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Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.
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Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.
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Probability allocation vector p', where p! is the prob. of allocating to i-th most
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[PTW15] studied e-biased processes that:
Have p is non-decreasing,
For some constant § € (0, 1), satisfy
1—e€
Dén < .

They showed such processes achieve w.h.p. an O(logn) gap, for constant € > 0.
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(1+ B) Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-CHOICE.
Its probability vector is given by,
Pa+p) = B - prwo-croce + (1 — B) - Poxg-Crorce-

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. (9(1(’% + %)
for any 5 € (0,1].
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Two-CHOICE in the Graphical Setting

Given a graph G = (V, F/), where the vertices are bins. For each ball:
Sample an edge u.a.r.
Allocate the ball to the least loaded of its two adjacent bins.

o B
sy

For any d-regular graph with conductance ®, the gap is w.h.p. O(l‘{%) [PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])
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Questions?

Further Results

More visualisations: dimitrioslos.com/spaa22



https://dimitrioslos.com/spaa22

Appendix A: Summary of Results

Process Graphical Batch Size Weights Gap Bound Reference
Two-CHOICE - b=n = O(logn) [BCE*12, Thm 1]
C1,Co - b>n random O(L -logn) Thm 4.2
C1,Ca - b€ [n,n% random O(L +logn) Thm 5.1
(148), B<1-9(1) - b>1 - Q(log n) Prop 7.3
Two-CHOICE, b
- > - a rop 7.
1+ 8),8=0(1) b>nlogn Q(2) Prop 7.4
Two-CHOICE d-reg., conduct. ® - - O(len) [PTW15, Thm 3.2]
Two-CHOICE d-reg., conduct. ® - vl o(lgn) Thm 6.2 Improved on arxiv version:
Two-CHOICE d-reg., conduct. ® b>n random O(% . logny Thm 6.3 no dependence on d
d-reg., duct. ® s o
Two-CHOICE “g@f i"g (;‘;: be[nnd]  random O(L +1ogn) Thm 6.3
1+8), B<1-0(1) - - - Qlm) [PTW15, Sec 4]
(1+8) - - random  o(lgn 4 LeQ/B))  (pTW15, Cor 2.12]
1+8) - - random O(l"#) Thm 6.4
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Appendix B: Outline for Tighter Bound

By the refined analysis, for v = ©(n/b), for any ¢t > 0, E[T!] < cn.

Using the techniques in [LS22a], w.h.p. ' < ¢n for all s € [m — bnlog® n,m).

Hence, the number of bins with normalized load (b/n) is at most
en - e 10/ < 5
Hence, by looking at the potential for constant 5 > 0 and with offset (b/n),
A= Y oEtheaem),
it > £+ (b/n)

176’ )
n

every bin 7 contributing to the potential has p; <
E [At'H | §, T < cn] < At <1 — m) + c27.
n

By induction, this implies that E[A™] = O(n).
And by Markov’s inequality that w.h.p. Gap(m) = O(,’{ + logn).
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Appendix C: Drift Inequality Statement

Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition C; for
constant § € (0,1) and € > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any ¢t > 0,

n n 1 72
;E[A¢§+1|St] g;g- ((pi—ﬁ)-n-wK-R-g),

and
2

Y et oSt (L) s e
;E[A\Ifi |3]52\pi ((n pl) Ryt Ko
Then, there exists a constant ¢ := ¢(d) > 0, such that for v € (O min {1, T )
E[AI‘t+1|St]S—I‘t-R-S—Tf—i—R-cve,

and 8¢
t —_—
E[I"] < 5
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Appendix D: Proof Outline (I)

i
i
ve yé _YE A ) o
n n 1 n on
' i
ﬁ/—h_/%/—/ W—%
Good overloaded Bad overloaded Good underloaded Good Bad u_nderlcaded Good gnderloaded
bins G bins B, bins G_ overloaded bins §+bms B- bins G-

Figure: The two cases of bad bins in a configuration (B4 # 0 or B— # () and their dominating
terms in AT for each of the set of bins.
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Appendix D: Proof Outline (II)

s | N

Figure: Case A [|[B4| < 5 - (1 —9)]: The positive (increase) dominant term in the contribution of
bins in By is counteracted by a fraction of the negative (decrease) dominant term of the good bins

G+
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Appendix D: Proof Outline (III)

Figure: Case B [|By| > % - (1 — 0)]: The dominant increase of the bins in B; is counteracted by a
fraction of the decrease of the bins in G4 as in Case A. The dominant increase of the bins in Bs is
counteracted by a fraction of the decrease of the bins in G, when 22 = yn(14)/2 is sufficiently
large.
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