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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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■ Applications in hashing, load balancing and routing.
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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ACM Theory and Practice Award

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Paris Kanellakis award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”
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(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?
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Two-Choice with outdated information

■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice
does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). Sparrow [OWZS13] remarks

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.
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Our result

In the b-Batched setting with any b ≥ n log n, the (1 + β)-process with
β = Θ(

√
(n/b) · log n) achieves w.h.p. Gap(m) = O

(√
(b/n) · log n

)
.

■ This is almost a quadratic improvement over the Θ(b/n) gap of Two-Choice.
■ Mixing One-Choice and Two-Choice results in a process that is better than both.
■ Asymptotically optimal over all processes that take at most a constant number of

samples for each allocation.
■ The upper bound holds in the presence of weights and for a more general family of

processes.
■ Easy to implement (≤ 5 lines in nginx, HAProxy, Finagle).

⇝ serve ≈ 30% of websites.
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Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.
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Empirical results for different processes
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Empirical results for different β’s
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Conditions on probability allocation vectors

■ Condition C1: [PTW15] analyzed processes with (i) p being non-decreasing and (ii)
which for some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n

(
and pδn+1 ≥ 1 + Ω(ϵ)

n

)
.

■ Proved that such processes achieve w.h.p. an O
( log n

ϵ

)
gap (sequential).

■ Condition C2: There exists a C > 1, such that

max
i∈[n]

pt
i ≤ C

n
.

Two-Choice satisfies C2 with C = 2 and (1 + β)-process for C = 1 + β.
■ Conditions C1 (const ϵ) and C2 sufficient to prove Gap(m) = O(b/n) (b-Batched).
■ Condition C3: There exists a C > 1, such that

max
i∈[n]

∣∣∣∣pt
i − 1

n

∣∣∣∣ ≤ C − 1
n

.

Condition C3 implies condition C2. (1 + β)-process satisfies C3 for C = 1 + β.
■ Conditions C1 (ϵ = Θ(

√
n/b)) and C3 sufficient to prove Gap(m) = Θ(

√
(b/n) · log n)

(b-Batched).
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The hyperbolic cosine potential

■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential Φt

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential Ψt

.

■ For the (1 + β)-process in the sequential setting, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives that w.h.p. Gap(m) = O( log n
β ).

Analysis 19
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Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · γ + K · R · γ2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· R · γ + K · R · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − γϵδ

8n

)
+ R · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.
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Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 2C and some
R = 1, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· γ + 2C · γ2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· γ + 2C · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

16C

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − γϵδ

8n

)
+ cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Sequential setting
with condition C2
for const C > 1
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Implies Gap(t) = O
( log n

ϵ

)
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Drift inequality statement
Theorem ([LS22a, Corollary 3.2])

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K = 5(C − 1)2 · b

n
and some R = b, for any t ≥ 0,

E
[

Φt+b
∣∣ Ft

]
≤

n∑
i=1

Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
,

and

E
[

Ψt+b
∣∣ Ft

]
≤

n∑
i=1

Ψt
i ·

(
1 +

( 1
n

− pi

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(

0, min
{

1, ϵδ
40(C−1)2 · n

b

})
E

[
Γt+b

∣∣ Ft
]

≤ Γt · b ·
(

1 − γϵδ

8n

)
+ b · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

b-Batched setting with C3
for C = 1 + ϵ = 1 + Θ(

√
n/b)
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For more applications, see “Balanced Allocations: A Refined Drift Theorem with Applications”.
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Summary and Future work

Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:

■ The (1 + β)-process with β = Θ(
√

(n/b) · log n) achieves
w.h.p. Gap(m) = O(

√
(b/n) · log n) in the b-Batched setting with b ≥ n log n.

■ This is almost a quadratic improvement over Two-Choice and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.

■ This is almost a quadratic improvement over Two-Choice and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice

and is asymptotically
optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.

■ The upper bound applies to a general family of processes (satisfying C1 and C3).
Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:

■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.

■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?

■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?

■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.

■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.

■ Investigate settings with non-homogeneous machines.

Analysis 21



Summary and Future work
Summary of results:
■ The (1 + β)-process with β = Θ(

√
(n/b) · log n) achieves

w.h.p. Gap(m) = O(
√

(b/n) · log n) in the b-Batched setting with b ≥ n log n.
■ This is almost a quadratic improvement over Two-Choice and is asymptotically

optimal.
■ The upper bound applies to a general family of processes (satisfying C1 and C3).

Several avenues for future work:
■ Investigate its performance in practice.
■ Is the (1 + β)-process supperior in other settings such as τ -Delay or g-Adv-Comp?
■ Are there any other attractive processes with similar guarantees?
■ Apply the mixing operation to other algorithms and setting.
■ Improve the bounds on the gap to be tight up to lower order terms.
■ Investigate settings with non-homogeneous machines.

Analysis 21



Questions?

More visualisations: dimitrioslos.com/spaa23
Analysis 22
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Appendix A: Empirical results for Quantile(δ) process
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0
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Gap(m) at m = n2 and n = 103 bins

b = 70n
b = 60n
b = 50n
b = 40n
b = 30n
b = 20n

■ Results for mixing the Quantile(δ) and the One-Choice process with probability
η ∈ [0, 1].
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Appendix B: Weighted Setting

■ Balls have weights sampled from a distribution W with E [ W ] = 1 and E
[

eζW ]
< c

for constants ζ, c > 0.

■ [PTW15] showed that processes satisfying C1 achieve w.h.p. O
( log n

ϵ ) gap.

Open in Visualiser.
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Appendix C: Empirical results for Weighted setting

0 10 20 30 40 50
0

20

40

60

80

Normalized batch size b/n

Gap(m) at m = n2 and n = 103 bins

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√
n/b · log n

(1 + β), β = 0.7
√
n/b · log n

■ Weights sampled from an Exp(1) distribution.
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Appendix D: Preconditions for b-Batched setting

■ Consider the (1 + β)-process with β = Θ(
√

n/b), and potentials Φ, Ψ, Γ with
γ = Θ(

√
n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.
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Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b),

and potentials Φ, Ψ, Γ with
γ = Θ(

√
n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).

■ Consider the expected change of Φt
i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.

26



Appendix D: Preconditions for b-Batched setting
■ Consider the (1 + β)-process with β = Θ(

√
n/b), and potentials Φ, Ψ, Γ with

γ = Θ(
√

n/b).
■ Consider the expected change of Φt

i for bin i ∈ [n], over one batch:

E
[

Φt+b
i | Ft

]
=

∑
z∈{0,1}b

b∏
j=1

Φt
i · (pi)zj (1 − pi)1−zj (E[ eγW (1− 1

n
) ])zj (E[ e−γW/n ])1−zj

≤
∑

z∈{0,1}b

b∏
j=1

Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

))zj

·
(

(1 − pi) ·
(

1 − γ

n
+ Sγ2

n2

))1−zj

= Φt
i ·

(
pi ·

(
1 + γ ·

(
1 − 1

n

)
+ Sγ2

)
+ (1 − pi) ·

(
1 − γ

n
+ Sγ2

n2

))b

≤ Φt
i ·

(
1 + γ ·

(
pi − 1

n

)
+ 2 · pi · Sγ2

)b

≤ Φt
i ·

(
1 +

(
pi − 1

n

)
· b · γ + 5(C − 1)2b

n
· b · γ2

n

)
.

■ Similarly, for the Ψt potential.
26



Appendix E: Outline for tighter bound
■ By the refined analysis, for γ = Θ(

√
n/(b · log n)), for any t ≥ 0, E [ Γt ] ≤ cn.

■ Using the techniques in [LS22b], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω

(√
(b/n) · log n

)
is at most

cn · e−γΩ
(√

(b/n)·log n
)

≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and an offset,

Λt :=
∑

i:xt
i
≥ t

n +Ω(
√

(b/n)·log n)

eγ̃·(xt
i− t

n −Ω(
√

(b/n)·log n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ Finally by Markov’s inequality that w.h.p. Gap(m) = O(

√
(b/n) · log n).
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