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Motivation
1. Effects can be modelled using monads

[Moggi ’89]
2. which often come from presentations [Plotkin and Power ’02]

3. which induce algebraic operations [Plotkin and Power ’03]

Example:
1. Nondeterministic computations can be modelled using the free monoid monad List
2. which comes from the presentation of monoids

fail : 0 or : 2
or(fail, 𝑥) = 𝑥 = or(𝑥, fail) or(or(𝑥,𝑦), 𝑧) = or(𝑥, or(𝑦, 𝑧))

3. which induces algebraic operations
fail𝑋 = (𝜆_. []) : 1→ List𝑋

or𝑋 = (𝜆(xs, ys). xs ++ ys) : List𝑋 × List𝑋 → List𝑋
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[Katsumata ’14]
2. which often come from graded presentations?

[Smirnov ’08, Milius et al. ’15, Dorsch et al. ’19, Kura ’20]
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Example:
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2. which comes from the presentation of monoids

fail : 0 or : 2
or(fail, 𝑥) = 𝑥 = or(𝑥, fail) or(or(𝑥,𝑦), 𝑧) = or(𝑥, or(𝑦, 𝑧))

3. which induces algebraic operations
fail𝑋 = (𝜆_. []) : 1→ List𝑋

or𝑋 = (𝜆(xs, ys). xs ++ ys) : List𝑋 × List𝑋 → List𝑋

2



Goal

Develop a notion of flexibly graded presentation for graded monads

Each flexibly graded presentation (Σ, 𝐸) induces
1. a flexibly graded (abstract) clone of terms
2. hence an [E, Set]-monad on GSet

3. hence a graded monad
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Graded monoids
A graded monoid A is
▶ a functor 𝐴 : N≤ → Set
▶ with an element 𝑢 ∈ 𝐴0
▶ and a natural transformation

𝑚𝑑1,𝑑2 : 𝐴𝑑1 ×𝐴𝑑2 → 𝐴(𝑑1 + 𝑑2)
such that

𝑚0,𝑑 (𝑢, 𝑥) = 𝑥 =𝑚𝑑,0(𝑥,𝑢) 𝑚𝑑1+𝑑2,𝑑3 (𝑚𝑑1,𝑑2 (𝑥,𝑦), 𝑧) =𝑚𝑑1,𝑑2+𝑑3 (𝑥,𝑚𝑑2,𝑑3 (𝑦, 𝑧))

A morphism 𝑓 : A→ A′ of grade 𝑒 ∈ N is a natural transformation
𝑓 : 𝐴⇒ 𝐴′(− · 𝑒)

preserving the structure:
𝑓0(𝑢) = 𝑢′ 𝑓𝑑1+𝑑2 (𝑚𝑑1,𝑑2 (𝑥,𝑦)) =𝑚′𝑑1,𝑑2 (𝑓𝑑1 (𝑥), 𝑓𝑑2 (𝑦))

So we get a [N≤, Set]-category GMon, and 𝑈 : GMon→ GSet

4



Graded monoids
A graded monoid A is
▶ a functor 𝐴 : N≤ → Set
▶ with an element 𝑢 ∈ 𝐴0
▶ and a natural transformation

𝑚𝑑1,𝑑2 : 𝐴𝑑1 ×𝐴𝑑2 → 𝐴(𝑑1 + 𝑑2)
such that

𝑚0,𝑑 (𝑢, 𝑥) = 𝑥 =𝑚𝑑,0(𝑥,𝑢) 𝑚𝑑1+𝑑2,𝑑3 (𝑚𝑑1,𝑑2 (𝑥,𝑦), 𝑧) =𝑚𝑑1,𝑑2+𝑑3 (𝑥,𝑚𝑑2,𝑑3 (𝑦, 𝑧))

A morphism 𝑓 : A→ A′ of grade 𝑒 ∈ N is a natural transformation
𝑓 : 𝐴⇒ 𝐴′(− · 𝑒)

preserving the structure:
𝑓0(𝑢) = 𝑢′ 𝑓𝑑1+𝑑2 (𝑚𝑑1,𝑑2 (𝑥,𝑦)) =𝑚′𝑑1,𝑑2 (𝑓𝑑1 (𝑥), 𝑓𝑑2 (𝑦))

So we get a [N≤, Set]-category GMon, and 𝑈 : GMon→ GSet 4



Grading via [E, Set]-categories
Let (E, 1, ·) be a small strict monoidal category of grades
▶ for example N≤ with multiplication

▶ [E, Set] is a monoidal category with Day convolution
▶ we work in [E, Set]-CAT

The [E, Set]-category GSet is [E, Set] enriched over itself:
▶ objects are graded sets 𝑋 : E→ Set
▶ morphisms of grade 𝑒 (elements of GSet(𝑋,𝑌 )𝑒) are natural transformations

𝑓 : 𝑋 ⇒ 𝑌 (− · 𝑒)
▶ identities id𝑋 ∈ GSet(𝑋,𝑋 )1
▶ composition

(𝑔 ◦ 𝑓 ) : 𝑋
𝑓
=⇒ 𝑌 (− · 𝑒)

𝑔−·𝑒
====⇒ 𝑍 (− · 𝑒 · 𝑒′)

where 𝑓 ∈ GSet(𝑋,𝑌 )𝑒 and 𝑔 ∈ GSet(𝑌, 𝑍 )𝑒′
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Relative monads in [E, Set]-CAT
A (𝐽 : A → C)-relative monad T is: [Altenkirch, Chapman, Uustalu ’15]
▶ a function 𝑇 : |A| → |C|
▶ with a morphism 𝜂𝑋 : 𝐽𝑋 → 𝑇𝑋 for each 𝑋 ∈ |A|
▶ and a natural transformation

(−)† : C(𝐽𝑋,𝑇𝑌 ) ⇒ C(𝑇𝑋,𝑇𝑌 )
for each 𝑋,𝑌 ∈ |A|

such that
𝑓 † ◦ 𝜂𝑋 = 𝑓 𝜂𝑋

† = id𝑋 (𝑔† ◦ 𝑓 )† = 𝑔† ◦ 𝑓 †

T has an Eilenberg-Moore [E, Set]-category, and a forgetful [E, Set]-functor
𝑈T : EM(T) → C

We rely heavily on some general results about relative monads (jww Nathanael Arkor)
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Graded monads

For each set 𝑋 , define
𝐽𝑋 = E(1,−) • 𝑋 : E→ Set

so that
GSet(𝐽𝑋,𝐴)𝑒 � Set(𝑋,𝐴𝑒)

and form a fully faithful [E, Set]-functor

𝐽 : RSet→ GSet

(RSet is the free [E, Set]-category on Set)

Definition: an E-graded monad (on Set) is a 𝐽 -relative monad
(This is equivalent to the definitions in [Smirnov ’08, Melliès ’12, Katsumata ’14])
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Flexibly graded clones

For each finite sequence 𝑑1, . . . , 𝑑𝑛 ∈ |E|, define

𝐾 (𝑑1, . . . , 𝑑𝑛) =
⨿
𝑖 E(𝑑𝑖 ,−) : E→ Set

so that
GSet(𝐾 (𝑑1, . . . , 𝑑𝑛), 𝐴)𝑒 �

∏
𝑖 𝐴(𝑑𝑖 · 𝑒)

and form a fully faithful [E, Set]-functor

𝐾 : FCtx→ GSet

is a fully faithful [E, Set]-functor

A flexibly graded (abstract) clone is a 𝐾-relative monad
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Flexibly graded clones

Explicitly, a flexibly graded clone T:
▶ maps (𝑑1, . . . , 𝑑𝑛) to a graded set 𝑇 (𝑑1, . . . , 𝑑𝑛) : E→ Set (of terms)
▶ has tuples var ∈ ∏𝑖 𝑇 (𝑑1, . . . , 𝑑𝑛)𝑑𝑖 (the variables)

corresponding to 𝜂 : 𝐾 (𝑑1, . . . , 𝑑𝑛) → 𝑇 (𝑑1, . . . , 𝑑𝑛)
▶ has natural transformations (substitution)

subst : 𝑇 (𝑑1, . . . , 𝑑𝑛)𝑑 ′ ×
∏
𝑖 𝑇 Γ (𝑑𝑖 · 𝑒) → 𝑇 Γ (𝑑 ′ · 𝑒)

corresponding to

(−)† : GSet(𝐾 (𝑑1, . . . , 𝑑𝑛),𝑇 Γ) 𝑒 → GSet(𝑇 (𝑑1, . . . , 𝑑𝑛),𝑇 Γ) 𝑒
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Flexibly graded presentations
(Σ, 𝐸) consists of
▶ sets of operators op ∈ Σ(𝑑1, . . . , 𝑑𝑛 ;𝑑 ′)
▶ sets of equations (𝑡,𝑢) ∈ 𝐸 (𝑑1, . . . , 𝑑𝑛 ;𝑑 ′) where 𝑡,𝑢 ∈ TmΣ (𝑑1, . . . , 𝑑𝑛)𝑑 ′

with the sets TmΣ Γ 𝑑
′ of terms over Σ generated inductively by:

▶ var𝑖 ∈ TmΣ (𝑑1, . . . , 𝑑𝑛)𝑑𝑖
for each 𝑖

▶ op(𝑒; 𝑡1, . . . , 𝑡𝑛) ∈ TmΣ Γ (𝑑 ′ · 𝑒)
for each op ∈ Σ(𝑑1, . . . , 𝑑𝑛 ;𝑑 ′), 𝑒 ∈ |E|, 𝑡 ∈

∏
𝑖 TmΣ Γ (𝑑𝑖 · 𝑒)

▶ 𝜁 ∗𝑡 ∈ TmΣ Γ 𝑑
′′

for each 𝑡 ∈ TmΣ Γ 𝑑
′, 𝜁 ∈ E(𝑑 ′, 𝑑 ′′)

𝐸 induces an equivalence relation ≡ on terms, and

Tm(Σ,𝐸 ) (𝑑1, . . . , 𝑑𝑛)𝑑 ′ = Tm(Σ,𝐸 ) (𝑑1, . . . , 𝑑𝑛)𝑑 ′ / ≡

forms a flexibly graded clone Tm(Σ,𝐸 )
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Presenting graded monoids
Grades:

E = (N≤, 1, ·)

Operators:

𝑢 ∈ Σ( ; 0) 𝑚𝑑1,𝑑2 ∈ Σ(𝑑1, 𝑑2 ; (𝑑1 + 𝑑2)) (for each 𝑑1, 𝑑2 ∈ N)

Equations:

𝑚0,𝑑 (1;𝑢, var1) = var1
var1 =𝑚𝑑,0(1; var1, 𝑢)

𝑚𝑑1+𝑑2,𝑑3 (1;𝑚𝑑1,𝑑2 (1; var1, var2), var3) =𝑚𝑑1,𝑑2+𝑑3 (1; var1,𝑚𝑑2,𝑑3 (1; var2, var3))

𝑚𝑑 ′1,𝑑
′
2
(1; (𝑑1 ≤ 𝑑 ′1)∗var1, (𝑑2 ≤ 𝑑 ′2)∗var2) = ((𝑑1 + 𝑑2) ≤ (𝑑 ′1 + 𝑑 ′2))∗(𝑚𝑑1,𝑑2 (1; var1, var2))

𝑚𝑑1,𝑑2 (𝑑 ; var1, var2) =𝑚𝑑1 ·𝑒,𝑑2 ·𝑒 (1; var1, var2)
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There is an equivalence

flexibly graded presentations flexibly graded clones
Tm(Σ,𝐸)

(ΣT,𝐸T )←�T
≃

satisfying

Alg(Σ, 𝐸) EM(Tm(Σ,𝐸 ) )

GSet

�

𝑈 (Σ,𝐸) 𝑈Tm(Σ,𝐸)

Alg(ΣT, 𝐸T) EM(T)

GSet

�

𝑈 (ΣT,𝐸T ) 𝑈T
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𝐾 as a cocompletion
▶ A small category I is sifted when I-colimits commute with finite products in Set

▶ A conical sifted colimit in an [E, Set]-category C is a conical colimit of a sifted diagram
I→ C

𝐾 : FCtx→ GSet is the free completion of FCtx under conical sifted colimits:
If C has conical sifted colimits, then

[E, Set]-functors
FCtx→ C

[E, Set]-functors
GSet→ C

preserving conical sifted colimits

Lan𝐾

−◦𝐾
≃

because

Lan𝐾𝐹𝑋 � Lan𝐾𝐹𝑋 and 𝐾 : E∗ → [E, Set] is a completion under sifted colimits
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The equivalence

[E, Set]-functors
FCtx→ GSet

[E, Set]-functors
GSet→ GSet

preserving conical sifted colimits

Lan𝐾

−◦𝐾
≃

induces an equivalence

𝐾-relative monads [E, Set]-monads on GSet
preserving conical sifted colimits

Lan𝐾

−◦𝐾
≃

flexibly graded clones

satisfying
EM(T) EM(Lan𝐾T)

GSet

�

𝑈T 𝑈Lan𝐾T

EM(T′ ◦ 𝐾) EM(T′)

GSet

�

𝑈T′◦𝐾 𝑈T′
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Constructing a graded monad
There is an adjunction

[E, Set]-monads on GSet
preserving conical sifted colimits

(𝐽 : RSet→ GSet)-relative monads
preserving conical sifted colimits

−◦𝐽

⌈−⌉

⊣

graded monads

with a functor 𝑅T′ : EM(T′) → EM(T′ ◦ 𝐽 ) for each [E, Set]-monad T′, satisfying

EM(T′) EM(T′ ◦ 𝐽 )

GSet
𝑈T′

𝑅T′

𝑈T′◦𝐽

EM(T′′) EM(⌈T′′⌉)

GSet

�

𝑈T′′ 𝑈⌈T′′⌉

𝑅T′ is not in general an isomorphism
▶ there is no graded monad T′′ such that EM(T′′) � GMon over GSet
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Presenting graded monads
Theorem
For every flexibly graded presentation (Σ, 𝐸), there is
▶ a graded monad T(Σ,𝐸 )
▶ and functor 𝑅 (Σ,𝐸 ) : Alg(Σ, 𝐸) → EM(T(Σ,𝐸 ) ) over GSet

such that
▶ for every graded monad T′ and functor 𝑅′ : Alg(Σ, 𝐸) → EM(T′) over GSet, there

is a unique 𝛼 : T′ → T(Σ,𝐸 ) such that

Alg(Σ, 𝐸) EM(T(Σ,𝐸 ) ) T(Σ,𝐸 )

EM(T′) T′
𝑅′

𝑅 (Σ,𝐸)

EM(𝛼 ) 𝛼

▶ the free T(Σ,𝐸 ) -algebra on a set 𝑋 is the free (Σ, 𝐸)-algebra on E(1,−) • 𝑋
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