On the relation between call-by-value and call-by-name

Dylan McDermott Alan Mycroft

Goal

Suppose we have two semantics for a single language

- e.g. call-by-value and call-by-name

How does replacing one with the other affect the behaviour of programs?

- Call-by-value: $(\lambda x . e) e^{\prime} \leadsto \leadsto_{\mathrm{v}}{ }^{*}(\lambda x . e) v \leadsto \overbrace{\mathrm{v}} e[x \mapsto v] \leadsto_{\mathrm{v}}{ }^{*} \cdots$
- Call-by-name: $(\lambda x . e) e^{\prime} \leadsto \rightsquigarrow_{\mathrm{n}} e\left[x \mapsto e^{\prime}\right] \rightsquigarrow_{\mathrm{n}}{ }^{*} \cdots$

Goal

- Call-by-value: $(\lambda x . e) e^{\prime} \leadsto_{\mathrm{v}}{ }^{*}(\lambda x . e) v \leadsto \overbrace{\mathrm{v}} e[x \mapsto v] \leadsto \overbrace{\mathrm{v}}{ }^{*} \cdots$
- Call-by-name: $(\lambda x . e) e^{\prime} \leadsto \rightsquigarrow_{\mathrm{n}} e\left[x \mapsto e^{\prime}\right] \rightsquigarrow_{\mathrm{n}}{ }^{*} \cdots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes

CBV: $\quad(\lambda x$. false $) \Omega n_{v}(\lambda x$. false $) \Omega \leadsto \rightarrow_{v} \cdots$
CBN: $\quad\left(\lambda x\right.$.false) $\Omega n_{\mathrm{n}} \quad$ false
but if CBV terminates with result v, CBN terminates with v

Goal

- Call-by-value: $(\lambda x . e) e^{\prime} \leadsto{\underset{v}{v}}^{*}(\lambda x . e) v \leadsto \overbrace{v} e[x \mapsto v] \leadsto \overbrace{\mathrm{v}}{ }^{*} \cdots$
- Call-by-name: $(\lambda x, e) e^{\prime} \leadsto \mapsto_{\mathrm{n}} e\left[x \mapsto e^{\prime}\right] \leadsto \mapsto_{\mathrm{n}}{ }^{*} \ldots$

If we replace call-by-value with call-by-name, then:

- No side-effects: nothing changes
- Only recursion: behaviour changes, but if CBV terminates with result v, CBN terminates with v
- Only nondeterminism: behaviour also different, but if CBV can terminate with result v, then CBN can also terminate with result v
- Mutable state: behaviour changes, we can't say much about how

Questions:

- How can we prove these?
- What properties of the side-effects do we need to prove something?

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations $(0-)^{\mathrm{v}},(0-)^{\mathrm{n}}$

$$
(\mathrm{CBV}) \quad(e)^{\mathrm{v}} \longleftrightarrow e \longmapsto(e)^{\mathrm{n}} \quad(\mathrm{CBN})
$$

5. For programs (closed, ground expressions) e

$$
(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}
$$

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations ()$^{\mathrm{v}},(0-)^{\mathrm{n}}$

$$
(\mathrm{CBV}) \quad(e)^{\mathrm{v}} \longleftrightarrow e \longmapsto(e)^{\mathrm{n}} \quad(\mathrm{CBN})
$$

on the relation between direct and continuation semantics ${ }^{\dagger}$
John C. Reynolds
Systems and Information Science
Syracuse University
5. For programs (closed, ground expressions) e

$$
(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}
$$

How to relate different semantics of the same language

1. Define another language that captures both semantics via two sound and adequate translations $(0-)^{\mathrm{v}},(0-)^{\mathrm{n}}$

$$
(\mathrm{CBV}) \quad(e)^{\mathrm{v}} \longleftrightarrow e \longmapsto(e)^{\mathrm{n}} \quad(\mathrm{CBN})
$$

2. Define maps between the two translations

$$
\text { CBV translation of } \tau \underset{\Psi_{\tau}}{\stackrel{\Phi_{\tau}}{\leftrightarrows}} \text { CBN translation of } \tau
$$

3. Show that Φ, Ψ satisfy nice properties
4. Relate the two translations of (possibly open) expressions e

$$
(e)^{\mathrm{v}} \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left((e l)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)
$$

5. For programs (closed, ground expressions) e

$$
(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}
$$

How to relate different semantics of the same language

To relate CBV and CBN:

1. Call-by-push-value [Levy '99] captures CBV and CBN
2. We can define maps Φ_{τ}, Ψ_{τ} using the syntax of CBPV
3. Φ and Ψ :

- behave nicely wrt the CBV and CBN translations, e.g.

$$
\Phi_{\tau_{1} \times \tau_{2}}(e)^{\mathrm{v}}=\left(\Phi_{\tau_{1}}(\text { fst } e)^{\mathrm{v}}, \Phi_{\tau_{2}}(\operatorname{snd} e)^{\mathrm{v}}\right)
$$

- form Galois connections $\Phi_{\tau} \dashv \Psi_{\tau}\left(\right.$ wrt $\left.\leqslant_{c t x}\right)$ when side-effects are thunkable

4. (3) implies $(e)^{\mathrm{v}} \leqslant \operatorname{ctx} \Psi_{\tau}\left((e l)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)$
5. (4) is $(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}$ when e is a program

Example

For recursion and nondeterminism, define

$$
\begin{array}{r}
M_{1} \leqslant M_{2} \quad \Leftrightarrow \quad \forall V . M_{1} \Downarrow \text { return } V \Rightarrow M_{2} \Downarrow \text { return } V \\
(\Downarrow \text { is evaluation in CBPV })
\end{array}
$$

so $M_{1} \preccurlyeq_{\text {ctx }} M_{2}$ means

$$
\forall V . C\left[M_{1}\right] \Downarrow \text { return } V \Rightarrow C\left[M_{2}\right] \Downarrow \text { return } V
$$

for closed, ground contexts C
Both side-effects are thunkable, so Φ and Φ form Galois connections, so

$$
(e)^{\mathrm{v}} \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left((e)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)
$$

Example

For programs e, we have

$$
(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}
$$

so

$$
\begin{aligned}
e \leadsto \overbrace{\mathrm{v}}^{*} v & \Leftrightarrow(e \mid)^{\mathrm{v}} \Downarrow \text { return }(v) \\
& \Rightarrow(e e)^{\mathrm{n}} \Downarrow \text { return }(v) \\
& \Leftrightarrow e \leadsto \sim_{\mathrm{n}}^{*} v
\end{aligned}
$$

(soundness)
$\left(\left(|e\rangle^{\mathrm{v}} \leqslant(e\rangle^{\mathrm{n}}\right)\right.$
(adequacy)

Call-by-push-value [Levy '99]

Split syntax into values and computations

- Values don't reduce, computations do

Call-by-push-value [Levy '99]

Split syntax into values and computations

- Values don't reduce, computations do

Evaluation order is explicit

- Sequencing of computations:

$$
\frac{\Gamma \vdash V: A}{\Gamma _\operatorname{return} V: \mathbf{F} A} \quad \frac{\Gamma _M_{1}: \mathbf{F} A \quad \Gamma, x: A _M_{2}: \underline{C}}{\Gamma _M_{1} \text { to } x \cdot M_{2}: \underline{C}}
$$

- Thunks:

$$
\frac{\Gamma\llcorner M: \underline{C}}{\Gamma \vdash \operatorname{thunk} M: \mathbf{U} \underline{C}} \quad \frac{\Gamma \vdash V: \mathbf{U} \underline{C}}{\Gamma \vdash \text { force } V: \underline{C}}
$$

Call-by-value and call-by-name

Source language types:

$$
\tau::=1|2| \tau \rightarrow \tau^{\prime}
$$

CBV and CBN translations into CBPV:

$$
\begin{aligned}
& \tau \mapsto \text { value type }(\tau)^{\mathrm{V}} \\
& 1 \mapsto 1 \\
& 2 \mapsto 2 \\
& \left(\tau \rightarrow \tau^{\prime}\right) \mapsto \mathbf{U}\left((\tau)^{\mathrm{V}} \rightarrow \mathbf{F}\left(\tau^{\prime}\right\rangle^{\mathrm{V}}\right) \\
& \Gamma, x: \tau \mapsto(\Gamma)^{\mathrm{V}}, x:(\tau)^{\mathrm{V}} \\
& \left.\Gamma, x: \tau \mapsto(\Gamma)^{\mathrm{n}}, x: \mathbf{U}(\tau)\right)^{\mathrm{n}} \\
& \Gamma \vdash e: \tau \mapsto(\Gamma)^{\mathrm{v}} \downharpoonright(e)^{\mathrm{v}}: \mathbf{F}(\tau)^{\mathrm{v}} \\
& \Gamma \vdash e: \tau \mapsto(\Gamma)^{\mathrm{n}} \unrhd(e l)^{\mathrm{n}}:(\tau \tau)^{\mathrm{n}}
\end{aligned}
$$

Call-by-value and call-by-name

Define maps between CBV and CBN:

$$
\begin{aligned}
& \Gamma\left\llcorner M: \mathbf{F}(\tau)^{\mathrm{v}} \quad \mapsto \quad \Gamma\left\llcorner\Phi_{\tau} M: \quad(\tau)^{\mathrm{n}}\right.\right. \\
& \text { (CBV to CBN) } \\
& \Gamma 上 N:(\tau)^{\mathrm{n}} \quad \mapsto \quad \Gamma\left\llcorner\Psi_{\tau} N: \mathbf{F}(\tau)^{\mathrm{v}}\right. \\
& \text { (CBN to CBV) }
\end{aligned}
$$

Call－by－value and call－by－name

Define maps between CBV and CBN：

$$
\begin{array}{llll}
\Gamma 上 M: \mathrm{F}(\tau)^{\mathrm{v}} & \mapsto & \Gamma 上 \Phi_{\tau} M:(\tau)^{\mathrm{n}} & \text { (CBV to CBN) } \\
\Gamma 上 N:(\tau)^{\mathrm{n}} & \mapsto & \Gamma 上 \Psi_{\tau} N: \mathbf{F}(\tau)^{\mathrm{v}} & \\
\text { (CBN to CBV) }
\end{array}
$$

Example：for $\tau=\mathbf{1} \rightarrow \mathbf{1}$ ，we have

$$
\begin{aligned}
& (1 \rightarrow \mathbf{1})^{\mathrm{v}}=\mathrm{U}(\mathbf{1} \rightarrow \mathrm{~F} 1) \\
& (1 \rightarrow \mathbf{1})^{\mathrm{n}}=\mathrm{U}(\mathrm{~F} 1) \rightarrow \mathrm{F} 1
\end{aligned}
$$

$M \quad \stackrel{\Phi_{1 \rightarrow 1}}{\mapsto} \quad M$ to $f . \lambda x$ ．force x to $z . z^{\prime}$ force f
$N \quad \stackrel{\Psi_{1 \rightarrow 1}}{\mapsto} \quad \operatorname{return}\left(\operatorname{thunk}\left(\lambda x .(\text { thunk return } x)^{`} N\right)\right)$

Galois connection between CBV and CBN?

Since Φ and Ψ behave nicely wrt translations, e.g.

$$
\Phi_{\tau_{1} \times \tau_{2}}(e)^{\mathrm{v}}=\left(\Phi_{\tau_{1}}\left(\left.\mathrm{fst} e\right|^{\mathrm{v}}, \Phi_{\tau_{2}}(\text { snd } e)^{\mathrm{v}}\right)\right.
$$

if $\left(\Phi_{\tau}, \Psi_{\tau}\right)$ is a Galois connection (adjunction) for each τ, i.e.

$$
M \preccurlyeq_{\mathrm{ctx}} \Psi_{\tau}\left(\Phi_{\tau} M\right) \quad \Phi_{\tau}\left(\Psi_{\tau} N\right) \preccurlyeq_{\operatorname{ctx}} N
$$

then

$$
(e)^{\mathrm{v}} \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left((e l)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)
$$

Galois connection between CBV and CBN?

These do not always hold!

$$
M \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left(\Phi_{\tau} M\right) \quad \Phi_{\tau}\left(\Psi_{\tau} N\right) \preccurlyeq_{\mathrm{ctx}} N
$$

- Don't hold for: exceptions, mutable state

$$
\begin{aligned}
\text { raise } \AA_{\text {ctx }} \text { return }(\ldots)=\Psi_{1 \rightarrow 1} & \left(\Phi_{1 \rightarrow 1} \text { raise }\right) \\
& (\diamond 上 \text { raise }: F(U(1 \rightarrow F 1)))
\end{aligned}
$$

- Do hold for: no side-effects, recursion, nondeterminism

This is where the side-effects matter

Galois connection between CBV and CBN?

Definition (Thunkable [Führmann '99])
A computation $\Gamma 上 M: \mathrm{F} A$ is (lax) thunkable if
M to $x . \operatorname{return}(\operatorname{thunk}(\operatorname{return} x)) \leqslant_{\mathrm{ctx}}$ return $($ thunk $M)$

- Essentially: we're allowed to suspend the computation M
- Implies M commutes with other computations, is (lax) discardable, (lax) copyable

Galois connection between CBV and CBN?

Definition (Thunkable [Führmann '99])
A computation $\Gamma 上 M: \mathbf{F} A$ is (lax) thunkable if

$$
M \text { to } x . \operatorname{return}(\operatorname{thunk}(\operatorname{return} x)) \leqslant_{\mathrm{ctx}} \text { return }(\text { thunk } M)
$$

- Essentially: we're allowed to suspend the computation M
- Implies M commutes with other computations, is (lax) discardable, (lax) copyable

Lemma
If every computation is thunkable, then $\left(\Phi_{\tau}, \Psi_{\tau}\right)$ is a Galois connection.

How to relate call-by-value to call-by-name

If every computation is thunkable then

$$
(e l)^{\mathrm{v}} \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left((e l)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)
$$

for each e. (And the converse holds for computations of ground type.)

And if e is a program then

$$
(e)^{\mathrm{v}} \leqslant(e)^{\mathrm{n}}
$$

Overview

How to relate two different semantics:

1. Translate from source language to intermediate language
2. Define maps between two translations
3. Relate terms:

$$
(e l)^{\mathrm{v}} \leqslant_{\mathrm{ctx}} \Psi_{\tau}\left((e)^{\mathrm{n}}\left[\Phi_{\Gamma}\right]\right)
$$

- Works for call-by-value and call-by-name
- Also works for other things like comparing direct and continuation-style semantics [Reynolds '74], strict and lazy products, etc.

