Balanced Allocations in Batches:
Simplified and Generalized

Dimitrios Los', Thomas Sauerwald®

LUniversity of Cambridge, UK

Balanced allocations: Background

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

@e)
e ee)
0O

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% v log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = O &2 Gon8l1].
loglogn
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
x

AY

AY

Two-CHOICE Process: \
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background

Probability allocation vectors

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

PONE-CHOICE = (*7 EEEEE) *)~
n

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

11 1
PONE-CHOICE = (*7 EEEEE) *)~
n n n
For Two-CHOICE,
/1 3 21—1 2n — 2
PTwo-Cuoice = (ﬁ7ﬁ7"'a n2 PR n2)

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

11 1
PONE-CHOICE = (*7 EEEEE) *)~
n n n
For Two-CHOICE,
/1 3 21—1 2n — 2
PTwo-Cuoice = (ﬁ7ﬁ7"'a n2 PR n2)

[PTW15] studied e-biased processes that:

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

11 1
PONE-CHOICE = (*7 EEEEE) *)~
n n n
For Two-CHOICE,
/1 3 21—1 2n — 2
PTwo-Cuoice = (ﬁ7ﬁ7"'a n2 PR n2)

[PTW15] studied e-biased processes that:

Have p is non-decreasing,

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

11 1
PONE-CHOICE = (*7 NEEREE) *)~
n'n n
For Two-CHOICE,
/1 3 21— 1 2n — 2
PTwo-Cuoice = (ﬁ7ﬁ7"'a n2) n2)
[PTW15] studied e-biased processes that:
Have p is non-decreasing,
For some constant § € (0, 1), satisfy

1—e€

Dsn S

Balanced allocations: Background

Probability allocation vectors

Probability allocation vector p', where p! is the prob. of allocating to i-th most
loaded bin.

For ONE-CHOICE,

11 1
PONE-CHOICE = (*7 NEEREE) *)~
n'n n
For Two-CHOICE,
/1 3 21— 1 2n — 2
PTwo-Cuoice = (ﬁ7ﬁ7"'a n2) n2)
[PTW15] studied e-biased processes that:
Have p is non-decreasing,
For some constant § € (0, 1), satisfy
1—e€
Dén < .

They showed such processes achieve w.h.p. an O(logn) gap, for constant € > 0.

Balanced allocations: Background

(14 3) process

(1+ B) Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Balanced allocations: Background

(14 3) process

(1+ B) Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-CHOICE.

Balanced allocations: Background

(14 3) process

(1+ B) Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-CHOICE.
Its probability vector is given by,
Pa+p) = B - prwo-croce + (1 — B) - Poxg-Crorce-

Balanced allocations: Background

(14 3) process

(1+ B) Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-CHOICE.
Its probability vector is given by,
Pa+p) = B - prwo-croce + (1 — B) - Poxg-Crorce-

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. (9(1(’% + %)
for any 5 € (0,1].

Balanced allocations: Background

Settings

Settings

Batched Setting

Two-CHOICE assumes that the reported bin loads are up-to-date.

Settings

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Two-CHOICE assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

Settings

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Two-CHOICE assumes that the reported bin loads are up-to-date.
Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

Settings

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Settings

Two-CHOICE assumes that the reported bin loads are up-to-date.
Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

The authors [LS22b] showed that for b = n, the gap is w.h.p. @(1Og)ﬁ)gn)

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Settings

Two-CHOICE assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

The authors [LS22b] showed that for b = n, the gap is w.h.p. O(logn) and for

loglogn
b € [n,nlogn] that it follows the gap of ONE-CHOICE for b balls.

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Settings

Two-CHOICE assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

The authors [LS22b] showed that for b = n, the gap is w.h.p. O(logn) and for

loglogn
b € [n,nlogn] that it follows the gap of ONE-CHOICE for b balls.

What happens for Two-CHOICE when b > nlogn?

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Settings

Two-CHOICE assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

The authors [LS22b] showed that for b = n, the gap is w.h.p. O(logn) and for

loglogn
b € [n,nlogn] that it follows the gap of ONE-CHOICE for b balls.

What happens for Two-CHOICE when b > nlogn?

What happens for other processes (e.g., the e-biased processes)?

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Batched Setting

Two-CHOICE assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] relaxed this
assumption, by allocating b balls in parallel.

They showed that for b = n, the gap is w.h.p. O(logn).

The authors [LS22b] showed that for b = n, the gap is w.h.p. O(logn) and for

loglogn
b € [n,nlogn] that it follows the gap of ONE-CHOICE for b balls.

What happens for Two-CHOICE when b > nlogn?

What happens for other processes (e.g., the e-biased processes)?

I8 Open in Visualiser.

Settings 8

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Weighted Setting

Settings

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

Balls have weights sampled from a distribution W

Settings

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

Balls have weights sampled from a distribution W with E[W] =1

Settings

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

Balls have weights sampled from a distribution W with E[W] =1 and E [V] < ¢
for constants ¢, c > 0.

Settings

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Weighted Setting

Balls have weights sampled from a distribution W with E[W] =1 and E [V] < ¢
for constants ¢, c > 0.

[PTW15] showed that e-biased processes achieve w.h.p. O(logn) gap.

I Open in Visualiser.

Settings 9

https://dimitrioslos.com/phdthesis/settings/weighted/weighted.html

Two-CHOICE in the Graphical Setting

Settings

10

Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:

18
gﬁéﬁ-@

Settings

10

Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:
Sample an edge u.a.r.

:
ZN
:

Settings

10

Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:
Sample an edge u.a.r.
Allocate the ball to the least loaded of its two adjacent bins.

:
ZN
:

Settings 10

Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:
Sample an edge u.a.r.
Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ®, the gap is w.h.p. O(%) [PTW15].

Settings 10

Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:
Sample an edge u.a.r.
Allocate the ball to the least loaded of its two adjacent bins.

o B
sy

For any d-regular graph with conductance ®, the gap is w.h.p. O(l‘{%) [PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])

Settings

10

Results for Batching

Results for Batching

11

Results (I): Batching

Results for Batching

12

Results (I): Batching

Gap(m), m =n?

50

40+

301

20
—— THREE-CHOICE
—— Two-CHOICE

104 ——(1+8), =07]
—(1+8),8=05

L L L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

12

Results (I): Batching

Gap(m), m =n?

50

40+

301

20
—— THREE-CHOICE
—— Two-CHOICE

104 ——(1+8), =07]
—(1+8),8=05

L L L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,

12

Results (I): Batching

Gap(m), m =n?

50

40+

301

20
—— THREE-CHOICE
—— Two-CHOICE

104 ——(1+8), =07]
—(1+8),8=05

L L L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.

12

Results (I): Batching

Gap(m), m =n?
50

40

20 [

—— THREE-CHOICE

—— Two-CHOICE

—(1+8),8=0.7[]

—(1+8),8=05
L L

L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHOICE “follows” ONE-CHOICE with b
balls [LS22b].

12

Results (I): Batching

Gap(m), m =n?
50

40

20 [

—— THREE-CHOICE

—— Two-CHOICE

—(1+8),8=0.7[]

—(1+8),8=05
L L

L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHOICE “follows” ONE-CHOICE with b
balls [LS22b].

For any e-biased process with p,, < %, for constant
€,C>0:

12

Results (I): Batching

Gap(m), m =n?
50

40

20 [

—— THREE-CHOICE

—— Two-CHOICE

—(1+8),8=0.7[]

—(1+8),8=05
L L

L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:
b

For any b > n, w.h.p. Gap(m) = O(+ - logn).

n

12

Results (I): Batching

Gap(m), m =n?
50

40

20 [

—— THREE-CHOICE

—— Two-CHOICE

—(1+8),8=0.7[]

—(1+8),8=05
L L

L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(2 -logn).

n

For any b € [n,n"], w.h.p. Gap(m) = O(2 +logn).

12

Results (I): Batching

Gap(m), m =n?
50

40

20 [

—— THREE-CHOICE

—— Two-CHOICE

—(1+8),8=0.7[]

—(1+8),8=05
L L

L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).

For any b € [n,n"], w.h.p. Gap(m) = O(2 +logn).

Same bounds hold for weighted balls.

12

Results (I): Batching

Gap(m), m =n?

50

40+

301

20
—— THREE-CHOICE
—— Two-CHOICE

104 ——(1+8), =07]
—(1+8),8=05

L L L L L
00 5 10 15 20 25 30

Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).

For any b € [n,n°], w.h.p. Gap(m) = O(% + logn).

Same bounds hold for weighted balls.

For b € [nlogn,n?], for any process with p, > 1+TC/
for constant C’ > 0, we prove a lower bound of

Q(C'- by,

n

12

Results (I): Batching

Gap(m), m =n?

50

40 |-

301

20 |
—— THREE-CHOICE
—— Two-CHOICE

10 —(1+8).8=07]]
—(1+8), B=05

L L L L L
00 5 10 15 20 25 30
Normalized batch size b/n
Dn 180 ~ 7

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).

For any b € [n,n°], w.h.p. Gap(m) = O(% + logn).

Same bounds hold for weighted balls.

For b € [nlogn,n?], for any process with p, > 1+TC/
for constant C’ > 0, we prove a lower bound of

Q(C'- by,

n

12

Results (I): Batching

Gap(m), m =n?

50

40 |-

30 |-

20 |
—— THREE-CHOICE
—— Two-CHOICE

10 —(1+8).8=07]]
—(1+8), B=05

L L L L L
00 5 10 15 20 25 30
Normalized batch size b/n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).

For any b € [n,n°], w.h.p. Gap(m) = O(% + logn).

Same bounds hold for weighted balls.

For b € [nlogn,n?], for any process with p, > 1+TC/
for constant C’ > 0, we prove a lower bound of

Q(C'- by,

n

12

Results (I): Batching

Gap(m), m =n?

50

40+

301

20 |
—— THREE-CHOICE
—— Two-CHOICE

10 —(1+8).8=07]]
—(1+8), B=05

L L L L L
00 5 10 15 20 25 30
Normalized batch size b/n
2 . 140.7

=~
n’ n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].
For any e-biased process with p,, < %, for constant
€,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).

For any b € [n,n°], w.h.p. Gap(m) = O(% + logn).

Same bounds hold for weighted balls.

For b € [nlogn,n?], for any process with p, > 1+TC/
for constant C’ > 0, we prove a lower bound of

Q(C'- by,

n

12

Results (I): Batching

For b < nlogn,
Gap(m), m = n? (1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
50 Two-CHoIcE “follows” ONE-CHOICE with b
balls [LS22b].

401 For any e-biased process with p,, < %, for constant
ol €,C>0:

For any b > n, w.h.p. Gap(m) = O(% -logn).
20l For any b € [n,n"], w.h.p. Gap(m) = O(2 +logn).

—— THREE-CHOICE
—— Two-CHOICE
—(1+8),8=0.7]] For b € [nlogn,n?], for any process with p, >

Same bounds hold for weighted balls.
14+C’
n

— (1 =05
0 ‘ ‘ : (+‘5), f=05 for constant C’ > 0, we prove a lower bound of
0 5 10 15 20 25 30 Q- Q).
Normalized batch size b/n "
- 2 A 1407 ~ 140.5
P 180 &~ 5 N = and ~ n

Results for Batching

Results (I): Batching

Gap(m), m =n?

50

40 -

30

20
—— THREE-CHOICE
—— Two-CHOICE

10 —(1+8).8=07]]
—(1+8), B=05

L L L L L
00 5 10 15 20 25 30
Normalized batch size b/n
iqe ~ 2 ~ 140.7 ~ 140.5
P 180 =~ 5 N = and ~ n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHOICE “follows” ONE-CHOICE with b
balls [LS22b].

For any e-biased process with p,, < %, for constant
€,C>0:
For any b > n, w.h.p. Gap(m) = O(% -logn).
For any b € [n,n"], w.h.p. Gap(m) = O(2 +logn).
Same bounds hold for weighted balls.
For b € [nlogn,n?], for any process with p,, > 1+TC/
for constant C’ > 0, we prove a lower bound of
Q(C'- by,

n
More choices do not always help.

Results (I): Batching

Gap(m), m =n?

50

40 -

30

20
—— THREE-CHOICE
—— Two-CHOICE

10 —(1+8).8=07]]
—(1+8), B=05

L L L L L
00 5 10 15 20 25 30
Normalized batch size b/n
iqe ~ 2 ~ 140.7 ~ 140.5
P 180 =~ 5 N = and ~ n

Results for Batching

For b < nlogn,
(1 + 8), QUANTILE(J) have w.h.p. Q(logn) gap.
Two-CHOICE “follows” ONE-CHOICE with b
balls [LS22b].

For any e-biased process with p,, < %, for constant
€,C>0:
For any b > n, w.h.p. Gap(m) = O(% -logn).
For any b € [n,n"], w.h.p. Gap(m) = O(2 +logn).
Same bounds hold for weighted balls.
For b € [nlogn,n?], for any process with p,, > 1+TC/
for constant C’ > 0, we prove a lower bound of
Q(c’- o).
More choices do not always help.

For some values of d, (1 +) has a better gap.

A closer look at a single batch

Results for Batching

13

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-CHOICE

000000000000000000000000000000000000006060
00006000000000000000000000000000060000
00000000000006000000000000000000000000000006060
0000000000000000000000000000000000
00°070
| 00000000000006000000600000000
000000000000000000000000000060600000)

| 00000000000000000000000000007
00000000000000000000000000000000000000
00000000000006000000000000000000)
000000000006000000000000060000000]
0000000000000000000000000007

13

Results for Batching

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch

00000000000006000000606060000606¢
[0000000000000000000060
000000000000000000000006060006°
$00000000000000600000066000070

| 000000000000000000000006¢
0000000000000000006000000006¢

00000000000000000000000606000¢
000000000000000000¢

0000000000000600006¢

(1 + B)-Process

000000000000000000000¢

| 0000000000066
000000000000000000006¢
0000 000
000006666000606¢
0000000000000¢
0000000000600600¢

000000000000000000000000000000000000006060
00000000000000000000000000000006000000
00000000000006000000000000000000000000000006060
0000000000000000000000000000000000
00°070
| 00000000000006000000600000000
000000000000000000000000000060600000)

| 00000000000000000000000000007
00000000000000000000000000000000000000
00000000000006000000000000000000)
000000000006000000000000060000000]
0000000000000000000000000007

Two-CHOICE

DO0008000000000000000

13

Results for Batching

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch

ualiser.

i

00100000000600000066060000000

e
e
4|
e
e
4
e
e
H
4
e
e
4
e
e
Open in V

E

| 000000000000000000006¢
000000000000000000000000006¢
0000000000000060606000064

[0000000000006¢
0000000 0000000
[I 11 008

000000000000000006060006¢
| 0000000000066
0000000000000000006000¢
0000 000
000006066000666¢
0000000000000¢
000000000660000060 0

[1 11 000

(14 B)-Process

00000000000000000000000000000000000060000
00000000000000000000000000000006000000
00000000000006000000000000000000000000000006060
0000000000000000000000000000000000
00°070
| 00000000000006000000600000000
000000000000000000000000000060600000)

| 00000000000000000000000000007
00000000000000000000000000000000000000
00000000000006000000000000000000)
000000000000066000000000000000000
0000000000000000000000000007

Two-CHOICE

13

Results for Batching

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

Further Results

Further Results

14

Upper Bound Tools: Hyperbolic Cosine Potential

Further Results

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

I i=T(y) = Y et 4§ ettt/
i=1 i=1

Overload potential = Underload potential

Further Results

15

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

I i=T(y) = Y et 4§ ettt/
i=1 i=1

Overload potential = Underload potential

For the (1 + f3)-process, v = O(8).

Further Results

15

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

I i=T(y) = Y et 4§ ettt/
i=1 i=1

Overload potential = Underload potential
For the (1 + f)-process, v = ©(8).
[PTW15] show that B [T+ | §] <T*- (1 22) 4c,.

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

It Zew —t/n) Z@ y(@t—t/n)

Overload potential = Underload potential

For the (1 + f)-process, v = 9(5)
[PTW15] show that E [T+ | 3] (m) ¥ .
By induction, this implies E [Ft} n for any t > 0.

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

It Zew —t/n) Z@ y(@t—t/n)

Overload potential = Underload potential

For the (1 + f)-process, v = 9(5)

[PTW15] show that E [T+ | 3] (CW) + .
By induction, this implies E [Ft} —,Y n for any t > 0.
By Markov’s inequality, we get Pr [Fm < —Wn?’} >1-—n"2

Further Results

15

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

It Zev —t/n) | Ze y(zz—t/n)

Overload potential = Underload potential

For the (1 + f)-process, v = 9(5)

[PTW15] show that E [T+ | 3] (CW) + .
By induction, this implies E [Ft} —,Y n for any t > 0.
By Markov’s inequality, we get Pr [Fm < —Wn?’} > 1 —n~2, which implies

pe cuntn < (5t e (2))] 2102

Further Results 15

Upper Bound Tools: Hyperbolic Cosine Potential

Further Results

[PTW15] used the hyperbolic cosine potential

It Zev —t/n) | Ze y(zz—t/n)

Overload potential = Underload potential

For the (1 + f)-process, v = 9(5)

[PTW15] show that E [T+ | 3] (CW) + .
By induction, this implies E [Ft} —,Y n for any t > 0.
By Markov’s inequality, we get Pr [Fm < —Wn?’} > 1 —n~2, which implies

pe cuntn < (5t e (2))] 2102

This gives the (’)(10% + %)

15

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

B[5] <1t (1-20) 4o

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

E[r+ 5] <0t (1-22) 4o,

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

E[r+ 5] <0t (1-22) 4o,

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

E[r+ 5] <0t (1-22) 4o,

Implies that E [Ft} <2.n.

c1

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft} Zf -n.
Implies w.h.p. an O(™% %%) gap for the (1 + 3)-process.

Further Results 16

Results (II): Implications of the Upper Bound
Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft] Zf “n.
Implies w.h.p. an O(' =27 gap for the (1 + 3)-process.

(3100 n +100(f))

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft} Zf -n.
Implies w.h.p. an O(™% %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = @(n/b)

E[l—\t+1|gt]§1—\t.(’Y>+02 ~.

Further Results 16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft} Zf -n.
Implies w.h.p. an O(™% %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

c1vb
17)4-27[)

E[Ft+l)|%~t] Srt‘<

Further Results 16

Results (II): Implications of the Upper Bound
Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft} Zf -n.
Implies w.h.p. an O(™% %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0

Further Results 16

Results (II): Implications of the Upper Bound
Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft} Zf -n.
Implies w.h.p. an O(™% %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0

Implies that E [Ft} 2 . n.

c1

Further Results 16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that B [T*] < £ . n.
Implies w.h.p. an O %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0

Implies that E [Ft] < —f .
So, Two-CHOICE, (1 + [)-process, QUANTILE(J), with batches (and weights):

Gap(m) = O(% -logn).

Further Results 16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft] Zf “n.
Implies w.h.p. an O(' %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
E[Ft+b|3t]§1"t~< 17)-’-02’)’{)
n
Implies that E [Ft] < 2.n.
So, Two-CHOICE, (1 + d) -process, QUANTILE(J), with batches (and weights):
Gap(m) = (-logn).

c2
c1

For b € [n,n”], using that I'" = O(n), we can improve the bound to O(% +logn).

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

E[T" | §] SFt~(1 ;L’Y)JrCz

Implies that E [Ft] if -n.
Implies w.h.p. an O('%2 £ gap for the (1 + f)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

E[Ft-&-b'St] Srt~< Cl’Yb)+ S

Implies that E [I‘t] <2.n.

So, Two-CHOICE, (1 + d) -process, QUANTILE(J), with batches (and weights):
Gap(m) = O(L - logn).

For b € [n,n®], using that T'* = O(n), we can improve the bound to O(2 + logn).

Number of bins with load > * —|— 7

at most O(n - e~ 7%).

Further Results 16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft] Zf “n.
Implies w.h.p. an O(' %%) gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0
Implies thatE[Ft] §—f

So, Two-CHOICE, (1 + [)-process, QUANTILE(J), with batches (and weights):
Gap(m) = (-logn).

For b € [n,n”], using that I'" = O(n), we can improve the bound to O(% +logn).

Extension 3: Analysis works for a prefix sum condition on p.

Further Results

16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft] Zf “n.
Implies w.h.p. an O(' =27 gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0

Implies that E [Ft] < —f .

So, T\\'O—Cll(’)l(JE, (1 + B)-process, QUANTILE(J), with batches (and weights):

Gap(m) = (-logn).

For b € [n,n”], using that I'" = O(n), we can improve the bound to O(% +logn).
Extension 3: Analysis works for a prefix sum condition on p.

For d-regular expanders with weights and batches b € [n,n’]: Gap(m) = O(2 +logn).

Further Results 16

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

tH1 |t t Y
E[r 5] < (1-2) 4o

Implies that E [Ft] Zf “n.
Implies w.h.p. an O(' =27 gap for the (1 + 3)-process.
Extension 2: Extend to b > n steps for v = ©(n/b),

b
B[5] <t (1- =) + a0

Implies that E [Ft] < Z—f - n.

So, T\\'O—Cll(’)l(JE, (1 + B)-process, QUANTILE(J), with batches (and weights):

Gap(m) = (-logn).

For b € [n,n”], using that I'" = O(n), we can improve the bound to O(% +logn).
Extension 3: Analysis works for a prefix sum condition on p.

For d-regular expanders with weights and batches b € [n,n’]: Gap(m) = O(2 +logn).

For d-regular graphs with conductance ® and weights: Gap(m) = O(*2").

Further Results 16

Future work

Further Results

17

Future work

Apply the refined analysis to other processes.

Further Results

17

Future work

Apply the refined analysis to other processes.

Relax the synchronization assumption for batching (as in 7-DELAY for
Two-CHOICE [LS22b]).

Further Results

17

Future work

Apply the refined analysis to other processes.

Relax the synchronization assumption for batching (as in 7-DELAY for
Two-CHOICE [LS22b]).

Determine bounds that are tight up to lower-order terms.

Further Results

17

Future work

Apply the refined analysis to other processes.

Relax the synchronization assumption for batching (as in 7-DELAY for

Two-CHOICE [LS22b]).

Determine bounds that are tight up to lower-order terms.

150
—(1+6),8=05
o —(1+8), B=(logn)~!
I -1
I 100 / QUANTILE((log n) ™)
g
=
= 50| 8
<
]
0 | | | |
0 50 100 150 200

Normalized batch size b/n

Further Results

17

Questions?

Further Results

More visualisations: dimitrioslos.com/spaa22

https://dimitrioslos.com/spaa22

Appendix A: Summary of Results

Process Graphical Batch Size Weights Gap Bound Reference
Two-CHOICE - b=n = O(logn) [BCE*12, Thm 1]
C1,Co - b>n random O(L -logn) Thm 4.2
C1,Ca - b€ [n,n% random O(L +logn) Thm 5.1
(148), B<1-9(1) - b>1 - Q(log n) Prop 7.3
Two-CHOICE, b
- > - a rop 7.
1+ 8),8=0(1) b>nlogn Q(2) Prop 7.4
Two-CHOICE d-reg., conduct. ® - - O(len) [PTW15, Thm 3.2]
Two-CHOICE d-reg., conduct. ® - vl o(lgn) Thm 6.2 Improved on arxiv version:
Two-CHOICE d-reg., conduct. ® b>n random O(% . logny Thm 6.3 no dependence on d
d-reg., duct. ® s o
Two-CHOICE “g@f i"g (;‘;: be[nnd] random O(L +1ogn) Thm 6.3
1+8), B<1-0(1) - - - Qlm) [PTW15, Sec 4]
(1+8) - - random o(lgn 4 LeQ/B)) (pTW15, Cor 2.12]
1+8) - - random O(l"#) Thm 6.4

19

Appendix B: Outline for Tighter Bound

By the refined analysis, for v = ©(n/b), for any ¢t > 0, E[T!] < cn.

Using the techniques in [LS22a], w.h.p. ' < ¢n for all s € [m — bnlog® n,m).

Hence, the number of bins with normalized load (b/n) is at most
en - e 10/ < 5
Hence, by looking at the potential for constant 5 > 0 and with offset (b/n),
A= Y oEtheaem),
it > £+ (b/n)

176’)
n

every bin 7 contributing to the potential has p; <
E [At'H | §, T < cn] < At <1 — m) + c27.
n

By induction, this implies that E[A™] = O(n).
And by Markov’s inequality that w.h.p. Gap(m) = O(,’{ + logn).

20

Appendix C: Drift Inequality Statement

Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition C; for
constant § € (0,1) and € > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any ¢t > 0,

n n 1 72
;E[A¢§+1|St] g;g- ((pi—ﬁ)-n-wK-R-g),

and
2

Y et oSt (L) s e
;E[A\Ifi |3]52\pi ((n pl) Ryt Ko
Then, there exists a constant ¢ := ¢(d) > 0, such that for v € (O min {1, T)
E[AI‘t+1|St]S—I‘t-R-S—Tf—i—R-cve,

and 8¢
t —_—
E[I"] < 5

21

Appendix D: Proof Outline (I)

i
i
ve yé _YE A) o
n n 1 n on
' i
ﬁ/—h_/%/—/ W—%
Good overloaded Bad overloaded Good underloaded Good Bad u_nderlcaded Good gnderloaded
bins G bins B, bins G_ overloaded bins §+bms B- bins G-

Figure: The two cases of bad bins in a configuration (B4 # 0 or B— # () and their dominating
terms in AT for each of the set of bins.

22

Appendix D: Proof Outline (II)

s | N

Figure: Case A [|[B4| < 5 - (1 —9)]: The positive (increase) dominant term in the contribution of
bins in By is counteracted by a fraction of the negative (decrease) dominant term of the good bins

G+

23

Appendix D: Proof Outline (III)

Figure: Case B [|By| > % - (1 — 0)]: The dominant increase of the bins in B; is counteracted by a
fraction of the decrease of the bins in G4 as in Case A. The dominant increase of the bins in Bs is
counteracted by a fraction of the decrease of the bins in G, when 22 = yn(14)/2 is sufficiently
large.

24

Bibliography I

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, STAM J.
Comput. 29 (1999), no. 1, 180-200. MR 1710347

P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411-422.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, STAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150

G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587

25

Bibliography 11

D. Los and T. Sauerwald, Balanced Allocations with Incomplete Information: The
Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference
(ITCS’22), vol. 215, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022,

pp. 103:1-103:23.

, Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT
Principles of Distributed Computing (PODC’22), ACM, 2022, p. 164-175.

M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis,
University of California at Berkeley, 1996.

Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(14 B)-choice process, Random Structures & Algorithms 47 (2015), no. 4, 760-775. MR
3418914

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159-170. MR 1729169

26

	Balanced allocations: Background
	Settings
	Results for Batching
	Further Results
	Appendix

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

