
Balanced Allocations with Heterogeneous Bins:
The Power of Memory

Dimitrios Los1, Thomas Sauerwald1, John Sylvester2

1University of Cambridge, UK, 2University of Liverpool, UK

1

Balanced allocations: Background

Balanced allocations: Background 2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

Balanced allocations: Background 3

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and d-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

d-Choice Process:
Iteration: For each t ≥ 0, sample d bins independently u.a.r. and place the ball in the
least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = logd log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = logd log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

Power of two choices: Visualisation
Open visualiser

0 0.2 0.4 0.6 0.8 1

·104
0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Balanced allocations: Background 6

https://dimitrioslos.com/conferences/soda23/phenomena/power_of_two_choices/power_of_two_choices.html

The Memory process

■ Several different variants of d-Choice have been studied: (1 + β) [PTW15],
Thinning [FGGL21].

■ Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached
bins.

Memory Process (M = 1):
Initialization: Set the cache c0 = 1.
Iteration: For each step t ≥ 0:
■ Sample bins i1, . . . , id uniformly at random.
■ Allocate to bin j = argmink∈{ct,i1,...,id} xt

k.
■ Update the cache to ct+1 = argmink∈{ct,i1,...,id} xt+1

k .

Balanced allocations: Background 7

The Memory process
■ Several different variants of d-Choice have been studied: (1 + β) [PTW15],

Thinning [FGGL21].

■ Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached
bins.

Memory Process (M = 1):
Initialization: Set the cache c0 = 1.
Iteration: For each step t ≥ 0:
■ Sample bins i1, . . . , id uniformly at random.
■ Allocate to bin j = argmink∈{ct,i1,...,id} xt

k.
■ Update the cache to ct+1 = argmink∈{ct,i1,...,id} xt+1

k .

Balanced allocations: Background 7

The Memory process
■ Several different variants of d-Choice have been studied: (1 + β) [PTW15],

Thinning [FGGL21].
■ Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached

bins.

Memory Process (M = 1):
Initialization: Set the cache c0 = 1.
Iteration: For each step t ≥ 0:
■ Sample bins i1, . . . , id uniformly at random.
■ Allocate to bin j = argmink∈{ct,i1,...,id} xt

k.
■ Update the cache to ct+1 = argmink∈{ct,i1,...,id} xt+1

k .

Balanced allocations: Background 7

The Memory process
■ Several different variants of d-Choice have been studied: (1 + β) [PTW15],

Thinning [FGGL21].
■ Shah and Prabhakar [SP02] introduced a variant of d-Choice maintaining M cached

bins.

Memory Process (M = 1):
Initialization: Set the cache c0 = 1.
Iteration: For each step t ≥ 0:
■ Sample bins i1, . . . , id uniformly at random.
■ Allocate to bin j = argmink∈{ct,i1,...,id} xt

k.
■ Update the cache to ct+1 = argmink∈{ct,i1,...,id} xt+1

k .

Balanced allocations: Background 7

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct i

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct i

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct i

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct i

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

The Memory process

ct

■ In the lightly-loaded case, Memory with d = 1 w.h.p. achieves an O(log log n)
gap [MPS02].

■ For general d ≥ 1, the bound becomes logf(d) log n + Θ(1) for f(d) ∈ (2d, 2d + 1).

What happens in the heavily-loaded case (m ≥ n)?

Balanced allocations: Background 8

Heterogeneous sampling distributions

■ Several different settings for d-Choice: outdated information [BCE+12],
graphical [BK22], adversarial noise [LS22b],

■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice:

outdated information [BCE+12],
graphical [BK22], adversarial noise [LS22b],

■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22],

adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],

. . ..
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],

■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .

■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:
▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).

▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Heterogeneous sampling distributions
■ Several different settings for d-Choice: outdated information [BCE+12],

graphical [BK22], adversarial noise [LS22b],
■ Wieder [Wie07] studied d-Choice with non-uniform sampling distributions.

1
an

1
n

b
n

■ In particular, (a, b)-biased sampling distributions s satisfy 1
an ≤ si ≤ b

n .
■ Given a, b > 1, Wieder showed that there exists d′ > 0, such that for any ϵ > 0:

▶ For any d ≥ (1 + ϵ) · d′, then d-Choice w.h.p. achieves Gap(m) = O(log log n).
▶ For any d ≤ (1 − ϵ) · d′, then d-Choice has a gap that grows with m.

How does Memory deal with heterogeneous sampling
distributions?

Balanced allocations: Background 9

Our results

■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)
achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n).

We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).

f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges:

(i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache

and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n)

, even in the presence of weights.

Balanced allocations: Background 10

Our results
■ In the heavily-loaded case (m ≥ n), [LSS22] proved that Memory (with d = M = 1)

achieves w.h.p. O(log n). We improve this to Gap(m) = O(log log n).

■ Further, we show that w.h.p. Gap(m) = Ω(log log n) for any m ≥ n.

■ For (a, b)-biased distributions with any const a, b > 1, w.h.p. Gap(m) = O(log log n).
f In contrast to Two-Choice, where the gap grows with m, for a = b = 2.

■ For any a := a(n) and b := b(n), the gap is independent of m.

Challenges: (i) long-term dependencies due to cache and (ii) biased sampling.

■ d-Reset-Memory, a variant of Memory where the cache resets every d steps has
w.h.p. Gap(m) = O(log n), even in the presence of weights.

Balanced allocations: Background 10

Power of memory: Visualisation
Open visualiser

0 0.2 0.4 0.6 0.8 1

·104
0

1,000

2,000

3,000

m/n

Gap for n = 104 for (2, 2)-biased sampling

Two-Choice
Memory

“Power of memory”

Balanced allocations: Background 11

https://dimitrioslos.com/conferences/soda23/phenomena/power_of_memory/power_of_memory.html

Why Memory recovers?

■ In Two-Choice, there is a set of bins that receives > m/n balls in expectation.
■ In Memory, w.h.p. we sample every bin roughly every an log n steps.

Balanced allocations: Background 12

Why Memory recovers?

■ In Two-Choice, there is a set of bins that receives > m/n balls in expectation.

■ In Memory, w.h.p. we sample every bin roughly every an log n steps.

Balanced allocations: Background 12

Why Memory recovers?

■ In Two-Choice, there is a set of bins that receives > m/n balls in expectation.
■ In Memory, w.h.p. we sample every bin roughly every an log n steps.

Balanced allocations: Background 12

Why Memory recovers?

■ In Two-Choice, there is a set of bins that receives > m/n balls in expectation.
■ In Memory, w.h.p. we sample every bin roughly every an log n steps.

Balanced allocations: Background 12

Upper Bound for Memory

Upper Bound for Memory 13

Outline for the O(log log n) bound

■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),
Φt

j := Φt
j(α · vj , zj) :=

∑
i:xt

i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Outline for the O(log log n) bound
■ Define the super-exponential potentials Φj for 0 ≤ j = O(log log n),

Φt
j := Φt

j(α · vj , zj) :=
∑

i:xt
i
≥zj

eα·vj ·(xt
i−zj),

where zj := t
n + j · z for constants z > 0, α ∈ (0, 1) and v > 1.

■ When Φt
j = O(n), then Gap(t) = O(j · z + log n

α·vj).

■ For j = Θ(log log n), when Φj = O(n), then Gap(m) = Θ(log log n).

■ Further, when Φt
j = O(n), then also number of bins with load at least zj+1 is at most

O(n · e−α·vj ·z).

■ We group steps into rounds (at most evj+2 · log3 n steps each) and show that

E
[

Φr+1
j+1

∣∣ Fr, Φr
j = O(n)

]
≤ Φr

j+1 ·

(
1 − evj+2

n

)
+ e−vj+1/2.

■ The base case follows by an involved analysis of the hyperbolic cosine potential
function [PTW15, LS22a].

Upper Bound for Memory 14

Layered induction over super-exponential potentials

𝑦𝑡

0

Φ0
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

log𝑛

Φ0
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

log𝑛

Φ1
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

log𝑛

𝑧 + (log𝑛)/𝑣

Φ1
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

2𝑧

log𝑛

𝑧 + (log𝑛)/𝑣

Φ2
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

2𝑧

log𝑛

𝑧 + (log𝑛)/𝑣

2𝑧 + (log𝑛)/𝑣2

Φ2
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

2𝑧

log𝑛

𝑧 + (log𝑛)/𝑣

𝑗 ⋅ 𝑧

⋮

2𝑧 + (log𝑛)/𝑣2

Φ𝑗
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Layered induction over super-exponential potentials

𝑦𝑡

0

𝑧

2𝑧

log𝑛

𝑧 + (log𝑛)/𝑣

𝑗 ⋅ 𝑧 = log log𝑛
𝑗 ⋅ 𝑧

⋮

2𝑧 + (log𝑛)/𝑣2

Φ𝑗
𝑡 = 𝒪 𝑛

Upper Bound for Memory 15

Conclusion

Conclusion 16

Summary & Future work

We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:

■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).

■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.

■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.

■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:

■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?

■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?

■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.

■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).

■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Summary & Future work
We have shown that:
■ Memory with d = M = 1 has w.h.p. Gap(m) = O(log log n).
■ Same upper bound for (a, b)-biased sampling distributions with any const a, b > 1.
■ A matching lower bound holds for any m ≥ n.
■ d-Reset-Memory has w.h.p. Gap(m) = O(log n).

Several avenues for future work:
■ What is the gap for the optimal caching strategy at step m?
■ Are there any weighted settings where Memory is superior to d-Choice?
■ Obtaining tight bounds for (a, b)-biased distributions for non-const a, b.
■ Obtaining tight bounds up to lower order terms (as in [MPS02]).
■ Analyse Memory in settings with outdated or noisy information.

Conclusion 17

Questions?

More visualisations: dimitrioslos.com/soda23
Conclusion 18

https://dimitrioslos.com/soda23

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

For k = 1, this is
like One-Choice.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Probability allocation vectors
■ Some processes induce a probability allocation vector pt, where pt

i gives the
probability to allocate to the i-th most loaded bin.

■ For One-Choice, pt =
(1

n , . . . , 1
n

)
.

■ For Two-Choice,

pt =
(

1
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 1
n2

)
.

■ For Memory, if the cache is the k-th most loaded bin, then

pt =
(

0, . . . , 0︸ ︷︷ ︸
k−1 bins

,
k

n
,

1
n

, . . . ,
1
n︸ ︷︷ ︸

n−k bins

)
.

■ A probability vector p is (δ, ϵ)-smooth if majorized by(
1 − ϵ

n
, . . . ,

1 − ϵ

n︸ ︷︷ ︸
δn bins

,
1 + ϵ̃

n
, . . . ,

1 + ϵ̃

n︸ ︷︷ ︸
(1−δ)n bins

)
.

19

Hyperbolic cosine potential

■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,
defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

Hyperbolic cosine potential
■ Peres, Talwar and Wieder [PTW15] used the hyperbolic cosine potential Γt,

defined as

Γt := Φt + Ψt :=
n∑

i=1
eα(xt

i−t/n) +
n∑

i=1
e−α(xt

i−t/n).

■ When Γm = poly(n), then Gap(m) = O
(

log n
α

)
.

■ They showed that for any (δ, ϵ)-smooth probability allocation vector pt,

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ By induction, this implies that E [Γm] ≤ c
αϵ · n.

■ And so, by Markov’s inequality Pr
[

Γm ≤ c
αϵ · n3] ≥ 1 − n−2.

Problem: pt for Memory may not be (δ, ϵ)-smooth

20

A generalised drift inequality [LS22a]

■ If for some (δ, ϵ)-smooth probability vector q,

f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,

f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,

f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,

f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

Could be allocating
more than one ball.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.

■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

A generalised drift inequality [LS22a]
■ If for some (δ, ϵ)-smooth probability vector q,f not always the prob allocation vector.

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
,

E
[

Ψt+1 ∣∣ Ft
]

≤ Ψt +
n∑

i=1
Ψt

i ·
(

1
n

− qt
i

)
· α + Ψt · C · α2

n
.

■ Then, for sufficiently small α > 0,

E
[

Γt+1 ∣∣ Ft
]

≤ Γt ·
(

1 − αϵ

n

)
+ c.

■ For 2-Reset-Memory, q is the probability allocation vector of Two-Choice.
■ which is (1/4, 1/2)-smooth, implying an O(log n) gap for Memory.

21

Handling heterogeneous distributions

■ To analyze a heterogeneous sampling distribution s (1
an ≤ si ≤ b

n), we make two
further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:

▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps.

f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.

▶ Load comparisons are based on the last reset. f makes computation of q tractable.
■ Moving probabilities between bins with almost the same load, introduces a small

additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset.

f makes computation of q tractable.
■ Moving probabilities between bins with almost the same load, introduces a small

additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and

probability of selecting a bin twice is at most d2 · b
n .

■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .

■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ.

So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).

■ And so Gap(m) = O((log n)/α) gap.

22

Handling heterogeneous distributions
■ To analyze a heterogeneous sampling distribution s (1

an ≤ si ≤ b
n), we make two

further reductions:
▶ Cache resets every d steps. f for sufficiently large d, beats the (a, b)-bias.
▶ Load comparisons are based on the last reset. f makes computation of q tractable.

■ Moving probabilities between bins with almost the same load, introduces a small
additive term in the bound,

E
[

Φt+1 ∣∣ Ft
]

≤ Φt +
n∑

i=1
Φt

i ·
(

qt
i − 1

n

)
· α + Φt · C · α2

n
+ O

(
Φt · α2

n
· (2d3b)

)
,

since Φt
i − Φt

j ≤ Φt
j · (2αd) and probability of selecting a bin twice is at most d2 · b

n .
■ Similarly for Ψ. So for sufficiently small α := α(d) > 0, E [Γm] = O(n).
■ And so Gap(m) = O((log n)/α) gap.

22

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12) (Berlin Heidelberg), Springer-Verlag, 2012,
pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ N. Bansal and W. Kuszmaul, Balanced allocations: The heavily loaded case with
deletions, 63rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’22), IEEE, 2022, pp. 801–812.

▶ O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via
thinning, 2021, arXiv:2110.05009.

23

Bibliography II
▶ R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing – modelling and

behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier,
Amsterdam, 1988.

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

▶ D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,
34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22)
(New York, NY, USA), ACM, 2022, p. 389–399.

▶ , Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT
Principles of Distributed Computing (PODC’22) (New York, NY, USA), ACM, 2022,
p. 164–175.

24

Bibliography III
▶ D. Los, T. Sauerwald, and J. Sylvester, Balanced Allocations: Caching and Packing,

Twinning and Thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22) (Alexandria, Virginia), SIAM, 2022, pp. 1847–1874.

▶ M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’02), IEEE, 2002,
pp. 799–808.

▶ R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms—ESA 2001 (Århus), Lecture
Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121–133. MR 1913547

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775. MR
3418914

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd International
Workshop on Randomization and Computation (RANDOM’98), vol. 1518, Springer,
1998, pp. 159–170. MR 1729169

25

Bibliography IV
▶ D. Shah and B. Prabhakar, The use of memory in randomized load balancing, IEEE

International Symposium on Information Theory (ISIT’02), 2002, p. 125.

▶ U. Wieder, Balanced allocations with heterogenous bins, 19th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’07), ACM, 2007, pp. 188–193.

▶ , Hashing, load balancing and multiple choice, Found. Trends Theor. Comput.
Sci. 12 (2016), no. 3-4, front matter, 276–379. MR 3683828

26

	Balanced allocations: Background
	Upper Bound for Memory
	Conclusion
	Appendix

