
Balanced Allocations in Batches:
Simplified and Generalized

Dimitrios Los1, Thomas Sauerwald1

1University of Cambridge, UK

1

Balanced allocations: Background

Balanced allocations: Background 2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

Balanced allocations: Background 3

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:

▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,

▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.

Balanced allocations: Background 5

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.
Balanced allocations: Background 5

(1 + β) process

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ Its probability vector is given by,

p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
(log n

β + log(1/β)
β

)
for any β ∈ (0, 1].

Balanced allocations: Background 6

(1 + β) process

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

■ Its probability vector is given by,
p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
(log n

β + log(1/β)
β

)
for any β ∈ (0, 1].

Balanced allocations: Background 6

(1 + β) process

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ Its probability vector is given by,

p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
(log n

β + log(1/β)
β

)
for any β ∈ (0, 1].

Balanced allocations: Background 6

(1 + β) process

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ Its probability vector is given by,

p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
(log n

β + log(1/β)
β

)
for any β ∈ (0, 1].

Balanced allocations: Background 6

Settings

Settings 7

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this
assumption, by allocating b balls in parallel.

■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.

■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).

■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ
(log n

log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)

and for
b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this

assumption, by allocating b balls in parallel.
■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

(log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Weighted Setting

■ Balls have weights sampled from a distribution W with E [W] = 1 and E
[

eζW]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

■ Balls have weights sampled from a distribution W

with E [W] = 1 and E
[

eζW]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

■ Balls have weights sampled from a distribution W with E [W] = 1

and E
[

eζW]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

■ Balls have weights sampled from a distribution W with E [W] = 1 and E
[

eζW]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

■ Balls have weights sampled from a distribution W with E [W] = 1 and E
[

eζW]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Two-Choice in the Graphical Setting

■ Given a graph G = (V, E), where the vertices are bins. For each ball:
▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Two-Choice in the Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Two-Choice in the Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball:

▶ Sample an edge u.a.r.

▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Two-Choice in the Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Two-Choice in the Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Two-Choice in the Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
(log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings 10

Results for Batching

Results for Batching 11

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,

▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.

▶ Two-Choice “follows” One-Choice with b
balls [LS22b].

■ For any ϵ-biased process with pn ≤ C
n , for constant

ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].

■ For any ϵ-biased process with pn ≤ C
n , for constant

ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:

▶ For any b ≥ n, w.h.p. Gap(m) = O(b
n

· log n).
▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b

n
+ log n).

▶ Same bounds hold for weighted balls.
■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).

▶ Same bounds hold for weighted balls.
■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

pn is:

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

pn is: ≈ 3
n

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

pn is: ≈ 3
n , ≈ 2

n

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

pn is: ≈ 3
n , ≈ 2

n , ≈ 1+0.7
n

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.

pn is: ≈ 3
n , ≈ 2

n , ≈ 1+0.7
n and ≈ 1+0.5

n .

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).
▶ More choices do not always help.

▶ For some values of d, (1 + β) has a better gap.

pn is: ≈ 3
n , ≈ 2

n , ≈ 1+0.7
n and ≈ 1+0.5

n .

Results for Batching 12

Results (I): Batching

0 5 10 15 20 25 30
0

10

20

30

40

50

Normalized batch size b/n

Gap(m), m = n2

Three-Choice
Two-Choice

(1 + β), β = 0.7

(1 + β), β = 0.5

■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O(b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O(b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n).
▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.pn is: ≈ 3

n , ≈ 2
n , ≈ 1+0.7

n and ≈ 1+0.5
n .

Results for Batching 12

A closer look at a single batch

Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Results for Batching 13

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Results for Batching 13

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Results for Batching 13

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

Results for Batching 13

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

Further Results

Further Results 14

Upper Bound Tools: Hyperbolic Cosine Potential

■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2,

which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential
■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [Γt] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

))]
≥ 1 − n−2.

■ This gives the O(log n
β + log(1/β)

β).

Further Results 15

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.

▶ Implies w.h.p. an O(log n
β

) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

1
γ ·

(
3 log n + log(c2

c1
)
)

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O(b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Number of bins with load ≥ t
n + z:

at most O(n · e−γz).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n

Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O(log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

E
[

Γt+b | Ft
]

≤ Γt ·
(

1 − c1γb

n

)
+ c2 · γ · b.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):

Gap(m) = O(b
n

· log n).
▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O(b

n
+ log n).

■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O(b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O(log n
Φ).

Further Results 16

Future work

■ Apply the refined analysis to other processes.
■ Relax the synchronization assumption for batching (as in τ -Delay for

Two-Choice [LS22b]).
■ Determine bounds that are tight up to lower-order terms.

0 50 100 150 200
0

50

100

150

Normalized batch size b/n

G
ap

(m
)
a
t
m

=
n
2

(1 + β), β = 0.5

(1 + β), β = (log n)−1

Quantile((log n)−1)

Further Results 17

Future work
■ Apply the refined analysis to other processes.

■ Relax the synchronization assumption for batching (as in τ -Delay for
Two-Choice [LS22b]).

■ Determine bounds that are tight up to lower-order terms.

0 50 100 150 200
0

50

100

150

Normalized batch size b/n

G
ap

(m
)
a
t
m

=
n
2

(1 + β), β = 0.5

(1 + β), β = (log n)−1

Quantile((log n)−1)

Further Results 17

Future work
■ Apply the refined analysis to other processes.
■ Relax the synchronization assumption for batching (as in τ -Delay for

Two-Choice [LS22b]).

■ Determine bounds that are tight up to lower-order terms.

0 50 100 150 200
0

50

100

150

Normalized batch size b/n

G
ap

(m
)
a
t
m

=
n
2

(1 + β), β = 0.5

(1 + β), β = (log n)−1

Quantile((log n)−1)

Further Results 17

Future work
■ Apply the refined analysis to other processes.
■ Relax the synchronization assumption for batching (as in τ -Delay for

Two-Choice [LS22b]).
■ Determine bounds that are tight up to lower-order terms.

0 50 100 150 200
0

50

100

150

Normalized batch size b/n

G
ap

(m
)
a
t
m

=
n
2

(1 + β), β = 0.5

(1 + β), β = (log n)−1

Quantile((log n)−1)

Further Results 17

Future work
■ Apply the refined analysis to other processes.
■ Relax the synchronization assumption for batching (as in τ -Delay for

Two-Choice [LS22b]).
■ Determine bounds that are tight up to lower-order terms.

0 50 100 150 200
0

50

100

150

Normalized batch size b/n

G
ap

(m
)
at

m
=

n
2

(1 + β), β = 0.5

(1 + β), β = (log n)−1

Quantile((log n)−1)

Further Results 17

Questions?

More visualisations: dimitrioslos.com/spaa22
Further Results 18

https://dimitrioslos.com/spaa22

Appendix A: Summary of Results
Process Graphical Batch Size Weights Gap Bound Reference

Two-Choice – b = n – O(log n) [BCE+12, Thm 1]

C1, C2 – b ≥ n random O(b
n

· log n) Thm 4.2

C1, C2 – b ∈ [n, n3] random O(b
n

+ log n) Thm 5.1

(1 + β), β ≤ 1 − Ω(1) – b ≥ 1 – Ω(log n) Prop 7.3

Two-Choice,
(1 + β), β = Ω(1) – b ≥ n log n – Ω(b

n
) Prop 7.4

Two-Choice d-reg., conduct. Φ – – O(log n
Φ) [PTW15, Thm 3.2]

Two-Choice d-reg., conduct. Φ – random O(log n
Φ) Thm 6.2

Two-Choice d-reg., conduct. Φ b ≥ n random O(b
n

· log n
Φ) Thm 6.3

Two-Choice d-reg., conduct. Φ
Φ = Θ(1) b ∈ [n, n3] random O(b

n
+ log n) Thm 6.3

(1 + β), β ≤ 1 − Ω(1) – – – Ω(log n
β

) [PTW15, Sec 4]

(1 + β) – – random O(log n
β

+ log(1/β)
β

) [PTW15, Cor 2.12]

(1 + β) – – random O(log n
β

) Thm 6.4

Improved on arxiv version:
no dependence on d.

19

Appendix B: Outline for Tighter Bound
■ By the refined analysis, for γ = Θ(n/b), for any t ≥ 0, E [Γt] ≤ cn.
■ Using the techniques in [LS22a], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω(b/n) is at most

cn · e−γΩ(b/n) ≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and with offset Ω(b/n),

Λt :=
∑

i:xt
i
≥ t

n +Ω(b/n)

eγ̃·(xt
i− t

n −Ω(b/n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [Λm] = O(n).
■ And by Markov’s inequality that w.h.p. Gap(m) = O(b

n + log n).

20

Appendix C: Drift Inequality Statement
Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

n∑
i=1

E
[

∆Φt+1
i

∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
((

pi − 1
n

)
· κ · γ + K · R · γ2

n

)
,

and
n∑

i=1
E

[
∆Ψt+1

i

∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
((1

n
− pi

)
· κ · γ + K · κ · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

8K

})
E

[
∆Γt+1 ∣∣ Ft

]
≤ −Γt · R · γϵδ

8n
+ R · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

21

Appendix D: Proof Outline (I)

𝑦

𝑛 ⋅ 𝛿

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛾𝜖

𝑛
⋅ Φ𝑖 +

𝛾 ǁ𝜖

𝑛
⋅ Φ𝑖

−
𝛾 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝑦

𝑛 ⋅ 𝛿

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛾𝜖

𝑛
⋅ Φ𝑖 +

𝛾𝜖

𝑛
⋅ Ψ𝑖

−
𝛾 ǁ𝜖

𝑛
⋅ Ψ𝑖

Figure: The two cases of bad bins in a configuration (B+ ̸= ∅ or B− ̸= ∅) and their dominating
terms in ∆Γ for each of the set of bins.

22

Appendix D: Proof Outline (II)

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝑛 ⋅ 𝛿
𝑛

2
⋅ 1 + 𝛿

Figure: Case A [|B+| ≤ n
2 · (1 − δ)]: The positive (increase) dominant term in the contribution of

bins in B+ is counteracted by a fraction of the negative (decrease) dominant term of the good bins
G+.

23

Appendix D: Proof Outline (III)

𝑦

𝑛 ⋅ 𝛿
𝑛

2
⋅ 1 + 𝛿

1 −
1

4
⋅+

1

4
⋅≤

1

4
⋅

𝑧1

𝑧3

𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

Figure: Case B [|B+| > n
2 · (1 − δ)]: The dominant increase of the bins in B1 is counteracted by a

fraction of the decrease of the bins in G+ as in Case A. The dominant increase of the bins in B2 is
counteracted by a fraction of the decrease of the bins in G−, when z2 = yn(1+δ)/2 is sufficiently
large.

24

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

25

Bibliography II
▶ D. Los and T. Sauerwald, Balanced Allocations with Incomplete Information: The

Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference
(ITCS’22), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
pp. 103:1–103:23.

▶ , Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT
Principles of Distributed Computing (PODC’22), ACM, 2022, p. 164–175.

▶ M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis,
University of California at Berkeley, 1996.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures & Algorithms 47 (2015), no. 4, 760–775. MR
3418914

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170. MR 1729169

26

	Balanced allocations: Background
	Settings
	Results for Batching
	Further Results
	Appendix

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

