Foundations of Computer Science
Example Sheet 3

This supervision looks into the OCaml support for functions, common patterns for functions, lazy lists, search strategies, the stack and queue data structures and imperative programming.

1 Lecture 8

Exercise 1 [Higher-order function]
(a) What is a higher-order function?
(b) Why is it useful that OCaml supports higher order functions?

Exercise 2 [Anonymous functions]
(a) What is the syntax for anonymous functions in OCaml?
(b) Why are they useful?

Exercise 3 [Curried functions]
(a) How many arguments do OCaml functions take?
(b) How does OCaml “support” functions with multiple arguments? Give examples for this.
(c) Is npower (from the first lecture) a curried function? What other “reasonable” types could a function with equivalent behaviour have?
(d) What is the syntax for function application? Explain the error you get when evaluating f 2 3, where let f x = x + 3.
(e) Write a function convert_4 that takes a function g : ('a * 'b * 'c * 'd) -> 'e and returns a curried function for g.

Exercise 4 [Partial application]
(a) What is partial application?
(b) What functions result from partial application of the following curried functions?
 i. let plus i j = i + j
 ii. let lesser a b = if a < b then a else b
 iii. let pair x y = (x, y)
 iv. let equals x y = x = y
(c) Is there any practical difference between the following two declarations of the function f? Assume that the function g and the curried function h are given.
 i. let f x y = h (g x) y
 ii. let f x = h (g x)

Exercise 5 [Sorting] How does sorting (e.g. List.sort) benefit from being able to pass functions as values? What is the type of a sorting function taking a comparison function as an argument? [Note: Pay attention to the order of the arguments]
(a) (Optional) What rules should the ordering function obey?

Exercise 6 [Map]
(a) What does the map function do?
(b) Use map for the following:
i. Replace every negative element of a list of integers with 0.
ii. Add 1 to every element in the list.
iii. Truncate all lists in a list, so that they have 3 or fewer elements.
iv. Append an item to all lists in a list.

Exercise 7 Complete [2016P1Q1 (a),(b)].

Exercise 8 [Predicates]
(a) What is a predicate (in OCaml)?
(b) How is \texttt{exists} defined? Give an example.
(c) How is \texttt{filter} defined? Give an example.

Exercise 9 [Function composition]
(a) How is function composition defined? Write an OCaml function that takes two functions and returns their function composition. What is its type?
(b) How are these different?
\[
\text{compose} \ (\text{fun} \ x \rightarrow \ x + 1) \ (\text{fun} \ y \rightarrow \ y \ast 7) \\
\text{compose} \ (\text{fun} \ y \rightarrow \ y \ast 7) \ (\text{fun} \ x \rightarrow \ x + 1)
\]
(c) Give equivalent single function definitions for these two function compositions?

Exercise 10 [Function iteration] The \(k\)-th iterate of a function \(f : 'a \rightarrow 'a\) denoted by \(f^k(x)\), is the application of \(f\) to \(x\), \(k\) times. For example \(f^2(x) = f(f(x))\) and \(f^3(x) = f(f(f(x)))\). Write an OCaml function that takes a function and a positive integer \(k\) that returns the \(k\)-th iterate of the function.

Exercise 11 Show how to replace any expression of the form \texttt{List.map f (List.map g xs)} by an equivalent expression that applies \texttt{List.map} only once.

[Source: OCamlWP 5.12]

Exercise 12 [Matrices]
(a) Explain how matrices can be represented using lists. Is there a problem with that?
(b) Explain how to implement transpose using \texttt{map}. What is the time complexity of your implementation?
(c) Explain how to implement matrix multiplication using \texttt{map}. What is the time complexity of your implementation?

Exercise 13 [List module]
(a) Go through the functions in the \texttt{List.Module} (you may skip “Association lists” and “Iterators”).
(b) How would you implement \texttt{flatten}, \texttt{for_all}, \texttt{mapi} and \texttt{exists2}? Give examples of how you would use these functions. How do your implementations differ from the reference implementations?
(c) Look carefully at the documentation for a few of these functions. What features do you notice? Do you find the documentation useful? Is it better to search on stackoverflow for examples than to look at the documentation?
Exercise 14 [Delayed vs Lazy] What is the difference between delayed and lazy evaluation?

Exercise 15 [Unit type]
(a) What is the unit type and what is its syntax?
(b) What are the uses of unit in OCaml?

Exercise 16 [Lazy lists] Write brief notes on programming with lazy lists in OCaml. Your answer should include the definition of a polymorphic type of infinite lazy lists, a function to return the tail of a lazy list, a function to create the infinite list of all positive integers, and an apply-to-all functional analogous to the list functional map.

[Source: 2015P1Q2]

Exercise 17 [From] Explain why the following forms of from and get are wrong:
(a) let rec wrongfrom1 k = Cons(k, wrongfrom1(k+1));;
(b) let rec wrongfrom2 k = Cons(k, fun () -> wrongfrom2 (n + 1));;
(c) let rec get n xx = match n, xx with 0, _ -> [] | n, (Cons(x, xs)) -> x :: get (n-1) xs();;
(d) let rec get n xx = match n, xx with 0, _ -> [] | n, (Cons(x, xs)) -> x :: get (n-1) xs;;

Exercise 18 Declare a function to add adjacent elements of a sequence, transforming \[x_1; x_2; x_3; x_4; \ldots \] to \[x_1 + x_2; x_3 + x_4; \ldots \].

[Source: OCamlWP 5.30]

Exercise 19 [Interleave] What is the problem with appending two infinite lists? How does interleave solve it?

Exercise 20 [Lazy binary tree (++)]
(a) A lazy binary tree either is empty or is a branch containing a label and two lazy binary trees, possibly to infinite depth. Present an OCaml datatype to represent lazy binary trees.
(b) Present an OCaml function that produces a lazy binary tree whose labels include all the integers, including the negative integers.
(c) Present an OCaml function that accepts a lazy binary tree and produces a lazy list that contains all of the tree’s labels

[Source: 2008P1Q5]

Exercise 21 [All binary lists (++)]
(a) Code the lazy list whose elements are all ordinary lists of zeroes and ones, namely \[]; [0]; [1]; [0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0]; \ldots \]
(b) A palindrome is a list that equals its own reverse. Code the lazy list whose elements are all palindromes of 0s and 1s, namely \[]; [0]; [1]; [0; 0]; [0; 1]; [1; 0]; [1; 1]; [1; 0; 1]; [1; 1; 1]; [0; 0; 0; 0]; \ldots \ You may take the reversal function List.rev as given. (Hint: First think how you would generate palindromes of even length.)

[Exercise 9.5 & 9.6 in Lecturer’s handout]
Exercise 22 [Nested infinite lists (++)]
(a) Write a function `diag` that takes a lazy list of lazy lists,

\[
\left[\begin{array}{c}
\lfloor z_{11}; z_{12}; \ldots \rfloor, \\
\lfloor z_{21}; z_{22}; \ldots \rfloor, \\
\lfloor z_{31}; z_{32}; \ldots \rfloor, \\
\ldots
\end{array}\right]
\]

and returns the diagonal, namely the lazy list \([z_{11}; z_{22}; z_{33}; \ldots]\).
(b) Write a function that takes two lazy lists \([x_1; x_2; x_3; \ldots]\) and \([y_1; y_2; y_3; \ldots]\) and a function \(f\) of two arguments; and returns a lazy list of lazy lists like above, with \(z_{ij} = f(x_i,y_j)\).
(c) Write a function that converts a lazy list of lazy lists like above to a lazy list whose elements are all of the \(z_{ij}\), enumerated in some order.

[Source: 2015P1Q2]

Exercise 23 [Lazy enumeration of change (++)]
Code a function to make change using lazy lists, delivering the sequence of all possible ways of making change. Using sequences allows us to compute solutions one at a time when there exists an astronomical number. Represent lists of coins using ordinary lists. (Hint: to benefit from laziness you may need to pass around the sequence of alternative solutions as a function of type `unit -> (int list) seq`.)

[Exercise 9.3 in Lecturer's handout]

3 Lecture 10

Exercise 24 [Queues] Write brief notes on the queue data structure and how it can be implemented efficiently in OCaml. In a precise sense, what is the cost of the main queue operations? (It is not required to present OCaml code.)

[Source: 2014P1Q2]

Exercise 25 [Queue example] Show the internal state of the (efficient OCaml) queue after each of the following operations: `push 1`, `push 2`, `push 3`, `pop`, `push 4`, `pop`, `push 5`, `push 6`, `pop`, `pop`, `pop`, `pop`.

Exercise 26 [Stacks] Write brief notes on the stack data structure. How can it be implemented in OCaml?

Exercise 27 [BFS/DFS] Explain how BFS and DFS works. For each case, what is the order that the nodes are traversed?

Exercise 28 [Iterative Deepening]
(a) What is the main issue with BFS?
(b) How does depth-first iterative deepening search solve this? Derive its space and time complexity.
Further Reading 1 [More on making lazy programs]
Read the handout on “Techniques for generating lazy sequences”. We will probably cover some of the material there in the revision session.

Further Reading 2 [More on searching for solutions]
Read the handout on “Brief notes on complete search techniques”. We will probably cover some of the material there in the revision session.

4 Lecture 11

Only attempt exercises in this section if the lecturer covered them.

Exercise 29
What are the guarantees that *pure* functions provide in contrast to *non-pure* functions? What are any reasons for introducing non-pure functions in a program?

Exercise 30 [References]
What is the syntax and types for *references* in OCaml?

Exercise 31 [Swap]
Write an OCaml function to exchange the values of two references `xr` and `yr`.

[Exercise 12.4 in Lecturer's handout]

Exercise 32 [While]
(a) What is the syntax for *while loops* in OCaml?
(b) Implement `fact`, `npow` and `foldl` using while loops in OCaml.
(c) Write an imperative version of `fib`.

Exercise 33 [Mutable lists]
(a) Describe how *mutable lists* are implemented in OCaml.
(b) Write the `nth` OCaml function.
(c) Write an OCaml function `update` that takes a list `x`, a position `i` and a value `v`, and sets the `i`-th element of the list to `v`.

Exercise 34 [Revisiting all tails]
Provide example code (and output) to demonstrate that the result returned by `all_tails` (e.g. `[1;2;3;4]`, `[2;3;4]`, `[3;4]`, `[4]`) occupies linear (to the length of the original list) space.