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Applications in hashing [PR01], load balancing [Wiel6] and routing [GKKS88].
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S

N
N

Meaning with probability

at least 1 — n~¢ for constant ¢ > 0.
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ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

When m = Q(nlogn), w.h.p. the maximum load is 2* 4+ © (1 /o - log n)

When m = o(nlogn), w.h.p. the maximum load is © (log(lz%ggn))

For m = n, we get

the @( log n ) bound.

log logn
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RBB in action

Starting with an unbalanced configuration, the process eventually stabilises in a
balanced configuration.
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Upper bound O(% - log n): Exponential potential function

The exponential potential function with smoothing parameter o > 0, is defined as

n
o' = d'(a) = Zeazg.
i=1
o]
We set a := O(n/m),
5 : - - - to get the desired max load.
Load value z! ,,
7
When ®' = poly(n), then we have that /

log
r_n?)]c el < poly(n) = I_ns[n]i =0 (%) .
1€|n ie|n
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(Simplified setting) Assume that the fraction of empty bins [ > 2a.

Then,

2

E[o'" 2] <®' e +6n,

which implies that for any ¢t > 0,
E[8'] <. ot 4 2
2

Since @0 < €™ after t = O(m/a) = O(m?/n) steps, E[®!] = poly(n).

But we don’t always have that f* > 2a.
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We can write the marginal distribution of the loads of bin ¢ as:
aith =gt — Liso + Bin(n - (1 — f%),1/n).

We consider the idealized process with loads:

Yt =yt — 1,t50 + BIN(n, 1/n).

The idealized process pointwise majorizes the RBB process, i.e., zt < yt.

This also implies that y* has fewer empty bins than z?.

Using a drift argument, the idealized process (and so the RBB process as well) has an
average )(n/m) fraction of empty bins in expectation over Q((m/n)?) rounds.

By the method of bounded differences, we get the lower bound holds w.h.p.
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We prove the following interplay between Y* and the fraction of empty bins in round ¢,
E[Tt+1| It] <Y —2.-m- ft+2n.

When ft > % =y, then
E[T | 2'] < T' — 2n.

By induction for any 7" > 0,
t+T—1 on
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SRR EE R W

Note that T* < m?. So, using a concentration inequality, in any interval of Q(m?/n)
length, there can be < « fraction of empty bins.
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\
1

Actually, this is Use[o,q as

in the concentration inequalitv
m

we assume the loads are O (
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Has an ©(mlogn) traversal time.

Several directions for future work:

Explore the process in the graphical setting [BCNT19].
Explore versions of the process with continuous loads.

Explore different reallocation rules.

Relate to the setting where n- (1 —©(n/m)) new tasks arrive in each round [BFK*18].
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Questions?
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More visualisations: dimitrioslos.com/stacs23
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