
Balanced Allocations in Batches:
The Tower of Two Choices

Dimitrios Los1, Thomas Sauerwald1

1University of Cambridge, UK

1



Balanced allocations: Background

Balanced allocations: Background 2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

Balanced allocations: Background 3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4



ACM Theory and Practice Award

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Paris Kanellakis award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”

Balanced allocations: Background 5



ACM Theory and Practice Award

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Paris Kanellakis award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”

Balanced allocations: Background 5



ACM Theory and Practice Award

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Paris Kanellakis award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on variants of the power of two choices paradigm.”

Balanced allocations: Background 5



ACM Theory and Practice Award

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Paris Kanellakis award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on variants of the power of two choices paradigm.”

Balanced allocations: Background 5



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
( log n

β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].

■ It has been used to analyze population protocols [AAG18, AGR21], distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze

population protocols [AAG18, AGR21], distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21],

distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21]

and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

Balanced allocations: Background 6



Settings

Settings 7



Two-Choice with outdated information

■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice
does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]).

Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



Two-Choice with outdated information
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Settings 8



b-Batched Setting

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice
where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).

■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for
b ∈

[
n

polylog(n) , n log n
]

it follows One-Choice with b balls.
■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n).

And more generally, for
b ∈

[
n

polylog(n) , n log n
]

it follows One-Choice with b balls.
■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ In [LS22c] bound was improved to Θ(log n/ log log n). And more generally, for

b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

■ In [LS22a], for b ∈ [n log n, poly(n)], w.h.p. Gap(m) = Θ(b/n).

Open in Visualiser.

Question: Is there a process that outperforms Two-Choice when b ≥ n log n?

Settings 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Our result

Our result 10



Our result

In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n,

the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n)

achieves w.h.p. Gap(m) = O
(√

(b/n) · log n
)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.

■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.

■ Asymptotically optimal over all processes that take at most a constant number of
samples for each allocation.

■ The upper bound holds in the presence of weights and for a more general family of
processes.

■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).
⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.

■ The upper bound holds in the presence of weights and for a more general family of
processes.

■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).
⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.

■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).
⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement

(≤ 5 lines in nginx, HAProxy, Finagle).
⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Our result
In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.

Our result 11



Intuition

Intuition 12



Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

Intuition 13



Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

( 1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

Intuition 13



Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

( 1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

Intuition 13



Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

( 1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

Intuition 13



Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

( 1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

Intuition 13



Intuition: The tower of Two-Choice

Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Intuition 14

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


Intuition: The tower of Two-Choice
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Intuition 14

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


Intuition: The tower of Two-Choice
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Intuition 14

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


Intuition: The tower of Two-Choice
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Intuition 14

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice) and ≈ 1+β

n (for the (1 + β)-processes).

Intuition 15



Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice),

≈ 2
n (for

Two-Choice) and ≈ 1+β
n (for the (1 + β)-processes).

Intuition 15



Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice)

and ≈ 1+β
n (for the (1 + β)-processes).

Intuition 15



Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice) and ≈ 1+β

n (for the (1 + β)-processes).
Intuition 15



Empirical results for different β’s

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Parameter β

Gap(m) at m = n2 and n = 103 bins

b = 70n
b = 60n
b = 50n
b = 40n
b = 30n
b = 20n

Intuition 16



Analysis

Analysis 17



Conditions on probability allocation vectors

■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)
which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing

and (ii)
which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2:

There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2

and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.

■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).

■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3:

There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2.

(1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.

■ Conditions C1 (ϵ = Θ(
√

n/b)) and C3 sufficient to prove Gap(m) = Θ(
√

(b/n) · log n)
(b-Batched).

Analysis 18



Conditions on probability allocation vectors
■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)

which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).
Analysis 18



The hyperbolic cosine potential

■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2,

which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



The hyperbolic cosine potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · γ + K · R · γ2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· R · γ + K · R · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − γϵδ

8n

)
+ R · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Analysis 20



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 2C and some
R = 1, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· γ + 2C · γ2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· γ + 2C · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

16C

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − γϵδ

8n

)
+ cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Sequential setting
with condition C2
for const C > 1

Analysis 20



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 2C and some
R = 1, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· γ + 2C · γ2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· γ + 2C · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

16C

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − γϵδ

8n

)
+ cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Sequential setting
with condition C2
for const C > 1

Implies Gap(t) = O
( log n

ϵ

)

Analysis 20



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 5(C − 1)2 · b

n
and some R = b, for any t ≥ 0,

E
[

Φt+b
∣∣ Ft

]
≤

n∑
i=1

Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
,

and

E
[

Ψt+b
∣∣ Ft

]
≤

n∑
i=1

Ψt
i ·

(
1 +

( 1
n

− pi

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(

0, min
{

1, ϵδ
40(C−1)2 · n

b

})
E

[
Γt+b

∣∣ Ft
]

≤ Γt · b ·
(

1 − γϵδ

8n

)
+ b · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

b-Batched setting with C3
for C = 1 + ϵ = 1 + Θ(

√
n/b)

Analysis 20



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 5(C − 1)2 · b

n
and some R = b, for any t ≥ 0,

E
[

Φt+b
∣∣ Ft

]
≤

n∑
i=1

Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
,

and

E
[

Ψt+b
∣∣ Ft

]
≤

n∑
i=1

Ψt
i ·

(
1 +

( 1
n

− pi

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(

0, min
{

1, ϵδ
40(C−1)2 · n

b

})
E

[
Γt+b

∣∣ Ft
]

≤ Γt · b ·
(

1 − γϵδ

8n

)
+ b · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

b-Batched setting with C3
for C = 1 + ϵ = 1 + Θ(

√
n/b)

Implies Gap(t) = O
(√

n/b · log n
)

Analysis 20



Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 5(C − 1)2 · b

n
and some R = b, for any t ≥ 0,

E
[

Φt+b
∣∣ Ft

]
≤

n∑
i=1

Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
,

and

E
[

Ψt+b
∣∣ Ft

]
≤

n∑
i=1

Ψt
i ·

(
1 +

( 1
n

− pi

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(

0, min
{

1, ϵδ
40(C−1)2 · n

b

})
E

[
Γt+b

∣∣ Ft
]

≤ Γt · b ·
(

1 − γϵδ

8n

)
+ b · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

b-Batched setting with C3
for C = 1 + ϵ = 1 + Θ(

√
n/b)

For more applications, see “Balanced Allocations: A Refined Drift Theorem with Applications”.

Analysis 20



Summary and Future work

Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:

■ The (1 + β)-process with β = Θ(
√

(n/b) · log n) achieves
w.h.p. Gap(m) = O(

√
(b/n) · log n) in the b-Batched setting with b ≥ n log n.

■ This is almost a quadratic improvement over Two-Choice and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.

■ This is almost a quadratic improvement over Two-Choice and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice

and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:

■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.

■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?

■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?

■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.

■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.

■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Questions?

More visualisations: dimitrioslos.com/spaa23
Analysis 22

https://dimitrioslos.com/spaa23


Appendix A: Empirical results for Quantile(δ) process

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Parameter η

Gap(m) at m = n2 and n = 103 bins

b = 70n
b = 60n
b = 50n
b = 40n
b = 30n
b = 20n

■ Results for mixing the Quantile(δ) and the One-Choice process with probability
η ∈ [0, 1].

23



Appendix B: Weighted Setting

■ Balls have weights sampled from a distribution W with E [ W ] = 1 and E
[

eζW ]
< c

for constants ζ, c > 0.

■ [PTW15] showed that processes satisfying C1 achieve w.h.p. O
( log n

ϵ ) gap.

Open in Visualiser.

24

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html


Appendix C: Empirical results for Weighted setting

0 10 20 30 40 50
0

20

40

60

80

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√
n/b · log n

(1 + β), β = 0.7
√
n/b · log n

■ Weights sampled from an Exp(1) distribution.
25



Appendix D: Preconditions for b-Batched setting

■ Consider the (1 + β)-process with β = Θ(
√

n/b), and potentials Φ, Ψ, Γ with
γ = Θ(

√
n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b),

and potentials Φ, Ψ, Γ with
γ = Θ(

√
n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.
26



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].

■ Hence, the number of bins with normalized load Ω
(√

(b/n) · log n
)

is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).

■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(
√

(b/n) · log n).

27



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).

27



Bibliography I
▶ D. Alistarh, J. Aspnes, and R. Gelashvili, Space-optimal majority in population

protocols, 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18),
SIAM, 2018, pp. 2221–2239.

▶ D. Alistarh, t. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally
linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’18), ACM, 2018, pp. 133–142.

▶ Y. Azar, A. Z. Broder, A. R. Karlin, M. Mitzenmacher, and E. Upfal, The ACM Paris
Kanellakis Theory and Practice Award, 2020,
https://www.acm.org/media-center/2021/may/technical-awards-2020.

▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.
Comput. 29 (1999), no. 1, 180–200.

▶ D. Alistarh, R. Gelashvili, and J. Rybicki, Fast graphical population protocols, 25th
International Conference on Principles of Distributed Systems (OPODIS’21), vol. 217,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 14:1–14:18.

28

https://www.acm.org/media-center/2021/may/technical-awards-2020


Bibliography II
▶ D. Alistarh, J. Kopinsky, J. Li, and g. Nadiradze, The power of choice in priority

scheduling, 36th Annual ACM-SIGOPT Principles of Distributed Computing
(PODC’17), ACM, 2017, pp. 283–292.

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385.

▶ M. Dahlin, Interpreting stale load information, IEEE Trans. Parallel Distributed Syst.11
(2000), no. 10, 1033–1047.

▶ P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, Job-aware scheduling in eagle:
Divide and stick to your probes, 7th ACM Symposium on Cloud Computing (SoCC’16),
ACM, 2016, pp. 497–509.

29



Bibliography III
▶ P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel, Hawk: Hybrid datacenter

scheduling, 2015 USENIX Annual Technical Conference (USENIX’15), USENIX, 2015,
pp. 499–510.

▶ A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla, Online carpooling using expander
decompositions, 40th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’20), vol. 182, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, pp. 23:1–23:14.

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304.

▶ M. Khelghatdoust and V. Gramoli, Peacock: Probe-based scheduling of jobs by rotating
between elastic queues, 24th International Conference on Parallel and Distributed
Computing (Euro-Par’18), vol. 11014, Springer, 2018, pp. 178–191.

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542.

30



Bibliography IV
▶ D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,

34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22),
ACM, 2022, p. 389–399.

▶ , Balanced Allocations with Incomplete Information: The Power of Two Queries,
13th Innovations in Theoretical Computer Science Conference (ITCS’22), vol. 215,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 103:1–103:23.

▶ , Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT
Principles of Distributed Computing (PODC’22), ACM, 2022, p. 164–175.

▶ M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis,
University of California at Berkeley, 1996.

▶ , How useful is old information?, IEEE Trans. Parallel Distributed Syst. 11
(2000), no. 1, 6–20.

▶ G. Nadiradze, On achieving scalability through relaxation, Ph.D. thesis, IST Austria,
2021.

31



Bibliography V
▶ K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, Sparrow: distributed, low latency

scheduling, 24th ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’13), ACM, 2013, pp. 69–84.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures & Algorithms 47 (2015), no. 4, 760–775.

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170.

▶ W. Whitt, Deciding which queue to join: Some counterexamples, Oper. Res. 34 (1986),
no. 1, 55–62.

32


	Balanced allocations: Background
	Settings
	Our result
	Intuition
	Analysis
	Appendix

	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


