Flexible presentations of graded monads

Dylan McDermott

Joint work with Shin-ya Katsumata, Tarmo Uustalu and Nicolas Wu

Motivation

1. Effects can be modelled using monads
[Moggi '89]
2. which often come from presentations
3. which induce algebraic operations
[Plotkin and Power '03]

Example:

1. Nondeterministic computations can be modelled using the free monoid monad List
2. which comes from the presentation of monoids

$$
\begin{gathered}
\text { fail : } 0 \quad \text { or :2 } \\
\operatorname{or}(\text { fail }, x)=x=\operatorname{or}(x, \text { fail }) \quad \operatorname{or}(\operatorname{or}(x, y), z)=\operatorname{or}(x, \operatorname{or}(y, z))
\end{gathered}
$$

3. which induces algebraic operations

$$
\begin{gathered}
\text { fail }_{X}=\left(\lambda_{-} \cdot[]\right): 1 \rightarrow \operatorname{List} X \\
\text { or }_{X}=(\lambda(\mathrm{xs}, \mathrm{ys}) \cdot \mathrm{xs}+\mathrm{ys}): \operatorname{List} X \times \operatorname{List} X \rightarrow \operatorname{List} X
\end{gathered}
$$

Motivation

1. Effects with quantitative information can be modelled using graded monads [Katsumata '14]
2. which often come from graded presentations?
[Smirnov '08, Milius et al. '15, Dorsch et al. '19, Kura '20]
3. which induce algebraic operations?

Goal

Develop a notion of flexibly graded presentation for graded monads

Each flexibly graded presentation (Σ, E) induces

1. a flexibly graded (abstract) clone of terms
2. hence an $[\mathbb{E}$, Set]-monad on GSet
3. hence a graded monad

Graded monoids

A graded monoid A is

- a functor $A: \mathbb{N}_{\leq} \rightarrow$ Set
- with an element $u \in A 0$
- and a natural transformation

$$
m_{d_{1}, d_{2}}: A d_{1} \times A d_{2} \rightarrow A\left(d_{1}+d_{2}\right)
$$

such that

$$
m_{0, d}(u, x)=x=m_{d, 0}(x, u) \quad m_{d_{1}+d_{2}, d_{3}}\left(m_{d_{1}, d_{2}}(x, y), z\right)=m_{d_{1}, d_{2}+d_{3}}\left(x, m_{d_{2}, d_{3}}(y, z)\right)
$$

Graded monoids

A graded monoid A is

- a functor $A: \mathbb{N}_{\leq} \rightarrow$ Set
- with an element $u \in A 0$
- and a natural transformation

$$
m_{d_{1}, d_{2}}: A d_{1} \times A d_{2} \rightarrow A\left(d_{1}+d_{2}\right)
$$

such that

$$
m_{0, d}(u, x)=x=m_{d, 0}(x, u) \quad m_{d_{1}+d_{2}, d_{3}}\left(m_{d_{1}, d_{2}}(x, y), z\right)=m_{d_{1}, d_{2}+d_{3}}\left(x, m_{d_{2}, d_{3}}(y, z)\right)
$$

A morphism $f: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$ of grade $e \in \mathbb{N}$ is a natural transformation

$$
f: A \Rightarrow A^{\prime}(-\cdot e)
$$

preserving the structure:

$$
f_{0}(u)=u^{\prime} \quad f_{d_{1}+d_{2}}\left(m_{d_{1}, d_{2}}(x, y)\right)=m_{d_{1}, d_{2}}^{\prime}\left(f_{d_{1}}(x), f_{d_{2}}(y)\right)
$$

So we get a $\left[\mathbb{N}_{\leq}\right.$, Set $]$-category GMon, and $U:$ GMon \rightarrow GSet

Grading via [EE, Set]-categories

Let $(\mathbb{E}, 1, \cdot)$ be a small strict monoidal category of grades

- for example \mathbb{N}_{\leq}with multiplication
- $[\mathbb{E}$, Set $]$ is a monoidal category with Day convolution
- we work in [\mathbb{E}, Set]-CAT

Grading via [E, Set]-categories

Let ($\mathbb{E}, 1, \cdot$) be a small strict monoidal category of grades

- for example \mathbb{N}_{\leq}with multiplication
- [E, Set] is a monoidal category with Day convolution
- we work in [E,Set]-CAT

The [\mathbb{E}, Set $]$-category GSet is $[\mathbb{E}$, Set] enriched over itself:

- objects are graded sets $X: \mathbb{E} \rightarrow$ Set
- morphisms of grade e (elements of $\operatorname{GSet}(X, Y) e$) are natural transformations

$$
f: X \Rightarrow Y(-\cdot e)
$$

- identities $\operatorname{id}_{X} \in \operatorname{GSet}(X, X) 1$
- composition

$$
(g \circ f): X \stackrel{f}{\Rightarrow} Y(-\cdot e) \stackrel{g_{-\cdot e}}{\Longrightarrow} Z\left(-\cdot e \cdot e^{\prime}\right)
$$

where $f \in \operatorname{GSet}(X, Y) e$ and $g \in \operatorname{GSet}(Y, Z) e^{\prime}$

Relative monads in [E,Set]-CAT

$\mathrm{A}(J: \mathcal{A} \rightarrow \mathcal{C})$-relative monad T is: [Altenkirch, Chapman, Uustalu '15]

- a function $T:|\mathcal{A}| \rightarrow|C|$
- with a morphism $\eta_{X}: J X \rightarrow T X$ for each $X \in|\mathcal{A}|$
- and a natural transformation

$$
(-)^{\dagger}: \mathcal{C}(J X, T Y) \Rightarrow C(T X, T Y)
$$

for each $X, Y \in|\mathcal{A}|$
such that

$$
f^{\dagger} \circ \eta_{X}=f \quad \eta_{X}^{\dagger}=\operatorname{id}_{X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

Relative monads in [E,Set]-CAT

A $(J: \mathcal{A} \rightarrow C)$-relative monad T is:
[Altenkirch, Chapman, Uustalu '15]

- a function $T:|\mathcal{A}| \rightarrow|C|$
- with a morphism $\eta_{X}: J X \rightarrow T X$ for each $X \in|\mathcal{A}|$
- and a natural transformation

$$
(-)^{\dagger}: \mathcal{C}(J X, T Y) \Rightarrow C(T X, T Y)
$$

for each $X, Y \in|\mathcal{A}|$
such that

$$
f^{\dagger} \circ \eta_{X}=f \quad \eta_{X}^{\dagger}=\operatorname{id}_{X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

Thas an Eilenberg-Moore $[\mathbb{E}$, Set $]$-category, and a forgetful $[\mathbb{E}$, Set $]$-functor

$$
U_{\mathrm{T}}: \mathrm{EM}(\mathrm{~T}) \rightarrow C
$$

Relative monads in [E,Set]-CAT

A $(J: \mathcal{A} \rightarrow C)$-relative monad T is:
[Altenkirch, Chapman, Uustalu '15]

- a function $T:|\mathcal{A}| \rightarrow|C|$
- with a morphism $\eta_{X}: J X \rightarrow T X$ for each $X \in|\mathcal{A}|$
- and a natural transformation

$$
(-)^{\dagger}: C(J X, T Y) \Rightarrow C(T X, T Y)
$$

for each $X, Y \in|\mathcal{A}|$
such that

$$
f^{\dagger} \circ \eta_{X}=f \quad \eta_{X}^{\dagger}=\operatorname{id}_{X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

T has an Eilenberg-Moore [\mathbb{E}, Set $]$-category, and a forgetful $[\mathbb{E}$, Set $]$-functor

$$
U_{\mathrm{T}}: \mathrm{EM}(\mathrm{~T}) \rightarrow C
$$

We rely heavily on some general results about relative monads (jww Nathanael Arkor)

Graded monads

For each set X, define

$$
J X=\mathbb{E}(1,-) \bullet X \quad: \quad \mathbb{E} \rightarrow \text { Set }
$$

so that

$$
\operatorname{GSet}(J X, A) e \cong \operatorname{Set}(X, A e)
$$

and form a fully faithful $[\mathbb{E}$, Set $]$-functor

$$
J: \text { RSet } \rightarrow \text { GSet }
$$

(RSet is the free $[\mathbb{E}$, Set $]$-category on Set)

Definition: an \mathbb{E}-graded monad (on Set) is a J-relative monad (This is equivalent to the definitions in [Smirnov '08, Melliès '12, Katsumata '14])

Flexibly graded clones

For each finite sequence $d_{1}, \ldots, d_{n} \in|\mathbb{E}|$, define

$$
K\left(d_{1}, \ldots, d_{n}\right)=\coprod_{i} \mathbb{E}\left(d_{i},-\right) \quad: \mathbb{E} \rightarrow \text { Set }
$$

so that

$$
\operatorname{GSet}\left(K\left(d_{1}, \ldots, d_{n}\right), A\right) e \cong \prod_{i} A\left(d_{i} \cdot e\right)
$$

and form a fully faithful $[\mathbb{E}$, Set $]$-functor

$$
K: \text { FCtx } \rightarrow \text { GSet }
$$

is a fully faithful $[\mathbb{E}$, Set $]$-functor

A flexibly graded (abstract) clone is a K-relative monad

Flexibly graded clones

Explicitly, a flexibly graded clone T:

- maps $\left(d_{1}, \ldots, d_{n}\right)$ to a graded set $T\left(d_{1}, \ldots, d_{n}\right): \mathbb{E} \rightarrow$ Set (of terms)
- has tuples var $\in \prod_{i} T\left(d_{1}, \ldots, d_{n}\right) d_{i}$ (the variables)
corresponding to $\eta: K\left(d_{1}, \ldots, d_{n}\right) \rightarrow T\left(d_{1}, \ldots, d_{n}\right)$
- has natural transformations (substitution)

$$
\text { subst : } T\left(d_{1}, \ldots, d_{n}\right) d^{\prime} \times \prod_{i} T \Gamma\left(d_{i} \cdot e\right) \rightarrow T \Gamma\left(d^{\prime} \cdot e\right)
$$

corresponding to

$$
(-)^{\dagger}: \operatorname{GSet}\left(K\left(d_{1}, \ldots, d_{n}\right), T \Gamma\right) e \rightarrow \operatorname{GSet}\left(T\left(d_{1}, \ldots, d_{n}\right), T \Gamma\right) e
$$

Flexibly graded presentations

(Σ, E) consists of

- sets of operators op $\in \Sigma\left(d_{1}, \ldots, d_{n} ; d^{\prime}\right)$
- sets of equations $(t, u) \in E\left(d_{1}, \ldots, d_{n} ; d^{\prime}\right)$ where $t, u \in \operatorname{Tm}_{\Sigma}\left(d_{1}, \ldots, d_{n}\right) d^{\prime}$
with the sets $\operatorname{Tm}_{\Sigma} \Gamma d^{\prime}$ of terms over Σ generated inductively by:
$-\operatorname{var}_{i} \in \operatorname{Tm}_{\Sigma}\left(d_{1}, \ldots, d_{n}\right) d_{i}$ for each i
- $\operatorname{op}\left(e ; t_{1}, \ldots, t_{n}\right) \in \operatorname{Tm}_{\Sigma} \Gamma\left(d^{\prime} \cdot e\right)$ for each op $\in \Sigma\left(d_{1}, \ldots, d_{n} ; d^{\prime}\right), e \in|\mathbb{E}|, t \in \prod_{i} \operatorname{Tm}_{\Sigma} \Gamma\left(d_{i} \cdot e\right)$
- $\zeta^{*} t \in \operatorname{Tm}_{\Sigma} \Gamma d^{\prime \prime}$
for each $t \in \operatorname{Tm}_{\Sigma} \Gamma d^{\prime}, \zeta \in \mathbb{E}\left(d^{\prime}, d^{\prime \prime}\right)$
E induces an equivalence relation \equiv on terms, and

$$
\operatorname{Tm}_{(\Sigma, E)}\left(d_{1}, \ldots, d_{n}\right) d^{\prime}=\operatorname{Tm}_{(\Sigma, E)}\left(d_{1}, \ldots, d_{n}\right) d^{\prime} / \equiv
$$

forms a flexibly graded clone $\operatorname{Tm}_{(\Sigma, E)}$

Presenting graded monoids

Grades:

$$
\mathbb{E}=\left(\mathbb{N}_{\leq}, 1, \cdot\right)
$$

Operators:

$$
u \in \Sigma(; 0) \quad m_{d_{1}, d_{2}} \in \Sigma\left(d_{1}, d_{2} ;\left(d_{1}+d_{2}\right)\right)
$$

$$
\left(\text { for each } d_{1}, d_{2} \in \mathbb{N}\right)
$$

Equations:

$$
\begin{aligned}
m_{0, d}\left(1 ; u, \operatorname{var}_{1}\right) & =\operatorname{var}_{1} \\
\operatorname{var}_{1} & =m_{d, 0}\left(1 ; \operatorname{var}_{1}, u\right) \\
m_{d_{1}+d_{2}, d_{3}}\left(1 ; m_{d_{1}, d_{2}}\left(1 ; \operatorname{var}_{1}, \operatorname{var}_{2}\right), \operatorname{var}_{3}\right) & =m_{d_{1}, d_{2}+d_{3}}\left(1 ; \operatorname{var}_{1}, m_{d_{2}, d_{3}}\left(1 ; \operatorname{var}_{2}, \operatorname{var}_{3}\right)\right) \\
m_{d_{1}^{\prime}, d_{2}^{\prime}}\left(1 ;\left(d_{1} \leq d_{1}^{\prime}\right)^{*} \operatorname{var}_{1},\left(d_{2} \leq d_{2}^{\prime}\right)^{*} \operatorname{var}_{2}\right) & =\left(\left(d_{1}+d_{2}\right) \leq\left(d_{1}^{\prime}+d_{2}^{\prime}\right)\right)^{*}\left(m_{d_{1}, d_{2}}\left(1 ; \operatorname{var}_{1}, \operatorname{var}_{2}\right)\right) \\
m_{d_{1}, d_{2}}\left(d ; \operatorname{var}_{1}, \operatorname{var}_{2}\right) & =m_{d_{1} \cdot e, d_{2} \cdot e}\left(1 ; \operatorname{var}_{1}, \operatorname{var}_{2}\right)
\end{aligned}
$$

There is an equivalence
satisfying

$$
\begin{aligned}
& \operatorname{Alg}(\Sigma, E) \cong \\
& \\
& U_{(\Sigma, E)} \underset{\text { GSet }}{\swarrow} \mathrm{EM}\left(\operatorname{Tm}_{(\Sigma, E)}\right) \\
& U_{\mathrm{Tm}_{(\Sigma, E)}}
\end{aligned}
$$

$$
\operatorname{Alg}\left(\Sigma_{\mathrm{T}}, E_{\mathrm{T}}\right) \xrightarrow{\cong} \mathrm{EM}(\mathrm{~T})
$$

K as a cocompletion

- A small category \mathbb{I} is sifted when \mathbb{I}-colimits commute with finite products in Set
- A conical sifted colimit in an [\mathbb{E}, Set]-category C is a conical colimit of a sifted diagram $\mathbb{I} \rightarrow \underline{C}$
$K:$ FCtx \rightarrow GSet is the free completion of FCtx under conical sifted colimits: If C has conical sifted colimits, then

because
$\operatorname{Lan}_{K} F X \cong \operatorname{Lan}_{\underline{K}} \underline{F} X$ and $\underline{K}: \mathbb{E}^{*} \rightarrow[\mathbb{E}, \operatorname{Set}]$ is a completion under sifted colimits

The equivalence

$$
\begin{array}{ccc}
{[\mathbb{E}, \text { Set }] \text {-functors }} & \text { Lan }_{K} & {[\mathbb{E}, \text { Set }] \text {-functors }} \\
\text { FCtx } \rightarrow \text { GSet } & \simeq & \text { GSet } \rightarrow \text { GSet }
\end{array}
$$

induces an equivalence

flexibly graded clones
satisfying

$\mathrm{EM}\left(\mathrm{T}^{\prime} \circ K\right) \xrightarrow{\cong} \mathrm{EM}\left(\mathrm{T}^{\prime}\right)$

Constructing a graded monad

There is an adjunction

$$
\begin{array}{cccc}
{[\mathbb{E}, \text { Set }] \text {-monads on GSet }} & -\circ J \\
\text { preserving conical sifted colimits } & \frac{\tau}{\Gamma-1} & (J: \text { RSet } \rightarrow \text { GSet }) \text {-relative monads } \\
\text { preserving conical sifted colimits }
\end{array}
$$

with a functor $R_{T^{\prime}}: \operatorname{EM}\left(\mathrm{T}^{\prime}\right) \rightarrow \mathrm{EM}\left(\mathrm{T}^{\prime} \circ J\right)$ for each $[\mathbb{E}$, Set $]$-monad T^{\prime}, satisfying

$R_{T^{\prime}}$ is not in general an isomorphism

- there is no graded monad $\mathrm{T}^{\prime \prime}$ such that $\mathrm{EM}\left(\mathrm{T}^{\prime \prime}\right) \cong$ GMon over GSet

Presenting graded monads

Theorem

For every flexibly graded presentation (Σ, E), there is

- a graded monad $\mathrm{T}_{(\Sigma, E)}$
- and functor $R_{(\Sigma, E)}: \operatorname{Alg}(\Sigma, E) \rightarrow \operatorname{EM}\left(\mathrm{T}_{(\Sigma, E)}\right)$ over GSet
such that
- for every graded monad T^{\prime} and functor $R^{\prime}: \operatorname{Alg}(\Sigma, E) \rightarrow \mathrm{EM}\left(\mathrm{T}^{\prime}\right)$ over GSet, there is a unique $\alpha: \mathrm{T}^{\prime} \rightarrow \mathrm{T}_{(\Sigma, E)}$ such that

- the free $\mathrm{T}_{(\Sigma, E) \text {-algebra on }}$ a set X is the free (Σ, E)-algebra on $\mathbb{E}(1,-) \bullet X$

