Balanced Allocations with Heterogeneous Bins: The Power of Memory

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$, John Sylvester ${ }^{2}$

${ }^{1}$ University of Cambridge, UK, ${ }^{2}$ University of Liverpool, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{\kappa_{n}^{m}}{n}} \because \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in
the least loaded of the two.

!

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{\boldsymbol{L}^{\prime}}+\Theta(1)$ [BCSV06].

One-Choice and d-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

d-Choice Process:

Iteration: For each $t \geq 0$, sample d bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{d} \log n+\Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{d} \log n^{\boldsymbol{L}^{\prime}}+\Theta(1)$ [BCSV06].

Power of two choices: Visualisation

The Memory process

The Memory process

- Several different variants of d-Choice have been studied: $(1+\beta)$ [PTW15], Thinning [FGGL21].

The Memory process

- Several different variants of d-Choice have been studied: $(1+\beta)$ [PTW15], Thinning [FGGL21].
- Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached bins.

The Memory process

- Several different variants of d-Choice have been studied: $(1+\beta)$ [PTW15], Thinning [FGGL21].
- Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached bins.

Memory Process ($M=1$):

Initialization: Set the cache $c^{0}=1$.
Iteration: For each step $t \geq 0$:

- Sample bins i_{1}, \ldots, i_{d} uniformly at random.
- Allocate to bin $j=\operatorname{argmin}_{k \in\left\{c^{t}, i_{1}, \ldots, i_{d}\right\}} x_{k}^{t}$.
- Update the cache to $c^{t+1}=\operatorname{argmin}_{k \in\left\{c^{t}, i_{1}, \ldots, i_{d}\right\}} x_{k}^{t+1}$.

The Memory process

- In the lightly-loaded case, Memory with $d=1$ w.h.p. achieves an $\mathcal{O}(\log \log n)$ gap [MPS02].

The Memory process

- In the lightly-loaded case, Memory with $d=1$ w.h.p. achieves an $\mathcal{O}(\log \log n)$ gap [MPS02].
- For general $d \geq 1$, the bound becomes $\log _{f(d)} \log n+\Theta(1)$ for $f(d) \in(2 d, 2 d+1)$.

The Memory process

- In the lightly-loaded case, Memory with $d=1$ w.h.p. achieves an $\mathcal{O}(\log \log n)$ gap [MPS02].
- For general $d \geq 1$, the bound becomes $\log _{f(d)} \log n+\Theta(1)$ for $f(d) \in(2 d, 2 d+1)$.

What happens in the heavily-loaded case ($m \geq n$)?

Heterogeneous sampling distributions

Heterogeneous sampling distributions

- Several different settings for d-Choice:

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right]$,

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right.$], graphical [BK22],

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right.$], graphical [BK22], adversarial noise [LS22b],

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right.$], graphical [BK22], adversarial noise [LS22b],

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

- In particular, (a, b)-biased sampling distributions s satisfy $\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}$.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

- In particular, (a, b)-biased sampling distributions s satisfy $\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}$.
- Given $a, b>1$, Wieder showed that there exists $d^{\prime}>0$, such that for any $\epsilon>0$:

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

- In particular, (a, b)-biased sampling distributions s satisfy $\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}$.
- Given $a, b>1$, Wieder showed that there exists $d^{\prime}>0$, such that for any $\epsilon>0$:
- For any $d \geq(1+\epsilon) \cdot d^{\prime}$, then d-Choice w.h.p. achieves $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information [$\left.\mathrm{BCE}^{+} 12\right]$, graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

- In particular, (a, b)-biased sampling distributions s satisfy $\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}$.
- Given $a, b>1$, Wieder showed that there exists $d^{\prime}>0$, such that for any $\epsilon>0$:
- For any $d \geq(1+\epsilon) \cdot d^{\prime}$, then d-Choice w.h.p. achieves $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For any $d \leq(1-\epsilon) \cdot d^{\prime}$, then d-Choice has a gap that grows with m.

Heterogeneous sampling distributions

- Several different settings for d-Choice: outdated information $\left[\mathrm{BCE}^{+} 12\right.$], graphical [BK22], adversarial noise [LS22b],
- Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.

- In particular, (a, b)-biased sampling distributions s satisfy $\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}$.
- Given $a, b>1$, Wieder showed that there exists $d^{\prime}>0$, such that for any $\epsilon>0$:
\Rightarrow For any $d \geq(1+\epsilon) \cdot d^{\prime}$, then d-Choice w.h.p. achieves $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
> For any $d \leq(1-\epsilon) \cdot d^{\prime}$, then d-Choice has a gap that grows with m.

How does MEmory deal with heterogeneous sampling distributions?

Our results

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Our results

- In the heavily-loaded case $(m \geq n)$, $[\operatorname{LSS} 22]$ proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. an In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Challenges:

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Challenges: (i) long-term dependencies due to cache

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

- d-Reset-Memory, a variant of Memory where the cache resets every d steps has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$

Our results

- In the heavily-loaded case $(m \geq n)$, [LSS22] proved that Memory (with $d=M=1$) achieves w.h.p. $\mathcal{O}(\log n)$. We improve this to $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Further, we show that w.h.p. $\operatorname{Gap}(m)=\Omega(\log \log n)$ for any $m \geq n$.
- For (a, b)-biased distributions with any const $a, b>1$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$. * m In contrast to Two-Choice, where the gap grows with m, for $a=b=2$.
- For any $a:=a(n)$ and $b:=b(n)$, the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

- d-Reset-Memory, a variant of Memory where the cache resets every d steps has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$, even in the presence of weights.

Power of memory: Visualisation

Why Memory recovers?

(2):

Why Memory recovers?

- In Two-Choice, there is a set of bins that receives $>m / n$ balls in expectation.

Why Memory recovers?

Two-Choice

Memory

- In Two-Choice, there is a set of bins that receives $>m / n$ balls in expectation.
- In Memory, w.h.p. we sample every bin roughly every an $\log n$ steps.

Why Memory recovers?

Memory

- In Two-Choice, there is a set of bins that receives $>m / n$ balls in expectation.
- In Memory, w.h.p. we sample every bin roughly every an $\log n$ steps.

Upper Bound for Memory

Outline for the $\mathcal{O}(\log \log n)$ bound

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)}
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)},
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

- When $\Phi_{j}^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}\left(j \cdot z+\frac{\log n}{\alpha \cdot v^{j}}\right)$.

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)},
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

- When $\Phi_{j}^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}\left(j \cdot z+\frac{\log n}{\alpha \cdot v^{j}}\right)$.
- For $j=\Theta(\log \log n)$, when $\Phi_{j}=\mathcal{O}(n)$, then $\operatorname{Gap}(m)=\Theta(\log \log n)$.

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)},
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

- When $\Phi_{j}^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}\left(j \cdot z+\frac{\log n}{\alpha \cdot v^{j}}\right)$.
- For $j=\Theta(\log \log n)$, when $\Phi_{j}=\mathcal{O}(n)$, then $\operatorname{Gap}(m)=\Theta(\log \log n)$.
- Further, when $\Phi_{j}^{t}=\mathcal{O}(n)$, then also number of bins with load at least z_{j+1} is at most $\mathcal{O}\left(n \cdot e^{-\alpha \cdot v^{j} \cdot z}\right)$.

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)},
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

- When $\Phi_{j}^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}\left(j \cdot z+\frac{\log n}{\alpha \cdot v^{j}}\right)$.
- For $j=\Theta(\log \log n)$, when $\Phi_{j}=\mathcal{O}(n)$, then $\operatorname{Gap}(m)=\Theta(\log \log n)$.
- Further, when $\Phi_{j}^{t}=\mathcal{O}(n)$, then also number of bins with load at least z_{j+1} is at most $\mathcal{O}\left(n \cdot e^{-\alpha \cdot v^{j} \cdot z}\right)$.
- We group steps into rounds (at most $e^{v^{j+2}} \cdot \log ^{3} n$ steps each) and show that

$$
\mathbf{E}\left[\Phi_{j+1}^{r+1} \mid \mathscr{\mathscr { F }}^{r}, \Phi_{j}^{r}=\mathcal{O}(n)\right] \leq \Phi_{j+1}^{r} \cdot\left(1-\frac{e^{v^{j+2}}}{n}\right)+e^{-v^{j+1} / 2} .
$$

Outline for the $\mathcal{O}(\log \log n)$ bound

- Define the super-exponential potentials Φ_{j} for $0 \leq j=\mathcal{O}(\log \log n)$,

$$
\Phi_{j}^{t}:=\Phi_{j}^{t}\left(\alpha \cdot v^{j}, z_{j}\right):=\sum_{i: x_{i}^{t} \geq z_{j}} e^{\alpha \cdot v^{j} \cdot\left(x_{i}^{t}-z_{j}\right)}
$$

where $z_{j}:=\frac{t}{n}+j \cdot z$ for constants $z>0, \alpha \in(0,1)$ and $v>1$.

- When $\Phi_{j}^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}\left(j \cdot z+\frac{\log n}{\alpha \cdot v^{j}}\right)$.
- For $j=\Theta(\log \log n)$, when $\Phi_{j}=\mathcal{O}(n)$, then $\operatorname{Gap}(m)=\Theta(\log \log n)$.
- Further, when $\Phi_{j}^{t}=\mathcal{O}(n)$, then also number of bins with load at least z_{j+1} is at most $\mathcal{O}\left(n \cdot e^{-\alpha \cdot v^{j} \cdot z}\right)$.
- We group steps into rounds (at most $e^{v^{j+2}} \cdot \log ^{3} n$ steps each) and show that

$$
\mathbf{E}\left[\Phi_{j+1}^{r+1} \mid \mathfrak{F}^{r}, \Phi_{j}^{r}=\mathcal{O}(n)\right] \leq \Phi_{j+1}^{r} \cdot\left(1-\frac{e^{v^{j+2}}}{n}\right)+e^{-v^{j+1} / 2}
$$

- The base case follows by an involved analysis of the hyperbolic cosine potential function [PTW15, LS22a].

Layered induction over super-exponential potentials

Conclusion

Summary \& Future work

Summary \& Future work

We have shown that:

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

- What is the gap for the optimal caching strategy at step m ?

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

- What is the gap for the optimal caching strategy at step m ?
- Are there any weighted settings where Memory is superior to d-Choice?

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

- What is the gap for the optimal caching strategy at step m ?
- Are there any weighted settings where Memory is superior to d-Choice?
- Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

- What is the gap for the optimal caching strategy at step m ?
- Are there any weighted settings where Memory is superior to d-Choice?
- Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
- Obtaining tight bounds up to lower order terms (as in [MPS02]).

Summary \& Future work

We have shown that:

- Memory with $d=M=1$ has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- Same upper bound for (a, b)-biased sampling distributions with any const $a, b>1$.
- A matching lower bound holds for any $m \geq n$.
- d-Reset-Memory has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Several avenues for future work:

- What is the gap for the optimal caching strategy at step m ?
- Are there any weighted settings where Memory is superior to d-Choice?
- Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
- Obtaining tight bounds up to lower order terms (as in [MPS02]).
- Analyse Memory in settings with outdated or noisy information.

Questions?

More visualisations: dimitrioslos.com/soda23

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.
- For One-Choice, $p^{t}=\left(\frac{1}{n}, \quad \ldots, \frac{1}{n}\right)$.

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.
- For One-Choice, $p^{t}=\left(\frac{1}{n}, \quad \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p^{t}=\left(\frac{1}{n^{2}}, \quad \ldots \quad, \frac{2 i-1}{n^{2}}, \quad \ldots \quad, \frac{2 n-1}{n^{2}}\right) .
$$

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.
- For One-Choice, $p^{t}=\left(\frac{1}{n}, \quad \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p^{t}=\left(\frac{1}{n^{2}}, \quad \ldots \quad, \frac{2 i-1}{n^{2}}, \quad \ldots \quad, \frac{2 n-1}{n^{2}}\right) .
$$

- For Memory, if the cache is the k-th most loaded bin, then

$$
p^{t}=(\underbrace{0, \quad \ldots \quad, 0}_{k-1 \mathrm{bins}}, \frac{k}{n}, \underbrace{\frac{1}{n}, \ldots \quad, \frac{1}{n}}_{n-k \text { bins }}) .
$$

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.
- For One-Choice, $p^{t}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p^{t}=\left(\frac{1}{n^{2}}, \quad \ldots \quad, \frac{2 i-1}{n^{2}}, \quad \ldots \quad, \frac{2 n-1}{n^{2}}\right) .
$$

- For Memory, if the cache is the k-th most loaded bin, then

$$
p^{t}=(\underbrace{0, \quad \ldots, 0}_{k-1 \text { bins }}, \frac{k}{n}, \underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n-k \text { bins }}) \times \ldots . .
$$

Probability allocation vectors

- Some processes induce a probability allocation vector p^{t}, where p_{i}^{t} gives the probability to allocate to the i-th most loaded bin.
- For One-Choice, $p^{t}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p^{t}=\left(\frac{1}{n^{2}}, \quad \ldots \quad, \frac{2 i-1}{n^{2}}, \quad \ldots \quad, \frac{2 n-1}{n^{2}}\right) .
$$

- For Memory, if the cache is the k-th most loaded bin, then

$$
p^{t}=(\underbrace{0, \quad \ldots \quad, 0}_{k-1 \text { bins }}, \frac{k}{n}, \underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n-k \text { bins }}) .
$$

- A probability vector p is (δ, ϵ)-smooth if majorized by

$$
(\underbrace{\frac{1-\epsilon}{n}, \quad \cdots, \frac{1-\epsilon}{n}}_{\delta n \text { bins }}, \underbrace{\frac{1+\tilde{\epsilon}}{n}, \ldots, \frac{1+\tilde{\epsilon}}{n}}_{(1-\delta) n \text { bins }})
$$

Hyperbolic cosine potential

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

- When $\Gamma^{m}=\operatorname{poly}(n)$, then $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\alpha}\right)$.

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

- When $\Gamma^{m}=\operatorname{poly}(n)$, then $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\alpha}\right)$.
- They showed that for any (δ, ϵ)-smooth probability allocation vector p^{t},

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

- When $\Gamma^{m}=\operatorname{poly}(n)$, then $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\alpha}\right)$.
- They showed that for any (δ, ϵ)-smooth probability allocation vector p^{t},

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

- By induction, this implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{c}{\alpha \epsilon} \cdot n$.

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

- When $\Gamma^{m}=\operatorname{poly}(n)$, then $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\alpha}\right)$.
- They showed that for any (δ, ϵ)-smooth probability allocation vector p^{t},

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \widetilde{\mathscr{V}}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

- By induction, this implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{c}{\alpha \epsilon} \cdot n$.
- And so, by Markov's inequality $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{c}{\alpha \epsilon} \cdot n^{3}\right] \geq 1-n^{-2}$.

Hyperbolic cosine potential

- Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γ^{t}, defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}+\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)} .
$$

- When $\Gamma^{m}=\operatorname{poly}(n)$, then $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\alpha}\right)$.
- They showed that for any (δ, ϵ)-smooth probability allocation vector p^{t},

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \widetilde{\mathscr{V}}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

- By induction, this implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{c}{\alpha \epsilon} \cdot n$.
- And so, by Markov's inequality $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{c}{\alpha \epsilon} \cdot n^{3}\right] \geq 1-n^{-2}$.

Problem: p^{t} for MEMORY may not be (δ, ϵ)-smooth

A generalised drift inequality [LS22a]

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,

$$
\begin{aligned}
& \mathbf{E}\left[\Phi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}, \\
& \mathbf{E}\left[\Psi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n} .
\end{aligned}
$$

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,

$$
\begin{aligned}
& \mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}, \\
& \mathbf{E}\left[\Psi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n} .
\end{aligned}
$$

- Then, for sufficiently small $\alpha>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \tilde{\mathscr{}}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}
$$

Could be allocating $\mathbf{E}\left[\Psi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}$.
more than one ball.

- Then, for sufficiently small $\alpha>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c
$$

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,sm not always the prob allocation vector.

$$
\begin{aligned}
& \mathbf{E}\left[\Phi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n} \\
& \mathbf{E}\left[\Psi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}
\end{aligned}
$$

- Then, for sufficiently small $\alpha>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \tilde{\mathscr{}}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,sm not always the prob allocation vector.

$$
\begin{aligned}
& \mathbf{E}\left[\Phi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n} \\
& \mathbf{E}\left[\Psi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}
\end{aligned}
$$

- Then, for sufficiently small $\alpha>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \widetilde{\mho}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

- For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.

A generalised drift inequality [LS22a]

- If for some (δ, ϵ)-smooth probability vector q,sm not always the prob allocation vector.

$$
\begin{aligned}
& \mathbf{E}\left[\Phi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n} \\
& \mathbf{E}\left[\Psi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Psi^{t}+\sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\frac{1}{n}-q_{i}^{t}\right) \cdot \alpha+\Psi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}
\end{aligned}
$$

- Then, for sufficiently small $\alpha>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \widetilde{\mho}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon}{n}\right)+c .
$$

- For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
- which is $(1 / 4,1 / 2)$-smooth, implying an $\mathcal{O}(\log n)$ gap for Memory.

Handling heterogeneous distributions

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
\Rightarrow Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&n makes computation of q tractable.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&m makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathscr{\mathscr { }}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right),
$$

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&m makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \tilde{\mathscr{F}}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right),
$$

since $\Phi_{i}^{t}-\Phi_{j}^{t} \leq \Phi_{j}^{t} \cdot(2 \alpha d)$ and

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&m makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \tilde{\mathscr{}}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right)
$$

since $\Phi_{i}^{t}-\Phi_{j}^{t} \leq \Phi_{j}^{t} \cdot(2 \alpha d)$ and probability of selecting a bin twice is at most $d^{2} \cdot \frac{b}{n}$.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&m makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathscr{F}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right),
$$

since $\Phi_{i}^{t}-\Phi_{j}^{t} \leq \Phi_{j}^{t} \cdot(2 \alpha d)$ and probability of selecting a bin twice is at most $d^{2} \cdot \frac{b}{n}$.

- Similarly for Ψ.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&n makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \tilde{\mathscr{F}}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right),
$$

since $\Phi_{i}^{t}-\Phi_{j}^{t} \leq \Phi_{j}^{t} \cdot(2 \alpha d)$ and probability of selecting a bin twice is at most $d^{2} \cdot \frac{b}{n}$.

- Similarly for Ψ. So for sufficiently small $\alpha:=\alpha(d)>0, \mathbf{E}\left[\Gamma^{m}\right]=\mathcal{O}(n)$.

Handling heterogeneous distributions

- To analyze a heterogeneous sampling distribution $s\left(\frac{1}{a n} \leq s_{i} \leq \frac{b}{n}\right)$, we make two further reductions:
- Cache resets every d steps. \&n for sufficiently large d, beats the (a, b)-bias.
- Load comparisons are based on the last reset. \&n makes computation of q tractable.
- Moving probabilities between bins with almost the same load, introduces a small additive term in the bound,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathscr{\mathscr { F }}^{t}\right] \leq \Phi^{t}+\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(q_{i}^{t}-\frac{1}{n}\right) \cdot \alpha+\Phi^{t} \cdot C \cdot \frac{\alpha^{2}}{n}+\mathcal{O}\left(\Phi^{t} \cdot \frac{\alpha^{2}}{n} \cdot\left(2 d^{3} b\right)\right),
$$

since $\Phi_{i}^{t}-\Phi_{j}^{t} \leq \Phi_{j}^{t} \cdot(2 \alpha d)$ and probability of selecting a bin twice is at most $d^{2} \cdot \frac{b}{n}$.

- Similarly for Ψ. So for sufficiently small $\alpha:=\alpha(d)>0, \mathbf{E}\left[\Gamma^{m}\right]=\mathcal{O}(n)$.
- And so $\operatorname{Gap}(m)=\mathcal{O}((\log n) / \alpha)$ gap.

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200. MR 1710347
- P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice balanced allocation in (almost) parallel, 16th International Workshop on Randomization and Computation (RANDOM'12) (Berlin Heidelberg), Springer-Verlag, 2012, pp. 411-422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150
- N. Bansal and W. Kuszmaul, Balanced allocations: The heavily loaded case with deletions, 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'22), IEEE, 2022, pp. 801-812.
- O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via thinning, 2021, arXiv:2110.05009.

Bibliography II

- R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing - modelling and behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier, Amsterdam, 1988.
- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587
- D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized, 34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'22) (New York, NY, USA), ACM, 2022, p. 389-399.
\qquad , Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT Principles of Distributed Computing (PODC'22) (New York, NY, USA), ACM, 2022, p. 164-175.

Bibliography III

- D. Los, T. Sauerwald, and J. Sylvester, Balanced Allocations: Caching and Packing, Twinning and Thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'22) (Alexandria, Virginia), SIAM, 2022, pp. 1847-1874.
- M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'02), IEEE, 2002, pp. 799-808.
- R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms-ESA 2001 (Århus), Lecture Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121-133. MR 1913547
- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775. MR 3418914
- M. Raab and A. Steger, "Balls into bins"-a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170. MR 1729169

Bibliography IV

- D. Shah and B. Prabhakar, The use of memory in randomized load balancing, IEEE International Symposium on Information Theory (ISIT'02), 2002, p. 125.
- U. Wieder, Balanced allocations with heterogenous bins, 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'07), ACM, 2007, pp. 188-193.
, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput. Sci. 12 (2016), no. 3-4, front matter, 276-379. MR 3683828

