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Balls-into-Bins setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.
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Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

Max.
Load

■ Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].
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The One-Choice process

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ When m = Ω(n log n), w.h.p. the maximum load is m
n + Θ

(√
m
n · log n

)
.

■ When m = o(n log n), w.h.p. the maximum load is Θ
(

log n

log( n log n
m )

)
.
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Meaning with probability
at least 1 − n−c for constant c > 0.
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The One-Choice process

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ When m = Ω(n log n), w.h.p. the maximum load is m
n + Θ

(√
m
n · log n

)
.

■ When m = o(n log n), w.h.p. the maximum load is Θ
(

log n

log( n log n
m )

)
.

For m = n, we get
the Θ

(
log n

log log n

)
bound.
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The Repeated Balls-into-Bins (RBB) setting

■ Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN+15, BCN+19].
■ We start with an arbitrary load vector with m ≥ n balls.
■ In each round:

▶ From each non-empty bin, remove (arbitrarily) one ball.
▶ Re-allocate these balls randomly to the n bins.

Number of balls is
always exactly m.

■ Parallel resource allocation.
■ Balls-into-Bins with

removals.
■ Connection to Jackson

queues, propagation of chaos.
■ [CP19], [CP20], [CP21].

Open in Visualiser.
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RBB in action

■ Starting with an unbalanced configuration, the process eventually stabilises in a
balanced configuration.
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Quantities of interest and Results

■ What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is O(log n) [BCN+19].

▶ Conjectured for m = n, w.h.p. the maximum load is ω(log n/ log log n).
▶ Conjectured for m = n log n, w.h.p. the maximum load is O(log n).

✕

▶ We show that:

▶ For any m = poly(n), w.h.p. the maximum load is O( m
n

· log n).
▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. Ω( m

n
· log n).

■ How quickly does the process stabilize? What is the convergence time?

▶ For m = n, w.h.p. it stabilizes in O(n) rounds [BCN+19].
▶ For any m = poly(n), w.h.p. it stabilizes in O(m2/n) rounds.

■ How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is Ω(n log n) and O(n log2 n) [BCN+19].
▶ For m = poly(n), w.h.p. the traversal time is Θ(m log n).
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Key idea: Analyze the fraction f t of empty bins

■ Too many empty bins:

The load of non-empty bins decreases in expectation.

■ Too few empty bins:

The load of non-empty bins (almost) remains the same.

■ For the upper bound, we show that f t = Ω(n/m).
■ For the lower bound, we show that f t = O(n/m).

[BCN+19] showed that for
m = n, after one round there
are Ω(n) empty bins.

For m = ω(n), this is more
challenging.
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Upper bound O
(

m
n · log n

)
: Exponential potential function

■ The exponential potential function with smoothing parameter α > 0, is defined as

Φt := Φt(α) =
n∑

i=1
eαxt

i .

0 2 4 6 8 10

Load value xt
i

Φt
i

■ When Φt = poly(n), then we have that

max
i∈[n]

eαxt
i ≤ poly(n)

⇒ max
i∈[n]

xt
i = O

(
log n

α

)
.
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We set α := Θ(n/m),
to get the desired max load.
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Upper bound O
(

m
n · log n

)
: Expected change of Φ

■ We prove that in every round t ≥ 0,
E

[
Φt+1 | xt

]
≤ Φt · eα2−αft

+ 6n.

■ (Simplified setting) Assume that the fraction of empty bins f t ≥ 2α.
■ Then,

E
[

Φt+1 | xt
]

≤ Φt · e−α2
+ 6n,

which implies that for any t ≥ 0,

E
[

Φt
]

≤ Φ0 · e−α2t + 12n

α2 .

■ Since Φ0 ≤ eαm, after t = Θ(m/α) = Θ(m2/n) steps, E [ Φt ] = poly(n).

But we don’t always have that f t ≥ 2α.
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Upper bound O
(

m
n · log n

)
: Many empty bins

■ Instead we just need to show that 1
t

∑t−1
s=0 fs = Ω(α) = Ω(n/m).

■ We analyse the adjusted exponential potential,

Φ̃t := 1∩s∈[0,t)¬Es · Φs(α) · e
∑t−1

s=0
(αfs−1.5α2), where Es :=

{
Φs ≤ 48

α2 · n

}
.

■ We can write the marginal distribution of the loads of bin i as:
xt+1

i := xt
i − 1xt

i
>0 + Bin(n · (1 − f t), 1/n).

■ We consider the idealized process with loads:
yt+1

i := yt
i − 1yt

i
>0 + Bin(n, 1/n).

■ The idealized process pointwise majorizes the RBB process, i.e., xt
i ≤ yt

i .
■ This also implies that yt has fewer empty bins than xt.
■ Using a drift argument, the idealized process (and so the RBB process as well) has an

average Ω(n/m) fraction of empty bins in expectation over Ω((m/n)2) rounds.
■ By the method of bounded differences, we get the lower bound holds w.h.p.
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Upper bound O
(

m
n · log n

)
: Putting it all together

Convergence phase Stabilization phase

48
α2 · n

eα logn · 48
α2 · n

eαm

Φs

s

t− cr · m2

n

s0 t r1 s1 r2 s2 t+m2

Convergence Each si − ri ≤ cs · m2

n2 · log n
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The Ω(m
n · log n) lower bound

The Ω( m
n

· log n) lower bound 16



Lower bound Ω(m
n · log n): The quadratic potential

■ The quadratic potential is defined as

Υt :=
n∑

i=1
(xt

i)2.

■ We prove the following interplay between Υt and the fraction of empty bins in round t,
E

[
Υt+1 ∣∣ xt

]
≤ Υt − 2 · m · f t + 2n.

■ When f t ≥ 4n
m := γ, then

E
[

Υt+1 ∣∣ xt
]

≤ Υt − 2n.

■ By induction for any T ≥ 0,

E
[

Υt+T
∣∣ xt

]
≤ Υt − 2 · m ·

t+T −1∑
s=t

(
fs − 2n

m

)
.

■ Note that Υt ≤ m2. So, using a concentration inequality, in any interval of Ω(m2/n)
length, there can be ≤ γ fraction of empty bins.
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Lower bound Ω(m
n · log n): Completing the proof

■ This means that at least a 1 − γ (recall γ = 4n
m ) fraction of the balls are allocated

using One-Choice.

■ Using the following lower bound for One-Choice for c := (1−γ)2

200 · 1
γ2 ,

Pr
[

max
i∈[n]

ycn log n
i ≥

(
c +

√
c

10

)
· log n

]
≥ 1 − n−2,

we obtain that for t = Θ(m2/n2),

Pr
[
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Actually, this is ∪s∈[0,t] as
in the concentration inequality
we assume the loads are O
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Summary & Future work

We proved for the RBB process that for any m = poly(n):
■ Eventually reaches a Θ( m

n · log n) maximum load.

■ Converges to such configuration in O(m2/n) rounds.

■ Has an Θ(m log n) traversal time.

Several directions for future work:
■ Explore the process in the graphical setting [BCN+19].

■ Explore versions of the process with continuous loads.

■ Explore different reallocation rules.

■ Relate to the setting where n · (1 − Θ(n/m)) new tasks arrive in each round [BFK+18].
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Questions?

More visualisations: dimitrioslos.com/stacs23
The Ω( m

n
· log n) lower bound 20

https://dimitrioslos.com/stacs23
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