:(s \rightarrow s) \Rightarrow s
$$

- Equations

$$
\begin{array}{rlrl}
f: s \rightarrow s, a: s \vdash & \operatorname{app}(\operatorname{abs} f, a) & \equiv f a: s \\
f: s \vdash \operatorname{abs}(\lambda x: s . \operatorname{app}(f, x)) & \equiv f: s
\end{array}
$$

Can do typed λ-calculus with more sorts:

$$
s::=b \mid \operatorname{Fun}\left(s, s^{\prime}\right)
$$

Examples

Propositional logic/boolean algebras, with $S=\{$ prop $\}$

- Operators

$$
\begin{aligned}
& \top \perp: 1 \Rightarrow \text { prop } \\
& \wedge \vee: \text { prop } \times \text { prop } \Rightarrow \text { prop } \\
& \quad \neg: \text { prop } \Rightarrow \text { prop }
\end{aligned}
$$

(zeroth-order) (first-order) (first-order)

- Many equations

Examples

First-order logic, with $S=\{$ prop, thing $\}$

- Operators

$$
\begin{aligned}
\top & \perp \\
\wedge & 1 \Rightarrow \text { prop } \\
\vee & : \text { prop } \times \text { prop } \Rightarrow \text { prop } \\
& : \text { prop } \Rightarrow \text { prop } \\
& \forall:(\text { thing } \rightarrow \text { prop }) \Rightarrow \text { prop }
\end{aligned}
$$

(zeroth-order) (first-order) (first-order)
(second-order)

- Many equations

Examples

Second-order logic, with $S=\{$ prop, thing $\}$

- Operators

$$
\begin{aligned}
\top & \perp \\
\wedge & : 1 \Rightarrow \text { prop } \\
\vee & : \text { prop } \times \text { prop } \Rightarrow \text { prop } \\
\neg & : \text { prop } \Rightarrow \text { prop } \\
\forall & :(\text { thing } \rightarrow \text { prop }) \Rightarrow \text { prop } \\
\forall_{2} & :((\text { thing } \rightarrow \text { prop }) \rightarrow \text { prop }) \Rightarrow \text { prop }
\end{aligned}
$$

$$
\begin{array}{r}
\text { (zeroth-order) } \\
\text { (first-order) } \\
\text { (first-order) } \\
\text { (second-order) } \\
\text { (third-order) }
\end{array}
$$

- Many equations

Formula $\forall P . \forall x .(P x) \vee \neg(P x)$ encoded as
$\forall_{2}(\lambda P$: thing \rightarrow prop. $\forall(\lambda x$: thing. $P x \vee \neg(P x)))$

Examples

- Parameterized algebraic theories [Staton '13] are two-sorted second-order theories
- Partial differentiation has a monosorted second-order presentation [Plotkin '20]

First-order Lawvere theories

For $S=\{s\}$, first-order arities form a category \mathcal{A}_{1}, which:

- is the opposite of a skeleton of FinSet
- is the free strict cartesian category on S
- has objects s^{k} for $k \in \mathbb{N}$, morphisms $t: s^{k} \rightarrow s^{m}$ are STLC terms $x: s^{k} \vdash t: s^{m}$ up to $\beta \eta$ (with no operators)

A first-order Lawvere theory is a strict cartesian identity-on-objects functor

$$
L: \mathcal{A}_{1} \rightarrow \mathcal{L}
$$

An element of $t \in \mathcal{L}\left(s^{k}, s^{m}\right)$ "is" a term

$$
x: s^{k} \vdash t: s^{m}
$$

(possibly with operators)

Higher-order Lawvere theories

Category of n-order arities \mathcal{A}_{n}, for $n \in \mathbb{N}_{+} \cup\{\omega\}$:

- Objects are some representative subset of types A such that ord $A<n$, with strict products and exponentials:

$$
\begin{gathered}
1 \times A=A=A \times 1 \quad\left(A_{1} \times A_{2}\right) \times A_{3}=A_{1} \times\left(A_{2} \times A_{3}\right) \\
1 \Rightarrow A=A \quad A \Rightarrow\left(A^{\prime} \Rightarrow A^{\prime \prime}\right)=A \times A^{\prime} \Rightarrow A^{\prime \prime} \\
A \Rightarrow 1=1 \quad A \Rightarrow\left(B_{1} \times B_{2}\right)=\left(A \Rightarrow B_{1}\right) \times\left(A \Rightarrow B_{2}\right)
\end{gathered}
$$

- Morphisms $A \rightarrow B$ are STLC terms $x: A \vdash t: B$ up to $\beta \eta$

Some facts:

- \mathcal{A}_{n+1} is the "free strict cartesian category on S in which S is exponentiable n times"
- \mathcal{A}_{1} is the free strict cartesian category on S
- \mathcal{A}_{ω} is the free strict CCC on S
- \mathcal{A}_{n+1} has $A \Rightarrow$ - for $A \in \mathcal{A}_{n}$, corresponding to adding a free variable of type A

Higher-order Lawvere theories

Definition

For $n \in \mathbb{N}_{+} \cup\{\omega\}$, an n th-order Lawvere theory is a strict structure-preserving identity-on-objects functor

$$
L: \mathcal{A}_{n} \rightarrow \mathcal{L}
$$

Morphisms $F: L \rightarrow L^{\prime}$ are commuting triangles

Form a category Law_{n}.

Theories from presentations

Given an n th-order presentation (Σ, E), have an n th-order Lawvere theory $L: \mathcal{A}_{n} \rightarrow \mathcal{L}$:

- Objects of \mathcal{L} are same as \mathcal{A}_{n}
- Morphisms $t: A \rightarrow B$ in \mathcal{L} are terms

$$
x: A \vdash t: B
$$

up to equivalence relation generated by E

- $L_{A, B}: \mathcal{A}_{n}(A, B) \rightarrow \mathcal{L}(A, B)$ is inclusion

Coreflective subcategories of theories

$$
\operatorname{Set}^{S} \underset{\stackrel{\Gamma-\rceil}{\stackrel{\Gamma}{L-\rfloor}}}{\stackrel{\perp}{4}} \operatorname{Law}_{1}
$$

Set ${ }^{S}$ is a coreflective subcategory of Law $_{1}$:

- If $L: \mathcal{A}_{1} \rightarrow \mathcal{L}$ is a first-order Lawvere theory, then

$$
\lfloor L\rfloor_{s}=\mathcal{L}(1, s)
$$

- If $X \in \operatorname{Set}^{S}$, then $\lceil L\rceil$ has nullary operators op ${ }_{x}: 1 \Rightarrow s$ for each $x \in X_{s}$
- $\lceil-\rceil$ is fully faithful

Coreflective subcategories of theories

Law_{n} is a coreflective subcategory of $\operatorname{Law}_{n^{\prime}}$ for $n, n^{\prime} \in \mathbb{N}_{+} \cup\{\omega\}$, $n \leq n^{\prime}$:

- If $L: \mathcal{A}_{n^{\prime}} \rightarrow \mathcal{L}$ is an n^{\prime} th-order Lawvere theory, then $\lfloor L\rfloor: \mathcal{A}_{n} \rightarrow\lfloor\mathcal{L}\rfloor$ has

$$
\lfloor\mathcal{L}\rfloor(A, B)=\mathcal{L}(A, B)
$$

- If $L \in \operatorname{Law}_{n}$, then $\lceil L\rceil \in \operatorname{Law}_{n^{\prime}}$ is given by "freely adding some exponentials"
- $\lceil-\rceil$ is fully faithful

Theories from arities

For $S=\{s\}$,

$$
p: \mathcal{A}_{1}^{\mathrm{op}} \simeq \text { FinSet } \hookrightarrow \text { Set }
$$

Theories from arities

For $S=\{s\}$,

$$
p: \mathcal{A}_{1}^{\mathrm{op}} \hookrightarrow \mathrm{Set}^{S}
$$

Theories from arities

For $S=\{s\}$,

$$
p: \mathcal{A}_{1}^{\mathrm{op}} \hookrightarrow \operatorname{Set}^{S}
$$

For $n \in \mathbb{N}_{+} \cup\{\omega\}$, define $p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \mathbf{L a w}_{n}$ so that

$$
p A\left(B, B^{\prime}\right)=\mathcal{A}_{n+1}\left(A \times B, B^{\prime}\right)
$$

- Objects of $A \in \mathcal{A}_{n+1}$ "are" finite n th-order signatures:

$$
\binom{(s \times s \Rightarrow s) \times}{((s \Rightarrow s) \Rightarrow s)} \in \mathcal{A}_{3} \quad \text { is } \quad \Sigma=\{\operatorname{app}: s \times s \Rightarrow s, ~ 子 a b s:(s \rightarrow s) \Rightarrow s\}
$$

- p satisfies a universal property:

$$
\operatorname{Law}_{n}(p A, L) \cong\lceil\mathcal{L}\rceil(1, A)
$$

Local presentability

$p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow$ Law $_{n}$ has many useful properties:

- $\operatorname{Law}_{n}(p A, L) \cong\lceil\mathcal{L}\rceil(1, A)$
- p is fully faithful
- p is dense $\left(L \mapsto \operatorname{Law}_{n}(p-, L)\right.$ is fully faithful)
- $p A$ is finitely presentable $\left(\operatorname{Law}_{n}(p A,-)\right.$ preserves filtered colimits)
And Law $_{n}$ has limits and filtered colimits:

$$
\left(\lim _{i} \mathcal{L}_{i}\right)(A, B)=\lim _{i}\left(\mathcal{L}_{i}(A, B)\right)
$$

So:
Theorem
Law $_{n}$ is locally presentable for $n \in \mathbb{N}_{+} \cup\{\omega\}$.

Monad-theory correspondence

(monosorted) first-order Lawvere theories
\simeq finitary monads on Set

Monad-theory correspondence

(monosorted) first-order Lawvere theories
\simeq relative monads on $p: \mathcal{A}_{1}^{\mathrm{op}} \simeq$ FinSet \hookrightarrow Set
\simeq finitary monads on Set

Relative monads [Altenkirch, Chapman, Uustalu '10]

Definition
A relative monad T on $J: \mathbf{J} \rightarrow \mathbf{C}$ consists of

- An object $T X \in \mathbf{C}$ for each $X \in \mathbf{J}$
- A morphism $\eta_{X}: J X \rightarrow T X$ for each $X \in \mathbf{J}$
- A morphism $f^{\dagger}: T X \rightarrow T Y$ for each $f: J X \rightarrow T Y$

Subject to some laws

Relative monads [Altenkirch, Chapman, Uustalu '10]

Definition

A relative monad T on $J: \mathbf{J} \rightarrow \mathbf{C}$ consists of

- An object $T X \in \mathbf{C}$ for each $X \in \mathbf{J}$
- A morphism $\eta_{X}: J X \rightarrow T X$ for each $X \in \mathbf{J}$
- A morphism $f^{\dagger}: T X \rightarrow T Y$ for each $f: J X \rightarrow T Y$

Subject to some laws

If $p: \mathrm{C}_{\mathrm{f}} \rightarrow \mathrm{C}$ is locally finitely presentable, then

$$
\left[\mathrm{C}_{\mathrm{f}}, \mathrm{C}\right] \underset{-o p}{\stackrel{\operatorname{Lan}_{p}}{\leftrightarrows}}[\mathrm{C}, \mathrm{C}]_{\mathrm{f}}
$$

extends to an equivalence
relative monads on $p \simeq$ finitary monads on C

Relative monads from theories

Given a monosorted first-order Lawvere theory $L: \mathcal{A}_{1} \rightarrow \mathcal{L}$, define

$$
\begin{aligned}
T_{L}: \mathcal{A}_{1}^{\mathrm{op}} & \rightarrow \\
& \rightarrow \text { Set } \\
A & \mapsto \mathcal{L}(A, s)
\end{aligned}
$$

Then

$$
\operatorname{Kl}\left(T_{L}\right)(B, A)=\operatorname{Set}\left(p B, T_{L} A\right) \cong \mathcal{L}(A, B)
$$

so T_{L} forms a relative monad on $p: \mathcal{A}_{1}^{\mathrm{op}} \rightarrow$ Set :

$$
\operatorname{id}_{A}: A \rightarrow A \text { in } \mathcal{L}
$$

$\eta_{A}: p A \rightarrow T_{L} A$ in Set
$\frac{F: p B \rightarrow T_{L} A \text { in Set }}{A \rightarrow B \text { in } \mathcal{L}}$

Relative monads from theories

Given a monosorted first-order Lawvere theory $L: \mathcal{A}_{1} \rightarrow \mathcal{L}$, define

$$
\begin{aligned}
T_{L}: \mathcal{A}_{1}^{\mathrm{op}} & \rightarrow \text { Set }^{S} \\
A & \mapsto \mathcal{L}(A,-)
\end{aligned}
$$

Then

$$
\operatorname{Kl}\left(T_{L}\right)(B, A)=\operatorname{Set}^{S}\left(p B, T_{L} A\right) \cong \mathcal{L}(A, B)
$$

so T_{L} forms a relative monad on $p: \mathcal{A}_{1}^{\mathrm{op}} \rightarrow \mathrm{Set}^{S}$:

$$
\frac{\operatorname{id}_{A}: A \rightarrow A \text { in } \mathcal{L}}{\overline{\eta_{A}: p A \rightarrow T_{L} A \text { in } \operatorname{Set}^{S}}}
$$

Relative monads from theories

Given an $(n+1)$ th-order Lawvere theory $L: \mathcal{A}_{n+1} \rightarrow \mathcal{L}$, define

$$
\begin{aligned}
T_{L}: \mathcal{A}_{n+1}^{\mathrm{op}} & \rightarrow \operatorname{Law}_{n} \\
T_{L} A\left(B, B^{\prime}\right) & =\mathcal{L}\left(A \times B, B^{\prime}\right) \\
& \cong \mathcal{L}\left(A, B \Rightarrow B^{\prime}\right)
\end{aligned}
$$

Then

$$
\operatorname{Kl}\left(T_{L}\right)(B, A)=\operatorname{Law}_{n}\left(p B, T_{L} A\right) \cong \mathcal{L}(A, B)
$$

so T_{L} forms a relative monad on $p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \operatorname{Law}_{n}$:

$$
\frac{\operatorname{id}_{A}: A \rightarrow A \text { in } \mathcal{L}}{\eta_{A}: p A \rightarrow T_{L} A \text { in } \operatorname{Law}_{n}}
$$

$$
\frac{F: p B \rightarrow T_{L} A \text { in } \operatorname{Law}_{n}}{A \rightarrow B \text { in } \mathcal{L}}
$$

Monads from theories

Given an $(n+1)$ th-order Lawvere theory $L: \mathcal{A}_{n+1} \rightarrow \mathcal{L}$, have a fintary monad $\hat{T}_{L}=\operatorname{Lan}_{p} T_{L}: \operatorname{Law}_{n} \rightarrow \operatorname{Law}_{n}$, where

$$
\left(\hat{T}_{L} L^{\prime}\right)\left(B, B^{\prime}\right) \cong \int^{A \in \mathcal{A}_{n+1}} \mathcal{L}\left(A, B \Rightarrow B^{\prime}\right) \times\left\lceil\mathcal{L}^{\prime}\right\rceil(1, A)
$$

If L is the second-order theory of untyped lambda calculus, then $L^{\prime \prime}=\hat{T}_{L} L^{\prime} \in$ Law $_{1}$ freely adds app and abs to L^{\prime} :

$$
\begin{aligned}
\eta & : \mathcal{L}^{\prime}(A, s) \rightarrow \mathcal{L}^{\prime \prime}(A, s) \\
\llbracket \mathrm{app} \rrbracket & : \mathcal{L}^{\prime \prime}(A, s) \times \mathcal{L}^{\prime \prime}(A, s) \rightarrow \mathcal{L}^{\prime \prime}(A, s) \\
\llbracket \mathrm{abs} \rrbracket & : \mathcal{L}^{\prime \prime}(A \times s, s) \rightarrow \mathcal{L}^{\prime \prime}(A, s)
\end{aligned}
$$

Theories from relative monads

The Kleisli category of a relative monad $T: \mathbf{J} \rightarrow \mathbf{C}$ has

- Objects $X \in \mathbf{J}$
- Morphisms $\operatorname{Kl}(T)(X, Y)=\mathrm{C}(J X, T Y)$

Theories from relative monads

If $T: \mathcal{A}_{1}^{\mathrm{op}} \rightarrow \mathrm{Set}^{S}$ is a relative monad on $p: \mathcal{A}_{1}^{\mathrm{op}} \rightarrow \mathrm{Set}^{S}$, then

$$
\begin{array}{rllc}
L_{T}: & \mathcal{A}_{1} & \rightarrow & \mathrm{Kl}(T)^{\mathrm{op}} \\
A & \mapsto & A \\
f & \mapsto & \eta \circ p f
\end{array}
$$

is a first-order Lawvere theory.

Theories from relative monads

If $T: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \operatorname{Law}_{n}$ is a relative monad on $p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \operatorname{Law}_{n}$, then

$$
\begin{aligned}
L_{T}: \mathcal{A l}_{n+1} & \rightarrow \\
& \mathrm{Kl}(T)^{\mathrm{op}} \\
A & \mapsto
\end{aligned} A
$$

is a strict cartesian identity-on-objects functor.

Want $\operatorname{Kl}(T)\left(B \Rightarrow B^{\prime}, A\right) \cong \operatorname{Kl}(T)\left(B^{\prime}, A \times B\right)$ for $B \in \mathcal{A}_{n}$:

$$
\frac{p\left(B \Rightarrow B^{\prime}\right) \rightarrow T A \text { in } \mathrm{Law}_{n}}{\underset{p B^{\prime} \rightarrow T(A \times B) \text { in } \mathrm{Law}_{n}}{ }}
$$

Theories from relative monads

If $T: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \mathrm{Law}_{n}$ is a relative monad, and

$$
T A+p B \cong T(A \times B) \quad\left(\text { for all } A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_{n}\right)
$$

then $L_{T}: \mathcal{A}_{n+1} \rightarrow \mathbf{K l}(T)^{\mathrm{op}}$ is an $(n+1)$ th-order Lawvere theory.

If $T=T_{L}$ for $L \in \operatorname{Law}_{n+1}$:

$$
\begin{gathered}
\xlongequal{\frac{B^{\prime} \rightarrow B^{\prime \prime} \text { in } T A+p B}{B \times B^{\prime} \rightarrow B^{\prime \prime} \text { in } T A}} \xlongequal{\overline{A \times B \times B^{\prime} \rightarrow B^{\prime \prime} \text { in } \mathcal{L}}} \\
\hline B^{\prime} \rightarrow B^{\prime \prime} \text { in } T(A \times B)
\end{gathered}
$$

Theorem
There are equivalences between

- $(n+1)$ th-order Lawvere theories
- Relative monads T on $p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow$ Law $_{n}$ such that

$$
T A+p B \cong T(A \times B) \quad\left(\text { for all } A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_{n}\right)
$$

- Finitary monads $T: \mathbf{L a w}_{n} \rightarrow \mathbf{L a w}_{n}$ such that

$$
T L+p B \cong T(L+p B) \quad\left(\text { for all } L \in \operatorname{Law}_{n}, B \in \mathcal{A}_{n}\right)
$$

Algebras and models

If $L \in \operatorname{Law}_{n+1}$ corresponds to $T: \operatorname{Law}_{n} \rightarrow \operatorname{Law}_{n}$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \rightarrow$ Set
- T-algebras $(M, m: T M \rightarrow M)$

Algebras and models

If $L \in \operatorname{Law}_{n+1}$ corresponds to $T: \operatorname{Law}_{n} \rightarrow \mathbf{L a w}_{n}$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \rightarrow$ Set
- T-algebras $(M, m: T M \rightarrow M)$

Each cartesian $M: \mathcal{L} \rightarrow$ Set induces a Lawvere theory

$$
L_{M}: \mathcal{A}_{n} \rightarrow \mathcal{L}_{M}
$$

with $\mathcal{L}_{M}(A, B)=M(A \Rightarrow B)$. For products and exponentials:

$$
\begin{gathered}
\mathcal{L}_{M}\left(A, \Pi_{i} B_{i}\right)=M\left(\prod_{i}\left(A \Rightarrow B_{i}\right)\right) \cong \prod_{i} \mathcal{L}_{M}\left(A, B_{i}\right) \\
\mathcal{L}_{M}\left(A, B \Rightarrow B^{\prime}\right)=M\left(A \Rightarrow\left(B \Rightarrow B^{\prime}\right)\right)=M\left(A \times B \Rightarrow B^{\prime}\right)=\mathcal{L}_{M}\left(A \times B, B^{\prime}\right)
\end{gathered}
$$

Algebras and models

If $L \in \operatorname{Law}_{n+1}$ corresponds to $T: \operatorname{Law}_{n} \rightarrow \mathbf{L a w}_{n}$, there is an equivalence between:

- Cartesian functors $\mathcal{L} \rightarrow$ Set
- T-algebras $(M, m: T M \rightarrow M)$

Each cartesian $M: \mathcal{L} \rightarrow$ Set induces a Lawvere theory

$$
L_{M}: \mathcal{A}_{n} \rightarrow \mathcal{L}_{M}
$$

with $\mathcal{L}_{M}(A, B)=M(A \Rightarrow B)$. For products and exponentials:

$$
\begin{gathered}
\mathcal{L}_{M}\left(A, \Pi_{i} B_{i}\right)=M\left(\prod_{i}\left(A \Rightarrow B_{i}\right)\right) \cong \prod_{i} \mathcal{L}_{M}\left(A, B_{i}\right) \\
\mathcal{L}_{M}\left(A, B \Rightarrow B^{\prime}\right)=M\left(A \Rightarrow\left(B \Rightarrow B^{\prime}\right)\right)=M\left(A \times B \Rightarrow B^{\prime}\right)=\mathcal{L}_{M}\left(A \times B, B^{\prime}\right)
\end{gathered}
$$

But a model of L in C is a cartesian-closed functor $M: \mathcal{L} \rightarrow C$?

Conclusions

Have a notion of n th-order Lawvere theory for $n \in \mathbb{N}_{+} \cup\{\omega\}$

- Form a chain of coreflective subcategories
- Law_{n} is locally presentable
- Equivalences between
- $(n+1)$ th-order Lawvere theories
- Relative monads T on $p: \mathcal{A}_{n+1}^{\mathrm{op}} \rightarrow \operatorname{Law}_{n}$ such that

$$
T A+p B \cong T(A \times B) \quad\left(\text { for all } A \in \mathcal{A}_{n+1}, B \in \mathcal{A}_{n}\right)
$$

- Finitary monads $T: \operatorname{Law}_{n} \rightarrow \operatorname{Law}_{n}$ such that

$$
T L+p B \cong T(L+p B) \quad\left(\text { for all } L \in \operatorname{Law}_{n}, B \in \mathcal{A}_{n}\right)
$$

all analogous to the first-order case.
dylanm@ru.is

