Balanced Allocations with Heterogeneous Bins:

The Power of Memory

Dimitrios Los', Thomas Sauerwald®, John Sylvester?

1 University of Cambridge, UK, ?University of Liverpool, UK

Balanced allocations: Background

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

@e)
e ee)
0O

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing [PRO01], load balancing [Wiel6] and routing [GKKS88].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(Vo log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = O &2 Gon8l1].
loglogn
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).
*

A

A}

Two-CHOICE Process: v
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. '

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99|. /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background

ONE-CHOICE and d-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = 9(102)532”) [Gon81].
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(V- log n) (e.g. [RS98]).
*

A

\

d-CHOICE Process: \
Iteration: For each ¢ > 0, sample d bins independently u.a.r. and place the ball in the
least loaded of the two. !

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log,logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background

Power of two choices: Visualisation

Open visualiser
Gap for n = 10*

400 |- | | —— ONE-CHOICE
—— Two-CHOICE

300

200

wer of two choices”

100

m/n -10*

Balanced allocations: Background

https://dimitrioslos.com/conferences/soda23/phenomena/power_of_two_choices/power_of_two_choices.html

The MEMORY process

Balanced allocations: Background

The MEMORY process

Several different variants of d-CHOICE have been studied: (1 +) [PTW15],
THINNING [FGGL21].

Balanced allocations: Background

The MEMORY process

Several different variants of d-CHOICE have been studied: (1 +) [PTW15],
THINNING [FGGL21].

Shah and Prabhakar [SP02] introduced a variant of d-CHOICE maintaining M cached
bins.

Balanced allocations: Background

The MEMORY process

Several different variants of d-CHOICE have been studied: (1 +) [PTW15],
THINNING [FGGL21].

Shah and Prabhakar [SP02] introduced a variant of d-CHOICE maintaining M cached
bins.

MEMORY Process (M = 1):
Initialization: Set the cache ¢? = 1.
Iteration: For each step t > O:

Sample bins i1, ..., uniformly at random.

Allocate to bin j = argminge e ;.1 T

Update the cache to ¢! = argmingc oo ;0 zitt,

Balanced allocations: Background

The MEMORY process

OO0

@@)

Balanced allocations: Background

@/@)

OO0

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

@/@)

-[0000

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

©O0

-[0000

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

©O0

OO0

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

©O0

OO0

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

©O0

OO0

0000000

The MEMORY process

OO0

@@)

Balanced allocations: Background

©O0

OO0

0000000

The MEMORY process

2ol §8§

In the lightly-loaded case, MEMORY with d = 1 w.h.p. achieves an O(loglogn)
gap [MPS02].

Balanced allocations: Background

The MEMORY process

ol

In the lightly-loaded case, MEMORY with d = 1 w.h.p. achieves an O(loglogn)
gap [MPS02].
For general d > 1, the bound becomes log ;4 logn + ©(1) for f(d) € (2d,2d + 1).

o

ct

Balanced allocations: Background

The MEMORY process

ol

In the lightly-loaded case, MEMORY with d = 1 w.h.p. achieves an O(loglogn)
gap [MPS02].
For general d > 1, the bound becomes log ;4 logn + ©(1) for f(d) € (2d,2d + 1).

o

ct

What happens in the heavily-loaded case (m > n)?

Balanced allocations: Background

Heterogeneous sampling distributions

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE:

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22],

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22], adversarial noise [LS22b],

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22], adversarial noise [LS22b],

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

I NINENT,

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

§\“:\~
ﬁ
]
]
=
]

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],
graphical [BK22], adversarial noise [LS22b],

Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

§\“:\~
ﬁ
]
]
=
]

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

§\“:\~
:
:1
=1
:§
=

In particular, (a,b)-biased sampling distributions s satisfy — = <8 < é.

Given a,b > 1, Wieder showed that there exists d’ > 0, such that for any €>0:

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

§\“:\~
:
:1
=1
:§
=

In particular, (a,b)-biased sampling distributions s satisfy — = <8 < é.

Given a,b > 1, Wieder showed that there exists d’ > 0, such that for any €>0:
For any d Z (1+¢€)-d, then d-CHOICE w.h.p. achieves Gap(m) = O(loglogn).

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

§\“:\~
:
:1
=1
:§
=

In particular, (a,b)-biased sampling distributions s satisfy — = <8 < é.

Given a,b > 1, Wieder showed that there exists d’ > 0, such that for any €>0:
For any d Z (1+¢€)-d, then d-CHOICE w.h.p. achieves Gap(m) = O(loglogn).
For any d < (1 —¢) -d’, then d-CHOICE has a gap that grows with m.

Balanced allocations: Background

Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b],
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

b
n

Slem
:|
:J
=
=
.

In particular, (a,b)-biased sampling distributions s satisfy — = <8 < 9.

Given a,b > 1, Wieder showed that there exists d’ > 0, such that for any e>0:
For any d Z (1+¢€)-d, then d-CHOICE w.h.p. achieves Gap(m) = O(loglogn).
For any d < (1 —¢) -d’7 then d-CHOICE has a gap that grows with m.

How does MEMORY deal with heterogeneous sampling
distributions?

Balanced allocations: Background

Our results

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn).

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Balanced allocations: Background

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

Balanced allocations: Background 10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Balanced allocations: Background 10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (i¢) biased sampling.

Balanced allocations: Background

10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (i¢) biased sampling.

d-RESET-MEMORY, a variant of MEMORY where the cache resets every d steps has
w.h.p. Gap(m) = O(logn)

Balanced allocations: Background 10

Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (i¢) biased sampling.

d-RESET-MEMORY, a variant of MEMORY where the cache resets every d steps has
w.h.p. Gap(m) = O(logn), even in the presence of weights.

Balanced allocations: Background 10

Power of memory: Visualisation

Open visualiser

Gap for n = 10* for (2,2)-biased sampling

0007 | | | | | |— Two-CHOICE
—— MEMORY
2,000 |
“Power of memory”
1,000 |- i
0 L | | |
0 0.2 0.4 0.6 0.8 1

m/n 104

Balanced allocations: Background

https://dimitrioslos.com/conferences/soda23/phenomena/power_of_memory/power_of_memory.html

Why MEMORY recovers?

0000000

Why MEMORY recovers?

Two-Choice Memory

[@occeceee
[eeee

eee

eee

oo
[@eeeee9
[@eeeee9
@eeeeee

®
L1}
In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.

Balanced allocations: Background 12

Why MEMORY recovers?

Two-Choice Memory

[occce00
I
TIIIIn

[eeee
eee
eee
oo

®
Ll

In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.

In MEMORY, w.h.p. we sample every bin roughly every anlogn steps.

Balanced allocations: Background

12

Why MEMORY recovers?

Two-Choice Memory

In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.
In MEMORY, w.h.p. we sample every bin roughly every anlogn steps.

Balanced allocations: Background

Upper Bound for MEMORY

Upper Bound for MEMORY

13

Outline for the O(loglogn) bound

Upper Bound for MEMORY

14

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),

t a-vl (zl—z;)
Pl =% (a 07, 25) E e
x>z

where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.

Upper Bound for MEMORY 14

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),

t a-vl (zl—z;)
Pl =% (a 07, 25) E e
x>z

where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.

When &% = O(n), then Gap(t) = O(j - z + logn

a-vt

Upper Bound for MEMORY 14

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),

&t avﬂ (x! i—z5)
Pl =% (a 07, 25) E e
x>z

where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.
When &% = O(n), then Gap(t) = O(j - z + logn

a-vt

For j = O(loglogn), when ®; = O(n), then Gap(m) = O(loglogn).

Upper Bound for MEMORY

14

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),

&t avﬂ (x! i—z5)
Pl =% (a 07, 25) E e
x>z

where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.

When &% = O(n), then Gap(t) = O(j - z + ls%)

For j = O(loglogn), when ®; = O(n), then Gap(m) = O(loglogn).

Further, when <I>§» = O(n), then also number of bins with load at least z;41 is at most

O(n - e’ %),

Upper Bound for MEMORY

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),
<I>J —<I)t(oz V7, 25) Z e v’ (@i =)
x>z
where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.
When &% = O(n), then Gap(t) = O(j - z + ls%)
For j = O(loglogn), when ®; = O(n), then Gap(m) = O(loglogn).
Further, when <I>§» = O(n), then also number of bins with load at least z;41 is at most

O(n - e’ %),

We group steps into rounds (at most e’ log® n steps each) and show that

J+2
e’ i
E[0/F]] 5.0 =0n)] <@}, - (1 - > pe 2,

n

Upper Bound for MEMORY 14

Outline for the O(loglogn) bound

Define the super-exponential potentials ®; for 0 < j = O(loglogn),
<I>J —<I)t(oz V7, 25) Z e v’ (@i =)
x>z
where z; := % + j - z for constants z > 0, « € (0,1) and v > 1.
When &% = O(n), then Gap(t) = O(j - z + ls%)
For j = O(loglogn), when ®; = O(n), then Gap(m) = O(loglogn).
Further, when <I>§» = O(n), then also number of bins with load at least z;41 is at most

O(n - e’ %),

We group steps into rounds (at most e’ log® n steps each) and show that

J+2
e’ i
E[0/F]] 5.0 =0n)] <@}, - (1 - > pe 2,

n

The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for MEMORY

14

Layered induction over super-exponential potentials

@8 =0(n)

Upper Bound for MEMORY 15

Layered induction over super-exponential potentials

@8 =0(n)

Upper Bound for MEMORY 15

Layered induction over super-exponential potentials

Upper Bound for MEMORY 15

Layered induction over super-exponential potentials

Upper Bound for MEMORY 15

Layered induction over super-exponential potentials

@ =0(n)

Upper Bound for MEMORY

15

Layered induction over super-exponential potentials

t
y
e » logn
___________ » z+ (logn) /v
_________ »2z + (logn) /v?
2 | =i e N e o o e e e e e e - -
P
0-—c e e et e, —————

@ =0(n)

Upper Bound for MEMORY

15

Layered induction over super-exponential potentials

t
y
e » logn
___________ » z+ (logn) /v
_________ »2z + (logn) /v?
EE A | ok i et e
2 | =i e N e o o e e e e e e - -
P
0-—c e e et e, —————

Upper Bound for MEMORY

15

Layered induction

over super-exponential potentials

___________ » z+ (logn) /v
»2z + (logn) /v?

Upper Bound for MEMORY

15

Conclusion

Conclusion

16

Summary & Future work

Conclusion

17

Summary & Future work

We have shown that:

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).

Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.

A matching lower bound holds for any m > n.

Conclusion

17

Summary & Future work
We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:

Conclusion

17

Summary & Future work
We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:
What is the gap for the optimal caching strategy at step m?

Conclusion

17

Summary & Future work
We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:
What is the gap for the optimal caching strategy at step m?
Are there any weighted settings where MEMORY is superior to d-CHOICE?

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:
What is the gap for the optimal caching strategy at step m?
Are there any weighted settings where MEMORY is superior to d-CHOICE?
Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.
d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:
What is the gap for the optimal caching strategy at step m?
Are there any weighted settings where MEMORY is superior to d-CHOICE?
Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.

Obtaining tight bounds up to lower order terms (as in [MPS02]).

Conclusion

17

Summary & Future work

We have shown that:
MEMORY with d = M = 1 has w.h.p. Gap(m) = O(loglogn).
Same upper bound for (a,b)-biased sampling distributions with any const a,b > 1.
A matching lower bound holds for any m > n.

d-RESET-MEMORY has w.h.p. Gap(m) = O(logn).

Several avenues for future work:
What is the gap for the optimal caching strategy at step m?
Are there any weighted settings where MEMORY is superior to d-CHOICE?
Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
Obtaining tight bounds up to lower order terms (as in [MPS02]).

Analyse MEMORY in settings with outdated or noisy information.

Conclusion

17

Questions?

[0/0/0/0]0]00]6.0]0.6}
—000000000000
000
DOOC O
o]
CO000000000 MX G 0[00/00]0.006
QO [O] m m m m
m Q0000000000 00000000000
(@8]
@) OO
[0/0/0/0]0]00]0.0]0.6)}
QC 20
O
000
2
OC OO m m m
[0]0/0]0]0.0/0/0/0) OX QOO0
oottt mioSeccs
OX
— 000000000000 OOO000000000
o
[0]0/0]00]0/0/0/0/ 00,
— X
000000000000
OO

More visualisations: dimitrioslos.com/soda23

18

Conclusion

https://dimitrioslos.com/soda23

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

19

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

For One-CHolck, pt = (£, ... 1),

n’ ‘n

19

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

o ot — (1 1
For ONE-CHOICE, p* = (£, ... ,1).
For Two-CHOICE,

19

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

For ONE-CHOICE, p* = (£, ... ,1).

For Two-CHOICE,

19

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

o ot — (1 1
For ONE-CHOICE, p* = (£, ... ,1).
For Two-CHOICE,

! 2 — 1 2n — 1
p = ﬁ, ,7, ,7 .

For MEMORY, if the cache is the k-th most loaded bin, then

For k =1, this is
like ONE-CHOICE.

19

Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

For ONE-CHOICE, p* = (£, ... ,1).

For Two-CHOICE,

A probability vector p is (0, ¢)-smooth if majorized by

1—c¢ 1—¢ 1+¢€ 14+ €
T e BNRERINE Sesuntl

én bins (1—8)n bins

19

Hyperbolic cosine potential

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(”z_t/") + Ze‘a(xz_t/").
i=1 i=1

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(”z_t/") + Ze‘a(xz_t/").
i=1 i=1

When I'™ = poly(n), then Gap(m) = O (log—”)

«

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(xz_t/") + Ze‘a(xz_t/").
i=1 i=1

When I'™ = poly(n), then Gap(m) = O (%)
They showed that for any (J, ¢)-smooth probability allocation vector pt,

E[r] §] <0 (1-2) +e

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(xz_t/") + Ze‘a(xz_t/").
i=1 i=1

«

When I'™ = poly(n), then Gap(m) = O (m)
They showed that for any (J, ¢)-smooth probability allocation vector pt,

E[r] §] <0 (1-2) +e

By induction, this implies that E[I"™] < £ . n.

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(xz_t/") + Ze‘a(xz_t/").
i=1 i=1

When I'™ = poly(n), then Gap(m) = O (%)
They showed that for any (J, ¢)-smooth probability allocation vector pt,

E[r] §] <0 (1-2) +e

By induction, this implies that E[I"™] < £ . n.
And so, by Markov’s inequality Pr [I‘m <= ~n3] >1-—n"2

20

Hyperbolic cosine potential

Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential T,
defined as

It:= o+ Tt .= Zea(xz_t/") + Ze‘a(xz_t/").
i=1 i=1
When I'™ = poly(n), then Gap(m) = O (%)
They showed that for any (J, ¢)-smooth probability allocation vector pt,

E[r] §] <0 (1-2) +e

By induction, this implies that E[I"™] < £ . n.
And so, by Markov’s inequality Pr [I‘m <= n3] >1-—n"2

Problem: p' for MEMORY may not be (4, ¢)-smooth

A generalised drift inequality [LS22a]

21

A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,

E[o"]§] <o +) ol <qg

i=1 n
E[0§] <o+ wl (i_q;)
i=1

2

_1>.a+¢t.c.a7

n

2
-a—|—\I't-C'-a—.
n

21

A generalised drift inequality [LS22a]
If for some (0, €)-smooth probability vector g,

E[o]] <o +) o (g
i=1

n 2
E[0] §] gwt+zqf§~(i—q§)-a+\pt-o-a.

i=1
Then, for sufficiently small « > 0,

E[FH—I‘gt]SFt.(l_%

21

A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,

E[o] §] < o dt. (gt — 2). ot.c.

LICEIEOR S SR (e SR O

-7 n 1 o2

Could be allocating ARSI EEA % —|—Z‘1/f : (- qf) ca+¥t.C o
more than one ball. i=1

Then, for sufficiently small « > 0,

E[Ft+l}gt]grt.<1_%

21

A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,«» not always the prob allocation vector.

41| et fLN e (4 LY\, t, .O‘:
E[o" 5] <o +i§:1ﬁ<bi (qi ~)atetC-—,
=~ E i n 2 n'

i=1

Then, for sufficiently small « > 0,

E[r+ 5] <0 (1-2) +e

21

A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,«» not always the prob allocation vector.

t+1 t t - t. t_l_ t, ,Oj
E[o|§] <o +) o <qi ~)at+ot-Cr—,

n
i=1

n 1 2
E[0§ S\I/t+zqf§~(—qf)-a+\l’t-0-i.

, n
i=1
Then, for sufficiently small « > 0,
B[] < (1-2) +e

n

For 2-RESET-MEMORY, ¢ is the probability allocation vector of Two-CHOICE.

21

A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,«» not always the prob allocation vector.

t+1 t t - t. t_l_ t, ,Oj
E[o|§] <o +) o <qi ~)at+ot-Cr—,

n
i=1

- 1 a?
E[0§] gwt+;\1ﬂ;~ (n—qf) -a+\Pt-O-?.
Then, for sufficiently small « > 0,
B[] < (1-2) +e
n
For 2-RESET-MEMORY, ¢ is the probability allocation vector of Two-CHOICE.
which is (1/4,1/2)-smooth, implying an O(logn) gap for MEMORY.

21

Handling heterogeneous distributions

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

b

n

), we make two

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

Cache resets every d steps.

b

n

), we make two

22

Handling heterogeneous distributions

b
n

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

), we make two

Cache resets every d steps. e for sufficiently large d, beats the (a, b)-bias.

22

Handling heterogeneous distributions

b
n

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

), we make two

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset.

22

Handling heterogeneous distributions

b
n

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

), we make two

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

22

Handling heterogeneous distributions

b
n

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

), we make two

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

n 1 2 42)
E[o|§] <o +> af- <q§—> -a+q>t-c.a+o<qﬂ‘.“.(2(1%)),
n n n

i=1

22

Handling heterogeneous distributions

b
n

To analyze a heterogeneous sampling distribution s (ﬁ <s; <
further reductions:

), we make two

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

n 1 2 V2)
E[CI)H_l‘ r&t] S@t+§ (I)E. <q§_> .a+@t.c.a+0<qﬂ.a.(Qddb))’
P n n n
since @] — ®¢ < @ - (2ad) and

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (ﬁ <s; < %), we make two
further reductions:

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

n 1 2 42)
E[o|§] <o +> af- <q§—> -a+q>t-c.a+o<qﬂ.“.(2(1%)),
n n n

i=1

since ®f — &% < @' - (2ad) and probability of selecting a bin twice is at most d? - 2.

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (ﬁ <s; < %), we make two
further reductions:

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

n 1 2 V2)
E[o|§] <o +> af- <q§—> atdt.c- L 4o <<I>t-a~(2d'5b)>,
P n n n
since ®f — &% < @' - (2ad) and probability of selecting a bin twice is at most d? - 2.
Similarly for W.

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (-1 < s; < é), we make two
. an n
further reductions:
Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.
Moving probabilities between bins with almost the same load, introduces a small

additive term in the bound,

n 1 2 42)
E[o|§] <o +> af- <q§—> -a+q>t-c.a+o<qﬂ.“.(2(1%)),
n n n

i=1

since ®f — &% < @' - (2ad) and probability of selecting a bin twice is at most d? - 2.

Similarly for ¥. So for sufficiently small @ := a(d) > 0, E[T"™] = O(n).

22

Handling heterogeneous distributions

To analyze a heterogeneous sampling distribution s (ﬁ <s; < %), we make two
further reductions:

Cache resets every d steps. e for sufficiently large d, beats the (a,b)-bias.
Load comparisons are based on the last reset. «+~ makes computation of ¢ tractable.

Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

n 1 2 V2)
E[o|§] <o +> af- <q§—> atdt.c- L 4o <<I>t-a~(2d'5b)>,
— n n n
since ®f — &% < @' - (2ad) and probability of selecting a bin twice is at most d? - 2.
Similarly for ¥. So for sufficiently small @ := a(d) > 0, E[T"™] = O(n).

And so Gap(m) = O((logn)/a) gap.

22

Bibliography I

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.
Comput. 29 (1999), no. 1, 180-200. MR 1710347

P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12) (Berlin Heidelberg), Springer-Verlag, 2012,

pp. 411-422.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, STAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150

N. Bansal and W. Kuszmaul, Balanced allocations: The heavily loaded case with
deletions, 63rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’22), IEEE, 2022, pp. 801-812.

O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via
thinning, 2021, arXiv:2110.05009.

23

Bibliography 11

R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing — modelling and
behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier,
Amsterdam, 1988.

G. H. Gonnet, Ezxpected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587

D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,
34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22)
(New York, NY, USA), ACM, 2022, p. 389-399.

, Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT
Principles of Distributed Computing (PODC’22) (New York, NY, USA), ACM, 2022,
p- 164-175.

24

Bibliography III

D. Los, T. Sauerwald, and J. Sylvester, Balanced Allocations: Caching and Packing,
Twinning and Thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22) (Alexandria, Virginia), STAM, 2022, pp. 1847-1874.

M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’02), IEEE, 2002,
pp- 799-808.

R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms—ESA 2001 (Arhus)7 Lecture
Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121-133. MR 1913547

Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(14 B)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775. MR
3418914

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd International
Workshop on Randomization and Computation (RANDOM’98), vol. 1518, Springer,
1998, pp. 159-170. MR 1729169

25

Bibliography 1V
D. Shah and B. Prabhakar, The use of memory in randomized load balancing, IEEE
International Symposium on Information Theory (ISIT’02), 2002, p. 125.

U. Wieder, Balanced allocations with heterogenous bins, 19th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’07), ACM, 2007, pp. 188-193.

, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput.
Sci. 12 (2016), no. 3-4, front matter, 276-379. MR, 3683828

26

	Balanced allocations: Background
	Upper Bound for Memory
	Conclusion
	Appendix

