## Canonical gradings of monads

Flavien Breuvart Dylan McDermott Tarmo Uustalu

## Example

The writer monad Wr for lists over a set $C$ has:

| object mapping | $\mathrm{Wr}:$ Set $\rightarrow$ Set | $\mathrm{Wr} X=\operatorname{List} C \times X$ |
| ---: | :--- | :--- |
| unit functions | $\eta_{X}: X \rightarrow \mathrm{Wr} X$ | $\eta_{X} x=([], x)$ |
| multiplication functions | $\mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X$ | $\mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)$ |

## Example

The writer monad Wr for lists over a set $C$ has:

$$
\begin{array}{rll}
\text { object mapping } & \mathrm{Wr}: \text { Set } \rightarrow \text { Set } & \mathrm{Wr} X=\operatorname{List} C \times X \\
\text { unit functions } & \eta_{X}: X \rightarrow \mathrm{Wr} X & \eta_{X} x=([], x) \\
\text { multiplication functions } & \mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X & \mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)
\end{array}
$$

We can grade this by

- natural numbers $e \in \mathrm{~N}$, to get a graded monad WrL :
$\operatorname{WrL} e X=\operatorname{List}_{\leq e} C \times X \quad \eta: X \rightarrow \operatorname{WrL} 0 X \quad \mu: \operatorname{WrL} e_{1}\left(\operatorname{WrL} e_{2} X\right) \rightarrow \operatorname{WrL}\left(e_{1}+e_{2}\right) X$
- subsets $e \subseteq C$, to get a graded monad WrS :

WrS $e X=\operatorname{List} e \times X \quad \eta: X \rightarrow \operatorname{WrS} \emptyset X \quad \mu: \operatorname{WrS} e_{1}\left(\operatorname{WrS} e_{2} X\right) \rightarrow \operatorname{WrS}\left(e_{1} \cup e_{2}\right) X$

## Example

The writer monad Wr for lists over a set $C$ has:

| object mapping | $\mathrm{Wr}:$ Set $\rightarrow$ Set | $\mathrm{Wr} X=\operatorname{List} C \times X$ |
| ---: | :--- | :--- |
| unit functions | $\eta_{X}: X \rightarrow \mathrm{Wr} X$ | $\eta_{X} x=([], x)$ |
| multiplication functions | $\mu_{X}: \mathrm{Wr}(\mathrm{Wr} X) \rightarrow \mathrm{Wr} X$ | $\mu_{X}\left(s_{1},\left(s_{2}, x\right)\right)=\left(s_{1}+s_{2}, x\right)$ |

We can grade this by

- subsets $\Sigma \subseteq$ List $C$, to get a graded monad WrC :
$\operatorname{WrC} \Sigma X=\Sigma \times X \quad \eta: X \rightarrow \operatorname{WrCJ} X \quad \mu: \operatorname{WrC} \Sigma_{1}\left(\operatorname{WrC} \Sigma_{2} X\right) \rightarrow \operatorname{WrC}\left(\Sigma_{1} \downarrow \Sigma_{2}\right) X$
where

$$
J=\{[]\} \quad \Sigma_{1} \boxminus \Sigma_{2}=\left\{s_{1}+s_{2} \mid s_{1} \in \Sigma_{1}, s_{2} \in \Sigma_{2}\right\}
$$

## Example

WrC is the canonical grading of Wr:

- WrL is

$$
\mathrm{N} \xrightarrow{F} \mathcal{P}(\text { List } C) \xrightarrow{\mathrm{WrC}}[\text { Set, Set }]
$$

where

$$
F e=\text { List }_{\leq e} C \subseteq \text { List } C
$$

- WrS is

$$
\mathcal{P} C \xrightarrow{F} \mathcal{P}(\text { List } C) \xrightarrow{\mathrm{WrC}}[\text { Set, Set }]
$$

where

$$
F e=\text { Liste } \subseteq \text { List } C
$$

## This work

For every monad T on Set:

- there is a notion of grading of T
- T has a canonical grading
- every other grading factors through the canonical one


## This work

More generally, given a suitable notion of $\mathcal{M}$-subfunctor, for every monad T :

- there is a notion of $\mathcal{M}$-grading of T
- T has a canonical $\mathcal{M}$-grading
- every other $\mathcal{M}$-grading factors through the canonical one

In particular, monads can be canonically graded by shapes

## Gradings

Let T be a monad on Set

$$
T: \text { Set } \rightarrow \text { Set } \quad \eta: X \rightarrow T X \quad \mu: T(T X) \rightarrow T X
$$

A grading $(\mathcal{E}, \mathrm{G})$ of T consists of:

- an partially ordered monoid ( $\mathcal{E}, \leq, I, \odot)$ of grades $e \in \mathcal{E}$
- a subset $G e X \subseteq T X$ for each $e \in \mathcal{E}$ and set $X$
such that
- GeX $\subseteq G e^{\prime} X$ for all $e \leq e^{\prime}$ and $X$
- $G$ is closed under the monad structure of T :
$T f: T X \rightarrow T Y$ restricts to Gef: GeX $\rightarrow G e Y \quad$ for each $e \in \mathcal{E}$ and $f: X \rightarrow Y$
$\eta: X \rightarrow T X$ restricts to $\eta: X \rightarrow G I X$ for each $X$
$\mu: T(T X) \rightarrow T X \quad$ restricts to $\quad \mu: G e_{1}\left(G e_{2} X\right) \rightarrow G\left(e_{1} \odot e_{2}\right) X \quad$ for each $e_{1}, e_{2} \in \mathcal{E}$ and $X$
Fact: $(G, \eta, \mu)$ is a graded monad


## Gradings

Let T be a monad on Set

$$
T: \text { Set } \rightarrow \text { Set } \quad \eta: X \rightarrow T X \quad \mu: T(T X) \rightarrow T X
$$

A grading $(\mathcal{E}, \mathrm{G})$ of T consists of:

- an partially ordered monoid ( $\mathcal{E}, \leq, I, \odot)$ of grades $e \in \mathcal{E}$
- a subset $G e X \subseteq T X$ for each $e \in \mathcal{E}$ and set $X$
such that some conditions hold.
- $(\mathcal{E}, \leq, I, \odot)=(\mathrm{N}, \leq, 0,+)$, and

$$
\text { WrL } e X=\text { List }_{\leq e} C \times X \subseteq \text { List } C \times X=\mathrm{Wr} X
$$

- $(\mathcal{E}, \leq, I, \odot)=(\mathcal{P} C, \subseteq, \emptyset, \cup)$, and

$$
\text { WrS e } X=\text { List } e \times X \subseteq \text { List } C \times X=\text { Wr } X
$$

- $(\mathcal{E}, \leq, I, \odot)=(\mathcal{P}(\operatorname{List} C), \subseteq, \emptyset, \cup)$, and

$$
\text { WrS } e X=\text { List } e \times X \subseteq \text { List } C \times X=\text { Wr } X
$$

## Aside: constructing the ordered monoid

Given

- a set $\mathcal{E}$
- a subfunctor $G e \subseteq T$ for each $e \in \mathcal{E}$
under some conditions we get a grading of $T$ by defining

$$
\begin{aligned}
e \leq e^{\prime} & \Leftrightarrow G e \subseteq G e^{\prime} \\
I & =\text { smallest } e \text { such that } \eta \text { restricts to } \eta: X \rightarrow G e X \\
e_{1} \odot e_{2} & =\text { smallest } e \text { such that } \mu \text { restricts to } \mu: G e_{1}\left(G e_{2} X\right) \rightarrow G e X
\end{aligned}
$$

## Canonical grading of a functor

A grading $(\mathcal{E}, G)$ of a functor $T$ consists of:

- a partially ordered set ( $\mathcal{E}, \leq$ ) of grades $e \in \mathcal{E}$
- a subfunctor $G e \subseteq T$ for each $e \in \mathcal{E}$
such that $G e \subseteq G e^{\prime}$ for all $e \leq e^{\prime}$
The canonical grading $(\operatorname{Sub}(T), \hat{T})$ of $T$ has:

$$
\begin{array}{cll}
\text { poset } & \operatorname{Sub}(T) & \text { (subfunctors of } T \text {, ordered by pointwise inclusion) } \\
\text { subfunctors } & \hat{T} S=S &
\end{array}
$$

Universal property:
for every other grading $(\mathcal{E}, G)$ of $T$, there is a unique monotone $F: \mathcal{E} \rightarrow \operatorname{Sub}(T)$ such that $G e=\hat{T}(F e)$ for all $e$


## Canonical grading of a monad

The canonical grading (Sub(T), $\hat{\mathbf{T}}$ ) of a monad T has

```
ordered monoid (Sub(T), J, ■)
    subfunctors \hat{TS}=S where
    J X = {\etax | x \in X}
    subfunctors }\hat{T}S=
(S1\boxtimes\mp@subsup{S}{2}{})X={\mut|t\mathrm{ is in the image of }\mp@subsup{S}{1}{}(\mp@subsup{S}{2}{}X)\hookrightarrowT(TX)}
```

Universal property:
for every other grading ( $\mathcal{E}, \mathrm{G}$ ) of T , there is a unique $F: \mathcal{E} \rightarrow \operatorname{Sub}(T)$ that is lax monoidal and satisfies $G e=\hat{T}(F e)$ for all $e$


$$
\begin{gathered}
e \leq e^{\prime} \Rightarrow F e \subseteq F e^{\prime} \\
J \subseteq F I \\
F e \boxminus F e^{\prime} \subseteq F\left(e \odot e^{\prime}\right)
\end{gathered}
$$

## Example: writer

Take the writer monad Wr

$$
\operatorname{Wr} X=\operatorname{List} C \times X
$$

Subfunctors $S \subseteq \mathrm{Wr}$ are equivalently subsets

$$
\Sigma \subseteq \operatorname{List} C
$$

via

$$
\begin{gathered}
\Sigma=\{s \in \operatorname{List} C \mid(s, \star) \in S 1\} \\
S X=\{(s, x) \in \operatorname{List} C \times X \mid s \in \Sigma\}
\end{gathered}
$$

So the canonical grading is $\mathcal{P}(\operatorname{List} C)$ with

$$
\begin{gathered}
\operatorname{WrC} \Sigma X=\Sigma \times X \\
\Sigma \leq \Sigma^{\prime} \Leftrightarrow \Sigma \subseteq \Sigma^{\prime} \quad \mathrm{J}=\{[]\} \\
\Sigma_{1} \text { ■ } \Sigma_{2}=\left\{s_{1}+s_{2} \mid s_{1} \in \Sigma_{1}, s_{2} \in \Sigma_{2}\right\}
\end{gathered}
$$


$\mathcal{P}($ List $C) \underset{\mathrm{WrC}}{ }[$ Set, Set $]$

$$
F e=\{s \in \operatorname{List} C| | s \mid \leq e\}
$$



## Example: reader

Take the reader monad $\operatorname{Read}_{V}$ (for a set $V$ )

$$
\operatorname{Read}_{V} X=V \Rightarrow X
$$

Subfunctors $S \subseteq \operatorname{Read}_{V}$ are equivalently upwards-closed sets
of equivalence relations of $V$, via

$$
\Sigma \subseteq \text { Equiv }_{V} \quad \int_{R \in \Sigma \Rightarrow R^{\prime} \in \Sigma \text { whenever } R \subseteq R^{\prime}}
$$

$$
\begin{gathered}
\Sigma=\left\{R \in \text { Equiv }_{V} \mid[-]_{R} \in S(V / R)\right\} \\
S X=\left\{f: V \rightarrow X \mid \exists R \in \Sigma . \forall v, v^{\prime} . v R v^{\prime} \Rightarrow f v=f v^{\prime}\right\}
\end{gathered}
$$

and these give a canonical grading $\left(\operatorname{Sub}\left(\operatorname{Read}_{V}\right), \operatorname{ReadC}_{V}\right)$
Example: for $F R=\left\{R^{\prime} \in \operatorname{Equiv}_{V} \mid R \subseteq R^{\prime}\right\}$, the graded monad

$$
\text { Equiv }_{V} \xrightarrow{F} \operatorname{Sub}\left(\operatorname{Read}_{V}\right) \xrightarrow{\operatorname{ReadC}_{V}}[\text { Set, Set }]
$$

is

$$
\operatorname{Read}_{V}^{\prime} R X \cong(V / R) \Rightarrow X
$$

## $\mathcal{M}$-gradings of functors

For a class $\mathcal{M}$ of natural transformations $\rightarrow$, an $\mathcal{M}$-grading of a functor $T$ consists of

- a category $\mathcal{E}$
- a functor $G: \mathcal{E} \rightarrow[$ Set, Set]
- a natural transformation $m_{e}: G e \rightharpoondown T$, whose components are in $\mathcal{M}$

The $\mathcal{M}$-subfunctors of $T$ form an $\mathcal{M}$-grading $(\mathcal{M} / T, \hat{T})$, with

$$
\hat{T}(S, m)=S \quad \longleftrightarrow \quad T
$$

and this is canonical:

(more precisely, it is pseudoterminal in the 2-category of $\mathcal{M}$-gradings of $T$ )

Example: $\mathcal{M}=$ componentwise injective

## $\mathcal{M}$-gradings of monads

For a class $\mathcal{M}$ of natural transformations $\mapsto$, an $\mathcal{M}$-grading of a monad T consists of

- a monoidal category $\mathcal{E}$
- a graded monad $G: \mathcal{E} \rightarrow$ [Set, Set]
- a monoidal natural transformation $m_{e}: G e \mapsto T$, whose components are in $\mathcal{M}$

Under some conditions, the canonical $\mathcal{M}$-grading of the functor $T$ gives a canonical $\mathcal{M}$-grading of the monad T

(more precisely, it is pseudoterminal in the 2-category of $\mathcal{M}$-gradings of T )

## $\mathcal{M}$-gradings of monads

## If

- $\mathcal{M}$ forms a factorization $\operatorname{system}(\mathcal{E}, \mathcal{M})$ on [Set, Set]

- for each $e: F \rightarrow F^{\prime}$ in $\mathcal{E}$ and $G$,

$$
(e \cdot G): F \cdot G \rightarrow F^{\prime} \cdot G \quad(G \cdot e): G \cdot F \rightarrow G \cdot F^{\prime}
$$

are both in $\mathcal{E}$
then we get a canonical $\mathcal{M}$-grading of T , using


$$
J X=\{\eta x \mid x \in X\} \quad\left(S_{1} \boxminus S_{2}\right) X=\left\{\mu t \mid t \text { is in the image of } S_{1}\left(S_{2} X\right) \hookrightarrow T(T X)\right\}
$$

We can do something similar if we replace [Set, Set] with some other monoidal category

## Grading by sets of shapes

Every monad $T$ on Set has a set of shapes $T 1$, and every $t \in T X$ has a shape $T!t \in T 1$

- e.g. List $1 \cong \mathrm{~N}$, and $T!t$ is the length of $t \in \operatorname{List} X$

Whenever T is cartesian, subsets $\Sigma \subseteq T 1$ form a canonical cartesian grading of $T$ :

- subsets $\Sigma \subseteq T 1$ are equivalently cartesian subfunctors $S \subseteq T$, via

$$
\Sigma=S 1 \quad S X=\{t \in T X \mid T!t \in \Sigma\}
$$

( $S$ is automatically cartesian)

$$
\begin{aligned}
& \hline \text { families of subsets } S X \subseteq T X \\
& \text { closed under } T f: T X \rightarrow T Y \\
& \text { satisfying } S X=\{t \mid T!t \in S 1\} \\
& \hline
\end{aligned}
$$

- up to isomorphism, cartesian subfunctors form a factorization system $(\mathcal{E}, \mathcal{M})$ on [Set, Set $]_{\text {cart }}$



## Grading by sets of shapes

When T = List:

- Cartesian subfunctors $S \hookrightarrow$ List are equivalently subsets

$$
\Sigma \subseteq \mathrm{N}
$$

(allowable lengths of lists)

- which form an ordered monoid with

$$
\Sigma \leq \Sigma^{\prime} \Leftrightarrow \Sigma \subseteq \Sigma^{\prime} \quad J=\{0\} \quad \Sigma_{1} \boxminus \Sigma_{2}=\left\{n_{1}+n_{2} \mid n_{1} \in \Sigma_{1}, n_{2} \in \Sigma_{2}\right\}
$$

- The canonical cartesian grading of List is

$$
\text { List }^{\prime} \Sigma X=\{\text { xs } \in \operatorname{List} X \mid \text { length } \mathrm{xs} \in \Sigma\}
$$

## Algebraic operations

An algebraic operation for $T$ is a function

$$
T^{n} \rightarrow T
$$

compatible with the multiplication of $T$

Given subfunctors $S_{1}, \ldots, S_{n}$ of $T$, we get

- a canonical subfunctor $S^{\prime}$
- a flexibly graded algebraic operation

$$
\hat{T}\left(S_{1} \boxtimes-\right) \times \cdots \times \hat{T}\left(S_{n} \boxtimes-\right) \rightarrow \hat{T}\left(S^{\prime} \boxtimes-\right)
$$

(under some extra conditions about products)

## Summary

Given a suitable class $\mathcal{M}$ of natural transformations, every monad T has a canonical $\mathcal{M}$-grading $\hat{T}: \mathcal{M} / \mathrm{T} \rightarrow[\mathrm{C}, \mathrm{C}]$


In particular, each monad T on Set has canonical gradings by

- subfunctors $S \hookrightarrow T$
- subsets $S 1 \subseteq T 1$ (assuming T is cartesian)

