Tight Bounds for Repeated Balls-into-Bins

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$

${ }^{1}$ University of Cambridge, UK

Balls-into-Bins: Background

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

- Applications in hashing [PR01],

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

- Applications in hashing [PR01], load balancing [Wie16]

Balls-into-Bins setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

- Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

The One-Choice process

The One-Choice process

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

The One-Choice process

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

When $m=\Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n}+\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

The One-Choice process

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

When $m=\Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n}+\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

The One-Choice process

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

When $m=\Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n}+\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

When $m=o(n \log n)$, w.h.p. the maximum load is $\Theta\left(\frac{\log n}{\log \left(\frac{n \log n}{m}\right)}\right)$.

The One-Choice process

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

When $m=\Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n}+\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

- When $m=o(n \log n)$, w.h.p. the maximum load is $\Theta\left(\frac{\log n}{\log \left(\frac{n \log n}{m}\right)}\right)$.

$$
\begin{aligned}
& \text { For } m=n \text {, we get } \\
& \text { the } \Theta\left(\frac{\log n}{\log \log n}\right) \text { bound. }
\end{aligned}
$$

The Repeated Balls-into-Bins (RBB) setting

The Repeated Balls-into-Bins (RBB) setting

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta $\left[\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
I We start with an arbitrary load vector with $m \geq n$ balls.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary load vector with $m \geq n$ balls.

- In each round:
\Rightarrow From each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary load vector with $m \geq n$ balls.

- In each round:
\Rightarrow From each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary load vector with $m \geq n$ balls.

- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.
- Parallel resource allocation.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.
- Parallel resource allocation.
- Balls-into-Bins with removals.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
- In each round:
- From each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.
- Parallel resource allocation.
- Balls-into-Bins with removals.
- Connection to Jackson queues, propagation of chaos.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.

In each round:

- From each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.
- Parallel resource allocation.
- Balls-into-Bins with removals.
- Connection to Jackson queues, propagation of chaos.
- [CP19], [CP20], [CP21].

Number of balls is always exactly m.

The Repeated Balls-into-Bins (RBB) setting

\square Introduced by Becchetti, Clementi, Natale, Pasquale and Posta $\left[\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary load vector with $m \geq n$ balls.
\square In each round:
\Rightarrow From each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.
- Parallel resource allocation.
- Balls-into-Bins with removals.
- Connection to Jackson queues, propagation of chaos.
- [CP19], [CP20], [CP21].

RBB in action

RBB in action

- Starting with an unbalanced configuration, the process eventually stabilises in a balanced configuration.

Quantities of interest and Results

Quantities of interest and Results

Quantities of interest and Results

What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?

- For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
- For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
- For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- How quickly does the process stabilize? What is the convergence time?

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- We show that:

How quickly does the process stabilize? What is the convergence time?

- For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
- For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- We show that:
- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
- How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
\Rightarrow We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly (n) rounds)?
- For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$
- Conjectured for $m=n$, w.h.p. the maximum loa
- Conjectured for $m=n \log n$, w.h.p. the maximur
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum loadHow quickly does the process stabilize? What is the
- For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BC

- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
$>$ For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly (n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
- How quickly does the process stabilize? What is th
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [B
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2}\right.$
- How many rounds for all balls to traverse all bins?
$>$ For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
$>$ For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
- How many rounds for all balls to traverse all bins?
\triangleright For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Quantities of interest and Results

- What is the maximum load once stabilized (for poly(n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. \times
- We show that:
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
How quickly does the process stabilize? What is the convergence time?
$>$ For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
- How many rounds for all balls to traverse all bins?
$>$ For $m=n$, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.
\Rightarrow For $m=\operatorname{poly}(n)$, w.h.p. the traversal time is $\Theta(m \log n)$.

Techniques

Key idea: Analyze the fraction f^{t} of empty bins

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins:

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins:

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

For the upper bound, we show that $f^{t}=\Omega(n / m)$.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

$$
\begin{aligned}
& {\left[\mathrm{BCN}^{+} 19\right] \text { showed that for }} \\
& m=n \text {, after one round there } \\
& \text { are } \Omega(n) \text { empty bins. }
\end{aligned}
$$

For the upper bound, we show that $f^{t}=\Omega(n / m)$.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

$\left[\mathrm{BCN}^{+} 19\right]$ showed that for
$m=n$, after one round there
are $\Omega(n)$ empty bins.

For $m=\omega(n)$, this is more challenging.
\square For the upper bound, we show that $f^{t}=\Omega(n / m)$.

Key idea: Analyze the fraction f^{t} of empty bins

Too many empty bins: The load of non-empty bins decreases in expectation.

- Too few empty bins: The load of non-empty bins (almost) remains the same.

$\left[\mathrm{BCN}^{+} 19\right]$ showed that for
$m=n$, after one round there
are $\Omega(n)$ empty bins.

For $m=\omega(n)$, this is more challenging.
For the upper bound, we show that $f^{t}=\Omega(n / m)$.
\square For the lower bound, we show that $f^{t}=\mathcal{O}(n / m)$.

The $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$ upper bound

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

When $\Phi^{t}=\operatorname{poly}(n)$,

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

When $\Phi^{t}=\operatorname{poly}(n)$, then we have that

$$
\max _{i \in[n]} e^{\alpha x_{i}^{t}} \leq \operatorname{poly}(n)
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

When $\Phi^{t}=\operatorname{poly}(n)$, then we have that

$$
\max _{i \in[n]} e^{\alpha x_{i}^{t}} \leq \operatorname{poly}(n) \Rightarrow \max _{i \in[n]} x_{i}^{t}=\mathcal{O}\left(\frac{\log n}{\alpha}\right)
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Exponential potential function

- The exponential potential function with smoothing parameter $\alpha>0$, is defined as

$$
\Phi^{t}:=\Phi^{t}(\alpha)=\sum_{i=1}^{n} e^{\alpha x_{i}^{t}}
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
\square Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
- Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

which implies that for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2} t}+\frac{12 n}{\alpha^{2}} .
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
\square Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

which implies that for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2} t}+\frac{12 n}{\alpha^{2}} .
$$

Since $\Phi^{0} \leq e^{\alpha m}$,

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
- Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

which implies that for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2} t}+\frac{12 n}{\alpha^{2}} .
$$

Since $\Phi^{0} \leq e^{\alpha m}$, after $t=\Theta(m / \alpha)=\Theta\left(m^{2} / n\right)$ steps,

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
- Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

which implies that for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2} t}+\frac{12 n}{\alpha^{2}} .
$$

Since $\Phi^{0} \leq e^{\alpha m}$, after $t=\Theta(m / \alpha)=\Theta\left(m^{2} / n\right)$ steps, $\mathbf{E}\left[\Phi^{t}\right]=\operatorname{poly}(n)$.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Expected change of Φ

- We prove that in every round $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{\alpha^{2}-\alpha f^{t}}+6 n
$$

- (Simplified setting) Assume that the fraction of empty bins $f^{t} \geq 2 \alpha$.
\square Then,

$$
\mathbf{E}\left[\Phi^{t+1} \mid x^{t}\right] \leq \Phi^{t} \cdot e^{-\alpha^{2}}+6 n
$$

which implies that for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2} t}+\frac{12 n}{\alpha^{2}} .
$$

Since $\Phi^{0} \leq e^{\alpha m}$, after $t=\Theta(m / \alpha)=\Theta\left(m^{2} / n\right)$ steps, $\mathbf{E}\left[\Phi^{t}\right]=\operatorname{poly}(n)$.
But we don't always have that $f^{t} \geq 2 \alpha$.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

- Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.
- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \mathcal{-} \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

- Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.
- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

- Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.
- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

\square Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

- We consider the idealized process with loads:

$$
y_{i}^{t+1}:=y_{i}^{t}-\mathbf{1}_{y_{i}^{t}>0}+\operatorname{Bin}(n, 1 / n) .
$$

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

\square Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

- We consider the idealized process with loads:

$$
y_{i}^{t+1}:=y_{i}^{t}-\mathbf{1}_{y_{i}^{t}>0}+\operatorname{Bin}(n, 1 / n) .
$$

The idealized process pointwise majorizes the RBB process, i.e., $x_{i}^{t} \leq y_{i}^{t}$.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

\square Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

\square We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

- We consider the idealized process with loads:

$$
y_{i}^{t+1}:=y_{i}^{t}-\mathbf{1}_{y_{i}^{t}>0}+\operatorname{Bin}(n, 1 / n) .
$$

\square The idealized process pointwise majorizes the RBB process, i.e., $x_{i}^{t} \leq y_{i}^{t}$.
This also implies that y^{t} has fewer empty bins than x^{t}.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

\square Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \mathcal{} \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

\square We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

- We consider the idealized process with loads:

$$
y_{i}^{t+1}:=y_{i}^{t}-\mathbf{1}_{y_{i}^{t}>0}+\operatorname{Bin}(n, 1 / n) .
$$

\square The idealized process pointwise majorizes the RBB process, i.e., $x_{i}^{t} \leq y_{i}^{t}$.

- This also implies that y^{t} has fewer empty bins than x^{t}.

Using a drift argument, the idealized process (and so the RBB process as well) has an average $\Omega(n / m)$ fraction of empty bins in expectation over $\Omega\left((m / n)^{2}\right)$ rounds.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Many empty bins

\square Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^{s}=\Omega(\alpha)=\Omega(n / m)$.

- We analyse the adjusted exponential potential,

$$
\tilde{\Phi}^{t}:=\mathbf{1}_{\cap_{s \in[0, t)} \neg \mathcal{E}^{s}} \cdot \Phi^{s}(\alpha) \cdot e^{\sum_{s=0}^{t-1}\left(\alpha f^{s}-1.5 \alpha^{2}\right)}, \text { where } \mathcal{E}^{s}:=\left\{\Phi^{s} \leq \frac{48}{\alpha^{2}} \cdot n\right\} .
$$

We can write the marginal distribution of the loads of bin i as:

$$
x_{i}^{t+1}:=x_{i}^{t}-\mathbf{1}_{x_{i}^{t}>0}+\operatorname{BiN}\left(n \cdot\left(1-f^{t}\right), 1 / n\right) .
$$

- We consider the idealized process with loads:

$$
y_{i}^{t+1}:=y_{i}^{t}-\mathbf{1}_{y_{i}^{t}>0}+\operatorname{Bin}(n, 1 / n) .
$$

\square The idealized process pointwise majorizes the RBB process, i.e., $x_{i}^{t} \leq y_{i}^{t}$.

- This also implies that y^{t} has fewer empty bins than x^{t}.

Using a drift argument, the idealized process (and so the RBB process as well) has an average $\Omega(n / m)$ fraction of empty bins in expectation over $\Omega\left((m / n)^{2}\right)$ rounds.

- By the method of bounded differences, we get the lower bound holds w.h.p.

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Putting it all together

Upper bound $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$: Putting it all together

The $\Omega\left(\frac{m}{n} \cdot \log n\right)$ lower bound

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

We prove the following interplay between Υ^{t} and the fraction of empty bins in round t,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot f^{t}+2 n
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

- We prove the following interplay between Υ^{t} and the fraction of empty bins in round t,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot f^{t}+2 n
$$

\square When $f^{t} \geq \frac{4 n}{m}:=\gamma$, then

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 n
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

- The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

- We prove the following interplay between Υ^{t} and the fraction of empty bins in round t,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot f^{t}+2 n
$$

When $f^{t} \geq \frac{4 n}{m}:=\gamma$, then

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 n
$$

- By induction for any $T \geq 0$,

$$
\mathbf{E}\left[\Upsilon^{t+T} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot \sum_{s=t}^{t+T-1}\left(f^{s}-\frac{2 n}{m}\right)
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

- The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

- We prove the following interplay between Υ^{t} and the fraction of empty bins in round t,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot f^{t}+2 n
$$

\square When $f^{t} \geq \frac{4 n}{m}:=\gamma$, then

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 n
$$

- By induction for any $T \geq 0$,

$$
\mathbf{E}\left[\Upsilon^{t+T} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot \sum_{s=t}^{t+T-1}\left(f^{s}-\frac{2 n}{m}\right)
$$

\square Note that $\Upsilon^{t} \leq m^{2}$.

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: The quadratic potential

- The quadratic potential is defined as

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}\right)^{2}
$$

- We prove the following interplay between Υ^{t} and the fraction of empty bins in round t,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot f^{t}+2 n
$$

- When $f^{t} \geq \frac{4 n}{m}:=\gamma$, then

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid x^{t}\right] \leq \Upsilon^{t}-2 n
$$

- By induction for any $T \geq 0$,

$$
\mathbf{E}\left[\Upsilon^{t+T} \mid x^{t}\right] \leq \Upsilon^{t}-2 \cdot m \cdot \sum_{s=t}^{t+T-1}\left(f^{s}-\frac{2 n}{m}\right)
$$

Note that $\Upsilon^{t} \leq m^{2}$. So, using a concentration inequality, in any interval of $\Omega\left(m^{2} / n\right)$ length, there can be $\leq \gamma$ fraction of empty bins.

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: Completing the proof

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: Completing the proof

- This means that at least a $1-\gamma\left(\right.$ recall $\left.\gamma=\frac{4 n}{m}\right)$ fraction of the balls are allocated using One-Choice.

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: Completing the proof

- This means that at least a $1-\gamma\left(\right.$ recall $\left.\gamma=\frac{4 n}{m}\right)$ fraction of the balls are allocated using One-Choice.
- Using the following lower bound for One-Choice for $c:=\frac{(1-\gamma)^{2}}{200} \cdot \frac{1}{\gamma^{2}}$,

$$
\operatorname{Pr}\left[\max _{i \in[n]} y_{i}^{c n \log n} \geq\left(c+\frac{\sqrt{c}}{10}\right) \cdot \log n\right] \geq 1-n^{-2}
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: Completing the proof

- This means that at least a $1-\gamma\left(\right.$ recall $\left.\gamma=\frac{4 n}{m}\right)$ fraction of the balls are allocated using One-Choice.
- Using the following lower bound for One-Choice for $c:=\frac{(1-\gamma)^{2}}{200} \cdot \frac{1}{\gamma^{2}}$,

$$
\operatorname{Pr}\left[\max _{i \in[n]} y_{i}^{c n \log n} \geq\left(c+\frac{\sqrt{c}}{10}\right) \cdot \log n\right] \geq 1-n^{-2}
$$

we obtain that for $t=\Theta\left(m^{2} / n^{2}\right)$,

$$
\operatorname{Pr}\left[\max _{i \in[n]} x_{i}^{t}=\Omega\left(\frac{m}{n} \cdot \log n\right)\right] \geq 1-n^{-2} .
$$

Lower bound $\Omega\left(\frac{m}{n} \cdot \log n\right)$: Completing the proof

- This means that at least a $1-\gamma\left(\right.$ recall $\left.\gamma=\frac{4 n}{m}\right)$ fraction of the balls are allocated using One-Choice.
\square Using the following lower bound for OnE-CHOICE for $c:=\frac{(1-\gamma)^{2}}{200} \cdot \frac{1}{\gamma^{2}}$,

$$
\operatorname{Pr}\left[\max _{i \in[n]} y_{i}^{c n \log n} \geq\left(c+\frac{\sqrt{c}}{10}\right) \cdot \log n\right] \geq 1-n^{-2}
$$

we obtain that for $t=\Theta\left(m^{2} / n^{2}\right)$,

$$
\operatorname{Pr}\left[\max _{\hat{\Lambda}_{i} \in[n]} x_{i}^{t}=\Omega\left(\frac{m}{n} \cdot \log n\right)\right] \geq 1-n^{-2} .
$$

Actually, this is $\cup_{s \in[0, t]}$ as
in the concentration inequality
we assume the loads are $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

Summary \& Future work

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(m^{2} / n\right)$ rounds.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(\mathrm{m}^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(\mathrm{m}^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

- Explore the process in the graphical setting $\left[\mathrm{BCN}^{+} 19\right]$.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(\mathrm{m}^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

- Explore the process in the graphical setting $\left[\mathrm{BCN}^{+} 19\right]$.

Explore versions of the process with continuous loads.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(\mathrm{m}^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

- Explore the process in the graphical setting $\left[\mathrm{BCN}^{+} 19\right]$.

Explore versions of the process with continuous loads.

- Explore different reallocation rules.

Summary \& Future work

We proved for the RBB process that for any $m=\operatorname{poly}(n)$:
Eventually reaches a $\Theta\left(\frac{m}{n} \cdot \log n\right)$ maximum load.

- Converges to such configuration in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
- Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

- Explore the process in the graphical setting $\left[\mathrm{BCN}^{+} 19\right]$.

Explore versions of the process with continuous loads.

- Explore different reallocation rules.
- Relate to the setting where $n \cdot(1-\Theta(n / m))$ new tasks arrive in each round $\left[\mathrm{BFK}^{+} 18\right]$.

Questions?

More visualisations: dimitrioslos.com/stacs23

Bibliography I

- L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and G. Posta, Self-stabilizing repeated balls-into-bins, 27th International Symposium on Theoretical Aspects of Computer Science (STACS'15) (Guy E. Blelloch and Kunal Agrawal, eds.), ACM, 2015, pp. 332-339.
\qquad , Self-stabilizing repeated balls-into-bins, Distributed Comput. 32 (2019), no. 1, 59-68.
- P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, L. Nagel, and C. Wastell, Self-stabilizing balls and bins in batches: the power of leaky bins, Algorithmica. An International Journal in Computer Science80 (2018), no. 12, 3673-3703. MR 3864718
- N. Cancrini and G. Posta, Propagation of chaos for a balls into bins model, Electronic Communications in Probability 24 (2019), no. none, 1 - 9.
\qquad , Mixing time for the Repeated Balls into Bins dynamics, Electronic Communications in Probability 25 (2020), no. none, 1 - 14.

Bibliography II

\qquad , Propagation of chaos for a general balls into bins dynamics, Electronic Journal of Probability 26 (2021), no. none, $1-20$.

- R. J. Gibbens, F. P. Kelly, and P. B. Key, Dynamic alternative routing - modelling and behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier, Amsterdam, 1988.
- R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms-ESA 2001 (Århus), Lecture Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121-133. MR 1913547
- U. Wieder, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput. Sci. 12 (2016), no. 3-4, front matter, 276-379. MR 3683828

