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Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing [PRO01], load balancing [Wiel6] and routing [GKKS88].
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ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.
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Two-CHOICE Process: v
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ONE-CHOICE and d-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = 9(102)532”) [Gon81].
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @( V- log n) (e.g. [RS98]).
*

A

\

d-CHOICE Process: \
Iteration: For each ¢ > 0, sample d bins independently u.a.r. and place the ball in the
least loaded of the two. !

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log,logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background



Power of two choices: Visualisation

Open visualiser
Gap for n = 10*
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The MEMORY process

Several different variants of d-CHOICE have been studied: (1 + ) [PTW15],
THINNING [FGGL21].

Shah and Prabhakar [SP02] introduced a variant of d-CHOICE maintaining M cached
bins.

MEMORY Process (M = 1):
Initialization: Set the cache ¢? = 1.
Iteration: For each step t > O:

Sample bins i1, ..., uniformly at random.

Allocate to bin j = argminge e ;.1 T

Update the cache to ¢! = argmingc oo ;0 zitt,
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The MEMORY process
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In the lightly-loaded case, MEMORY with d = 1 w.h.p. achieves an O(loglogn)
gap [MPS02].
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The MEMORY process
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In the lightly-loaded case, MEMORY with d = 1 w.h.p. achieves an O(loglogn)
gap [MPS02].
For general d > 1, the bound becomes log ;4 logn + ©(1) for f(d) € (2d,2d + 1).
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What happens in the heavily-loaded case (m > n)?
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Heterogeneous sampling distributions

Several different settings for d-CHOICE: outdated information [BCET12],

graphical [BK22], adversarial noise [LS22b], .. ..
Wieder [Wie07] studied d-CHOICE with non-uniform sampling distributions.
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In particular, (a,b)-biased sampling distributions s satisfy — = <8 < 9.

Given a,b > 1, Wieder showed that there exists d’ > 0, such that for any e>0:
For any d Z (1+¢€)-d, then d-CHOICE w.h.p. achieves Gap(m) = O(loglogn).
For any d < (1 —¢) -d’7 then d-CHOICE has a gap that grows with m.

How does MEMORY deal with heterogeneous sampling
distributions?
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Our results

In the heavily-loaded case (m > n), [LSS22] proved that MEMORY (with d = M = 1)
achieves w.h.p. O(logn). We improve this to Gap(m) = O(loglogn).

Further, we show that w.h.p. Gap(m) = Q(loglogn) for any m > n.

For (a,b)-biased distributions with any const a,b > 1, w.h.p. Gap(m) = O(loglogn).
v In contrast to Two-CHOICE, where the gap grows with m, for a = b = 2.

For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (i¢) biased sampling.

d-RESET-MEMORY, a variant of MEMORY where the cache resets every d steps has
w.h.p. Gap(m) = O(logn), even in the presence of weights.
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Power of memory: Visualisation

Open visualiser

Gap for n = 10* for (2,2)-biased sampling
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In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.
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In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.
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In Two-CHOICE, there is a set of bins that receives > m/n balls in expectation.
In MEMORY, w.h.p. we sample every bin roughly every anlogn steps.
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Outline for the O(loglogn) bound
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Define the super-exponential potentials ®; for 0 < j = O(loglogn),
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Define the super-exponential potentials ®; for 0 < j = O(loglogn),
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When &% = O(n), then Gap(t) = O(j - z + ls%)
For j = O(loglogn), when ®; = O(n), then Gap(m) = O(loglogn).
Further, when <I>§» = O(n), then also number of bins with load at least z;41 is at most

O(n - e’ %),

We group steps into rounds (at most e’ log® n steps each) and show that

J+2
e’ i
E[0/F]] 5.0 =0n)] <@}, - (1 - > pe 2,

n

The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].
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Layered induction over super-exponential potentials
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Analyse MEMORY in settings with outdated or noisy information.
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More visualisations: dimitrioslos.com/soda23
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probability to allocate to the ¢-th most loaded bin.

o ot — (1 1
For ONE-CHOICE, p* = (£, ... ,1).
For Two-CHOICE,

! 2 — 1 2n — 1
p = ﬁ, ,7, ,7 .

For MEMORY, if the cache is the k-th most loaded bin, then

For k =1, this is
like ONE-CHOICE.
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Probability allocation vectors

Some processes induce a probability allocation vector pf, where p! gives the
probability to allocate to the ¢-th most loaded bin.

For ONE-CHOICE, p* = (£, ... ,1).

For Two-CHOICE,

A probability vector p is (0, ¢)-smooth if majorized by

1—c¢ 1—¢ 1+¢€ 14+ €
T e BNRERINE Sesuntl

én bins (1—8)n bins
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E[r ] §] <0 (1-2) +e

By induction, this implies that E[I"™] < £ . n.
And so, by Markov’s inequality Pr [I‘m <= n3] >1-—n"2

Problem: p' for MEMORY may not be (4, ¢)-smooth
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-7 n 1 o2
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If for some (0, €)-smooth probability vector g,«» not always the prob allocation vector.
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A generalised drift inequality [LS22a]

If for some (0, €)-smooth probability vector g,«» not always the prob allocation vector.

t+1 t t - t. t_l_ t, ,Oj
E[o|§] <o +) o <qi ~)at+ot-Cr—,

n
i=1

- 1 a?
E[ 0§ ] gwt+;\1ﬂ;~ (n—qf) -a+\Pt-O-?.
Then, for sufficiently small « > 0,
B[] < (1-2) +e
n
For 2-RESET-MEMORY, ¢ is the probability allocation vector of Two-CHOICE.
which is (1/4,1/2)-smooth, implying an O(logn) gap for MEMORY.
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