Tight Bounds for Repeated Balls-into-Bins

<u>Dimitrios Los^1 </u>, Thomas Sauerwald¹

¹University of Cambridge, UK

Balls-into-Bins: Background

Allocate m tasks (balls) sequentially into n machines (bins).

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Applications in hashing [PR01],

Balls-into-Bins: Background

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Applications in hashing [PR01], load balancing [Wie16]

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

$\mathbf{The} \ \mathbf{ONE-CHOICE} \ \mathbf{process}$

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and allocate the ball there.

When $m = \Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n} + \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and allocate the ball there.

When $m = \Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n} + \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$. Meaning with probability at least $1 - n^{-c}$ for constant c > 0.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and allocate the ball there.

When $m = \Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n} + \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

When $m = o(n \log n)$, w.h.p. the maximum load is $\Theta\left(\frac{\log n}{\log n}\right)$

$$\left(\frac{\log n}{\log\left(\frac{n\log n}{m}\right)}\right).$$

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and allocate the ball there.

When $m = \Omega(n \log n)$, w.h.p. the maximum load is $\frac{m}{n} + \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the n bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

Balls-into-Bins with *removals*.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- *Parallel* resource allocation.
- Balls-into-Bins with *removals*.
- Connection to Jackson queues, propagation of chaos.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- *Parallel* resource allocation.
- Balls-into-Bins with *removals*.
- Connection to Jackson queues, propagation of chaos.[CP19], [CP20], [CP21].

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
- We start with an arbitrary load vector with $m \ge n$ balls.
- In each round:
 - ▶ From each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- *Parallel* resource allocation.
- Balls-into-Bins with *removals*.
- Connection to Jackson queues, propagation of chaos.[CP19], [CP20], [CP21].

RBB in action

RBB in action

Starting with an unbalanced configuration, the process eventually stabilises in a balanced configuration.

Quantities of interest and Results

Quantities of interest and Results

Quantities of interest and Results

What is the maximum load once stabilized (for poly(n) rounds)?
What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.

- What is the maximum load once stabilized (for poly(n) rounds)?
 - ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.

How quickly does the process stabilize? What is the convergence time?

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.

How quickly does the process stabilize? What is the convergence time? For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.

How quickly does the process stabilize? What is the convergence time? For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.

How quickly does the process stabilize? What is the convergence time? For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?
For m = n, w.h.p. the traversal time is Ω(n log n) and O(n log² n) [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.
- ▶ We show that:

How quickly does the process stabilize? What is the convergence time? For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?
For m = n, w.h.p. the traversal time is Ω(n log n) and O(n log² n) [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.
- ▶ We show that:
 - ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?
▶ For m = n, w.h.p. it stabilizes in O(n) rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

► For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- \triangleright Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$.
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$. ✓
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $O(\log n)$.
- ▶ We show that:
 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$.
 - ▶ For any $m = \operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

► For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $O(\log n)$

- ▶ Conjectured for m = n, w.h.p. the maximum load
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum
- ▶ We show that:
 - ▶ For any m = poly(n), w.h.p. the maximum load
 - ▶ For any m = poly(n), w.h.p. the maximum load

How quickly does the process stabilize? What is the

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BC

How many rounds for all balls to traverse all bins?

► For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

- For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].
- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds.

How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:
 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$.
 - ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the

- For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [B0 For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2)$
- How many rounds for all balls to traverse all bins?
 - For m = n, w.h.p. the traversal time is $\Omega(n \log n)$

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

- For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].
- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds.

How many rounds for all balls to traverse all bins?

▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].

- ▶ Conjectured for m = n, w.h.p. the maximum load is $\omega(\log n / \log \log n)$.
- ▶ Conjectured for $m = n \log n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$. ×
- ▶ We show that:

 - ▶ For any m = poly(n), w.h.p. the maximum load is $\mathcal{O}(\frac{m}{n} \cdot \log n)$. ▶ For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How quickly does the process stabilize? What is the convergence time?

- For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].
- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds.

How many rounds for all balls to traverse all bins?

- ▶ For m = n, w.h.p. the traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].
- For m = poly(n), w.h.p. the traversal time is $\Theta(m \log n)$.

Techniques

Too many empty bins:

Too many empty bins: The load of non-empty bins decreases in expectation.

Too many empty bins: The load of non-empty bins decreases in expectation.

Too many empty bins: The load of non-empty bins decreases in expectation.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins:

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

For the upper bound, we show that $f^t = \Omega(n/m)$.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

[BCN⁺19] showed that for m = n, after **one round** there are $\Omega(n)$ empty bins.

For the upper bound, we show that $f^t = \Omega(n/m)$.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

[BCN⁺19] showed that for m = n, after **one round** there are $\Omega(n)$ empty bins.

For $m = \omega(n)$, this is more challenging.

For the upper bound, we show that $f^t = \Omega(n/m)$.

Too many empty bins: The load of non-empty bins decreases in expectation.Too few empty bins: The load of non-empty bins (almost) remains the same.

[BCN⁺19] showed that for m = n, after **one round** there are $\Omega(n)$ empty bins.

For $m = \omega(n)$, this is more challenging.

For the upper bound, we show that f^t = Ω(n/m).
For the lower bound, we show that f^t = O(n/m).

The $\mathcal{O}(\frac{m}{n} \cdot \log n)$ upper bound

The **exponential potential function** with smoothing parameter $\alpha > 0$, is defined as

$$\Phi^t := \Phi^t(\alpha) = \sum_{i=1}^n e^{\alpha x_i^t}.$$

The **exponential potential function** with smoothing parameter $\alpha > 0$, is defined as

The **exponential potential function** with smoothing parameter $\alpha > 0$, is defined as

When $\Phi^t = \text{poly}(n)$,

The $\mathcal{O}(\frac{m}{n} \cdot \log n)$ upper bound
Upper bound $\mathcal{O}(\frac{m}{n} \cdot \log n)$: Exponential potential function

The exponential potential function with smoothing parameter $\alpha > 0$, is defined as

When $\Phi^t = \text{poly}(n)$, then we have that

$$\max_{i \in [n]} e^{\alpha x_i^t} \le \operatorname{poly}(n)$$

Upper bound $\mathcal{O}(\frac{m}{n} \cdot \log n)$: Exponential potential function

The **exponential potential function** with smoothing parameter $\alpha > 0$, is defined as

n

When $\Phi^t = \text{poly}(n)$, then we have that

$$\max_{i \in [n]} e^{\alpha x_i^t} \le \operatorname{poly}(n) \quad \Rightarrow \quad \max_{i \in [n]} x_i^t = \mathcal{O}\left(\frac{\log n}{\alpha}\right)$$

Upper bound $\mathcal{O}(\frac{m}{n} \cdot \log n)$: Exponential potential function

The **exponential potential function** with smoothing parameter $\alpha > 0$, is defined as

$$\Phi^{t} := \Phi^{t}(\alpha) = \sum_{i=1}^{n} e^{\alpha x_{i}^{t}}.$$

$$\Phi_{i}^{t} \qquad \Phi_{i}^{t} \qquad \Phi$$

• We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins $f^t \ge 2\alpha$.

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

which implies that for any $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2}t} + \frac{12n}{\alpha^{2}}$$

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

which implies that for any $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2}t} + \frac{12n}{\alpha^{2}}$$

Since $\Phi^0 \leq e^{\alpha m}$,

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

which implies that for any $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2}t} + \frac{12n}{\alpha^{2}}$$

Since $\Phi^0 \leq e^{\alpha m}$, after $t = \Theta(m/\alpha) = \Theta(m^2/n)$ steps,

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

which implies that for any $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2}t} + \frac{12n}{\alpha^{2}}$$

 $\blacksquare \text{ Since } \Phi^0 \leq e^{\alpha m}, \text{ after } t = \Theta(m/\alpha) = \Theta(m^2/n) \text{ steps, } \mathbf{E} \left[\Phi^t \right] = \text{poly}(n).$

We prove that in every round $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{\alpha^2 - \alpha f^t} + 6n.$$

(Simplified setting) Assume that the fraction of empty bins f^t ≥ 2α.
Then,

$$\mathbf{E}\left[\Phi^{t+1} \mid x^t\right] \le \Phi^t \cdot e^{-\alpha^2} + 6n,$$

which implies that for any $t \ge 0$,

$$\mathbf{E}\left[\Phi^{t}\right] \leq \Phi^{0} \cdot e^{-\alpha^{2}t} + \frac{12n}{\alpha^{2}}$$

Since $\Phi^0 \leq e^{\alpha m}$, after $t = \Theta(m/\alpha) = \Theta(m^2/n)$ steps, $\mathbf{E} \left[\Phi^t \right] = \text{poly}(n)$.

But we don't always have that $f^t \ge 2\alpha$.

Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^s = \Omega(\alpha) = \Omega(n/m)$.

Instead we just need to show that ¹/_t Σ^{t-1}_{s=0} f^s = Ω(α) = Ω(n/m).
 We analyse the adjusted exponential potential,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)},$$

Instead we just need to show that ¹/_t Σ^{t-1}_{s=0} f^s = Ω(α) = Ω(n/m).
 We analyse the adjusted exponential potential,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

Instead we just need to show that ¹/_t Σ^{t-1}_{s=0} f^s = Ω(α) = Ω(n/m).
 We analyse the adjusted exponential potential,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin i as:

$$x_i^{t+1} := x_i^t - \mathbf{1}_{x_i^t > 0} + \operatorname{BIN}(n \cdot (1 - f^t), 1/n).$$

Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^s = \Omega(\alpha) = \Omega(n/m)$. We analyse the **adjusted exponential potential**,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin *i* as: $x_i^{t+1} := x_i^t - \mathbf{1}_{x^t > 0} + \operatorname{BIN}(n \cdot (1 - f^t), 1/n).$

We consider the idealized process with loads:

$$y_i^{t+1} := y_i^t - \mathbf{1}_{y_i^t > 0} + \operatorname{BIN}(n, 1/n).$$

Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^s = \Omega(\alpha) = \Omega(n/m)$. We analyse the **adjusted exponential potential**,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin *i* as: $x_i^{t+1} := x_i^t - \mathbf{1}_{x^t > 0} + \text{Bin}(n \cdot (1 - f^t), 1/n).$

We consider the idealized process with loads:

$$y_i^{t+1} := y_i^t - \mathbf{1}_{y_i^t > 0} + \operatorname{Bin}(n, 1/n).$$

The idealized process pointwise majorizes the RBB process, i.e., $x_i^t \leq y_i^t$.

Instead we just need to show that $\frac{1}{t} \sum_{s=0}^{t-1} f^s = \Omega(\alpha) = \Omega(n/m)$. We analyse the **adjusted exponential potential**,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin *i* as: $x_i^{t+1} := x_i^t - \mathbf{1}_{x_i^t > 0} + \operatorname{BIN}(n \cdot (1 - f^t), 1/n).$

We consider the idealized process with loads:

$$y_i^{t+1} := y_i^t - \mathbf{1}_{y_i^t > 0} + \operatorname{Bin}(n, 1/n).$$

The idealized process pointwise majorizes the RBB process, i.e., $x_i^t \leq y_i^t$. This also implies that y^t has fewer empty bins than x^t .

Instead we just need to show that ¹/_t Σ^{t-1}_{s=0} f^s = Ω(α) = Ω(n/m).
 We analyse the adjusted exponential potential,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin i as:

$$x_i^{t+1} := x_i^t - \mathbf{1}_{x_i^t > 0} + \operatorname{BIN}(n \cdot (1 - f^t), 1/n).$$

We consider the idealized process with loads:

$$y_i^{t+1} := y_i^t - \mathbf{1}_{y_i^t > 0} + \operatorname{Bin}(n, 1/n).$$

The idealized process pointwise majorizes the RBB process, i.e., $x_i^t \leq y_i^t$. This also implies that y^t has fewer empty bins than x^t .

Using a drift argument, the idealized process (and so the RBB process as well) has an average $\Omega(n/m)$ fraction of empty bins in expectation over $\Omega((m/n)^2)$ rounds.

Instead we just need to show that ¹/_t Σ^{t-1}_{s=0} f^s = Ω(α) = Ω(n/m).
 We analyse the adjusted exponential potential,

$$\tilde{\Phi}^t := \mathbf{1}_{\bigcap_{s \in [0,t)} \neg \mathcal{E}^s} \cdot \Phi^s(\alpha) \cdot e^{\sum_{s=0}^{t-1} (\alpha f^s - 1.5\alpha^2)}, \text{ where } \mathcal{E}^s := \left\{ \Phi^s \le \frac{48}{\alpha^2} \cdot n \right\}.$$

We can write the marginal distribution of the loads of bin i as:

$$x_i^{t+1} := x_i^t - \mathbf{1}_{x_i^t > 0} + \operatorname{BIN}(n \cdot (1 - f^t), 1/n).$$

We consider the idealized process with loads:

$$y_i^{t+1} := y_i^t - \mathbf{1}_{y_i^t > 0} + \operatorname{Bin}(n, 1/n).$$

The idealized process pointwise majorizes the RBB process, i.e., $x_i^t \leq y_i^t$. This also implies that y^t has fewer empty bins than x^t .

Using a drift argument, the idealized process (and so the RBB process as well) has an average $\Omega(n/m)$ fraction of empty bins in expectation over $\Omega((m/n)^2)$ rounds.

By the method of bounded differences, we get the lower bound holds w.h.p. The $\mathcal{O}(\frac{m}{n} \cdot \log n)$ upper bound

Upper bound $\mathcal{O}(\frac{m}{n} \cdot \log n)$: Putting it all together

Upper bound $\mathcal{O}(\frac{m}{n} \cdot \log n)$: Putting it all together

The $\Omega(\frac{m}{n} \cdot \log n)$ lower bound

The **quadratic potential** is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

The quadratic potential is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

We prove the following *interplay* between Υ^t and the fraction of empty bins in round t, $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \leq \Upsilon^t - 2 \cdot m \cdot f^t + 2n.$

The quadratic potential is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

We prove the following *interplay* between Υ^t and the fraction of empty bins in round t, $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \leq \Upsilon^t - 2 \cdot m \cdot f^t + 2n.$

When
$$f^t \ge \frac{4n}{m} := \gamma$$
, then
 $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \le \Upsilon^t - 2n.$

• The quadratic potential is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

We prove the following *interplay* between Υ^t and the fraction of empty bins in round t, $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \leq \Upsilon^t - 2 \cdot m \cdot f^t + 2n.$

When
$$f^t \ge \frac{4n}{m} := \gamma$$
, then
 $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \le \Upsilon^t - 2n.$

By induction for any $T \ge 0$,

$$\mathbf{E}\left[\left.\Upsilon^{t+T}\right| \, x^t \,\right] \leq \Upsilon^t - 2 \cdot m \cdot \sum_{s=t}^{t+T-1} \left(f^s - \frac{2n}{m}\right).$$

The $\Omega(\frac{m}{n} \cdot \log n)$ lower bound

The quadratic potential is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

We prove the following *interplay* between Υ^t and the fraction of empty bins in round t, $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \leq \Upsilon^t - 2 \cdot m \cdot f^t + 2n.$

When
$$f^t \ge \frac{4n}{m} := \gamma$$
, then
 $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \le \Upsilon^t - 2n.$

By induction for any $T \ge 0$,

$$\mathbf{E}\left[\left.\Upsilon^{t+T} \right| \, x^t \,\right] \leq \Upsilon^t - 2 \cdot m \cdot \sum_{s=t}^{t+T-1} \left(f^s - \frac{2n}{m}\right).$$

Note that $\Upsilon^t \leq m^2$.

The $\Omega(\frac{m}{n} \cdot \log n)$ lower bound

The quadratic potential is defined as

$$\Upsilon^t := \sum_{i=1}^n (x_i^t)^2.$$

We prove the following *interplay* between Υ^t and the fraction of empty bins in round t, $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \leq \Upsilon^t - 2 \cdot m \cdot f^t + 2n.$

When
$$f^t \ge \frac{4n}{m} := \gamma$$
, then
 $\mathbf{E} \left[\Upsilon^{t+1} \mid x^t \right] \le \Upsilon^t - 2n.$

By induction for any $T \ge 0$,

$$\mathbf{E}\left[\left|\Upsilon^{t+T}\right| x^{t}\right] \leq \Upsilon^{t} - 2 \cdot m \cdot \sum_{s=t}^{t+T-1} \left(f^{s} - \frac{2n}{m}\right).$$

Note that $\Upsilon^t \leq m^2$. So, using a concentration inequality, in any interval of $\Omega(m^2/n)$ length, there can be $\leq \gamma$ fraction of empty bins. The $\Omega(\frac{m}{n} \cdot \log n)$ lower bound

This means that at least a $1 - \gamma$ (recall $\gamma = \frac{4n}{m}$) fraction of the balls are allocated using ONE-CHOICE.

This means that at least a $1 - \gamma$ (recall $\gamma = \frac{4n}{m}$) fraction of the balls are allocated using ONE-CHOICE.

Using the following lower bound for ONE-CHOICE for $c := \frac{(1-\gamma)^2}{200} \cdot \frac{1}{\gamma^2}$, $\mathbf{Pr}\left[\max_{i \in [n]} y_i^{cn \log n} \ge \left(c + \frac{\sqrt{c}}{10}\right) \cdot \log n\right] \ge 1 - n^{-2}$,

This means that at least a $1 - \gamma$ (recall $\gamma = \frac{4n}{m}$) fraction of the balls are allocated using ONE-CHOICE.

Using the following lower bound for ONE-CHOICE for $c := \frac{(1-\gamma)^2}{200} \cdot \frac{1}{\gamma^2}$, $\mathbf{Pr}\left[\max_{i\in[n]} y_i^{cn\log n} \ge \left(c + \frac{\sqrt{c}}{10}\right) \cdot \log n\right] \ge 1 - n^{-2}$, we obtain that for $t = \Theta(m^2/n^2)$,

$$\mathbf{Pr}\left[\max_{i\in[n]} x_i^t = \Omega\left(\frac{m}{n} \cdot \log n\right)\right] \ge 1 - n^{-2}.$$
Lower bound $\Omega(\frac{m}{n} \cdot \log n)$: Completing the proof

This means that at least a $1 - \gamma$ (recall $\gamma = \frac{4n}{m}$) fraction of the balls are allocated using ONE-CHOICE.

Using the following lower bound for ONE-CHOICE for $c := \frac{(1-\gamma)^2}{200} \cdot \frac{1}{\gamma^2}$, $\mathbf{Pr}\left[\max_{i\in[n]} y_i^{cn\log n} \ge \left(c + \frac{\sqrt{c}}{10}\right) \cdot \log n\right] \ge 1 - n^{-2}$, we obtain that for $t = \Theta(m^2/n^2)$,

$$\Pr\left[\max_{i \in [n]} x_i^t = \Omega\left(\frac{m}{n} \cdot \log n\right)\right] \ge 1 - n^{-2}$$

Actually, this is $\bigcup_{s \in [0,t]}$ as in the concentration inequality we assume the loads are $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

We proved for the RBB process that for any m = poly(n):

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

Several directions for future work:

Explore the process in the graphical setting [BCN⁺19].

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

- Explore the process in the graphical setting [BCN⁺19].
- Explore versions of the process with continuous loads.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

- Explore the process in the graphical setting [BCN⁺19].
- Explore versions of the process with continuous loads.
- Explore different reallocation rules.

We proved for the RBB process that for any m = poly(n):

Eventually reaches a $\Theta(\frac{m}{n} \cdot \log n)$ maximum load.

Converges to such configuration in $\mathcal{O}(m^2/n)$ rounds.

Has an $\Theta(m \log n)$ traversal time.

- Explore the process in the graphical setting [BCN⁺19].
- Explore versions of the process with continuous loads.
- Explore different reallocation rules.
- Relate to the setting where $n \cdot (1 \Theta(n/m))$ new tasks arrive in each round [BFK⁺18].

Questions?

More visualisations: dimitrioslos.com/stacs23

Bibliography I

- L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and G. Posta, *Self-stabilizing repeated balls-into-bins*, 27th International Symposium on Theoretical Aspects of Computer Science (STACS'15) (Guy E. Blelloch and Kunal Agrawal, eds.), ACM, 2015, pp. 332–339.
- ▶ _____, Self-stabilizing repeated balls-into-bins, Distributed Comput. **32** (2019), no. 1, 59–68.
- P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, L. Nagel, and C. Wastell, Self-stabilizing balls and bins in batches: the power of leaky bins, Algorithmica. An International Journal in Computer Science 80 (2018), no. 12, 3673–3703. MR 3864718
- ▶ N. Cancrini and G. Posta, *Propagation of chaos for a balls into bins model*, Electronic Communications in Probability **24** (2019), no. none, 1 9.
- Mixing time for the Repeated Balls into Bins dynamics, Electronic Communications in Probability 25 (2020), no. none, 1 14.

Bibliography II

- Propagation of chaos for a general balls into bins dynamics, Electronic Journal of Probability 26 (2021), no. none, 1 20.
- R. J. Gibbens, F. P. Kelly, and P. B. Key, *Dynamic alternative routing modelling and behavior*, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier, Amsterdam, 1988.
- R. Pagh and F. F. Rodler, *Cuckoo hashing*, Algorithms—ESA 2001 (Århus), Lecture Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121–133. MR 1913547
- ▶ U. Wieder, *Hashing, load balancing and multiple choice*, Found. Trends Theor. Comput. Sci. **12** (2016), no. 3-4, front matter, 276–379. MR 3683828