Balanced Allocations: Caching and Packing, Twinning and Thinning

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$, John Sylvester ${ }^{2}$

${ }^{1}$ University of Cambridge, UK
${ }^{2}$ University of Glasgow, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

\square Applications in hashing, load balancing and routing.

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}!\log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in
the least loaded of the two.

'
In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

$(1+\beta)$ process: Definition

$\frac{(1+\beta) \text { Process: }}{\text { Parameter: A mixing factor } \beta \in(0,1] \text {. }}$
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

$(1+\beta)$ process: Definition

Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit96] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.

$(1+\beta)$ process: Definition

$(1+\beta)$ Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit96] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.
In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\Theta(\log n / \beta)$ for $1 / n \leq \beta<1-\epsilon$ for constant $\epsilon>0$.

Two-Thinning and Twinning

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

\square Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Thinning has $f(n)=0$.
- [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Thinning has $f(n)=0$.
- [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
- [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the heavily-loaded case.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Thinning has $f(n)=0$.
- [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
- [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the heavily-loaded case.
[IK04, FL20, LS22] analyse d-Thinning processes.

Two-Thinning with relative thresholds

Relative-Threshold $(f(n))$ Process:
Parameter: An offset function $f(n) \geq 0$.
Iteration: For each $t \geq 0$, sample two bins i_{1} and i_{2} independently u.a.r., and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Thinning has $f(n)=0$.
- [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
- [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the heavily-loaded case.
[IK04, FL20, LS22] analyse d-Thinning processes.

Two-Thinning as Two-Choice with incomplete information

We can interpret Two-Thinning as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Two-Thinning as Two-Choice with incomplete information

We can interpret Two-Thinning as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Two-Thinning as Two-Choice with incomplete information

We can interpret Two-Thinning as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Two-Thinning as Two-Choice with incomplete information

We can interpret Two-Thinning as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

And, these two bins we cannot compare

Two-Thinning: Our results

Two-Thinning: Our results

For heavily-loaded case, Mean-Thinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Two-Thinning: Our results

For heavily-loaded case, Mean-Thinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

For sufficiently large m, MEAN-Thinning has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n)$.

Two-Thinning: Our results

For heavily-loaded case, Mean-Thinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For sufficiently large m, Mean-Thinning has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n)$.

- By a coupling argument, Relative-Threshold $(f(n))$ with $f(n) \geq 0$ has w.h.p.

$$
\operatorname{Gap}(m)=f(n)+\mathcal{O}(\log n) .
$$

Mean-Thinning: Visualisation

Twinning: Definition

Twinning Process:
Iteration: For each $t \geq 0$, sample a bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}x_{i}^{t}+2 & \text { if } x_{i}^{t}<\frac{W^{t}}{n} \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n}\end{cases}
$$

Twinning: Definition

Twinning Process:
Iteration: For each $t \geq 0$, sample a bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}x_{i}^{t}+2 & \text { if } x_{i}^{t}<\frac{W^{t}}{n}, \leftarrow-\cdots \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n} . \quad \text { where } W^{t}:=\sum_{i=1}^{n} x_{i}^{t}\end{cases}
$$

Twinning: Definition

Twinning Process:
Iteration: For each $t \geq 0$, sample a bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}x_{i}^{t}+2 & \text { if } x_{i}^{t}<\frac{W^{t}}{n}, \leftarrow \cdots \cdots \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n} . \quad \text { where } W^{t}:=\sum_{i=1}^{n} x_{i}^{t}\end{cases}
$$

Twinning: Definition

Twinning Process:
Iteration: For each $t \geq 0$, sample a bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}x_{i}^{t}+2 & \text { if } x_{i}^{t}<\frac{W^{t}}{n}, \not, \ldots \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n} . \quad \text { where } W^{t}:=\sum_{i=1}^{n} x_{i}^{t}\end{cases}
$$

Twinning: Definition

Twinning Process:
Iteration: For each $t \geq 0$, sample a bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}x_{i}^{t}+2 & \text { if } x_{i}^{t}<\frac{W^{t}}{n}, \leftarrow-\cdots \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n} . \quad \text { where } W^{t}:=\sum_{i=1}^{n} x_{i}^{t}\end{cases}
$$

Twinning: Properties

For the heavily loaded case, Twinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Twinning: Properties

- For the heavily loaded case, Twinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
- Twinning w.h.p. uses $1-\epsilon$ samples per allocatied ball, for const $\epsilon>0$.

Twinning: Properties

For the heavily loaded case, Twinning has w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
\square Twinning w.h.p. uses $1-\epsilon$ samples per allocatied ball, for const $\epsilon>0$.
However, the twinning operation may not always be implementable in practice.

Probability allocation vectors

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.
For One-Choice and Two-Choice, p is time-independent,

$$
\begin{gathered}
p_{\text {ONe-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) \\
p_{\text {Two-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
\end{gathered}
$$

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.
For One-Choice and Two-Choice, p is time-independent,

$$
\begin{gathered}
p_{\text {ONE-ChoIce }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), \\
p_{\text {Two-ChoIce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
\end{gathered}
$$

However, for Mean-Thinning, p^{t} depends on the load distribution,

$$
p_{\text {MEAN-Thining }}^{t}\left(x^{t}\right)=(\underbrace{\frac{\delta^{t}}{n}, \frac{\delta^{t}}{n}, \ldots, \frac{\delta^{t}}{n}}_{\delta \cdot n \text { entries }}, \underbrace{\frac{1+\delta^{t}}{n}, \ldots, \frac{1+\delta^{t}}{n}}_{\left(1-\delta^{t}\right) \cdot n \text { entries }}),
$$

where $\delta^{t} \in[1 / n, 1]$ is the quantile of the mean.

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:

- Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that
- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:
Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that

- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t} .
$$

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:
Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that

- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t} .
$$

Condition \mathcal{W} : When bin i is chosen for allocation,

- (Overloaded bins) If $x_{i}^{t} \geq W^{t} / n$, then allocate w_{+}balls,
- (Underloaded bins) If $x_{i}^{t}<W^{t} / n$, then allocate w_{-}balls, where w_{+}, w_{-}are positive integer constants.

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:
Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that

- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t}
$$

Condition \mathcal{W} : When bin i is chosen for allocation,

- (Overloaded bins) If $x_{i}^{t} \geq W^{t} / n$, then allocate w_{+}balls,
- (Underloaded bins) If $x_{i}^{t}<W^{t} / n$, then allocate w_{-}balls, where w_{+}, w_{-}are positive integer constants.

	$k_{1}, k_{2} \geq 0$	$k_{1}, k_{2}>0$
$w_{+} \leq w_{-}$		
$w_{+}<w_{-}$		

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:

- Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that
- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t}
$$

Condition \mathcal{W} : When bin i is chosen for allocation,

- (Overloaded bins) If $x_{i}^{t} \geq W^{t} / n$, then allocate w_{+}balls,
- (Underloaded bins) If $x_{i}^{t}<W^{t} / n$, then allocate w_{-}balls, where w_{+}, w_{-}are positive integer constants.

	$k_{1}, k_{2} \geq 0$	$k_{1}, k_{2}>0$
$w_{+} \leq w_{-}$		
$w_{+}<w_{-}$		

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:

- Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that
- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t} .
$$

Condition \mathcal{W} : When bin i is chosen for allocation,

- (Overloaded bins) If $x_{i}^{t} \geq W^{t} / n$, then allocate w_{+}balls,
- (Underloaded bins) If $x_{i}^{t}<W^{t} / n$, then allocate w_{-}balls, where w_{+}, w_{-}are positive integer constants.

| | $k_{1}, k_{2} \geq 0$ | $k_{1}, k_{2}>0$ |
| :---: | :---: | :---: | :---: |
| $w_{+} \leq w_{-}$ | | |
| $w_{+}<w_{-}$ | | |

Framework: Probability and weight bias

For processes with probability vector p^{t} such that for each round $t \geq 0$:

- Condition \mathcal{P} : There exist constants k_{1}, k_{2}, such that
- (Overloaded bins) For each bin i with $x_{i}^{t} \geq t / n$,

$$
p_{i}^{t} \leq \frac{1}{n}-\frac{k_{1} \cdot\left(1-\delta^{t}\right)}{n}=: p_{+}^{t} .
$$

- (Underloaded bins) For each bin i with $x_{i}^{t}<t / n$,

$$
p_{i}^{t} \geq \frac{1}{n}+\frac{k_{2} \cdot \delta^{t}}{n}=: p_{-}^{t} .
$$

Condition \mathcal{W} : When bin i is chosen for allocation,

- (Overloaded bins) If $x_{i}^{t} \geq W^{t} / n$, then allocate w_{+}balls,
- (Underloaded bins) If $x_{i}^{t}<W^{t} / n$, then allocate w_{-}balls, where w_{+}, w_{-}are positive integer constants.

Outline of the analysis

The hyperbolic cosine potential function

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma^{t}(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Underload potential }}
$$

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma^{t}(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$ process, $\gamma=\Theta(\beta)$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma^{t}(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Underload potential }} .
$$

For the $(1+\beta)$ process, $\gamma=\Theta(\beta)$.

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma^{t}(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$ process, $\gamma=\Theta(\beta)$.

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
- By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma^{t}(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-W^{t} / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$ process, $\gamma=\Theta(\beta)$.

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
- By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma}(3 \cdot \log n+\log c)\right] \geq 1-n^{-2} .
$$

Mean-Thinning: Why the analysis is tricky

If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p^{t} becomes very close to the One-Choice vector :

$$
p_{\text {Mean-ThinNing }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}})
$$

Mean-Thinning: Why the analysis is tricky

If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p^{t} becomes very close to the One-Choice vector :

$$
p_{\text {Mean-ThinNing }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}})
$$

- With this worst-case probability vector, we can only obtain w.h.p. a gap of $\mathcal{O}(n \log n)$ using Γ^{t} with $\gamma=\Theta(1 / n)$.

Mean-Thinning: Why the analysis is tricky

If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p^{t} becomes very close to the One-Choice vector :

$$
p_{\text {Mean-Thinning }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}})
$$

- With this worst-case probability vector, we can only obtain w.h.p. a gap of $\mathcal{O}(n \log n)$ using Γ^{t} with $\gamma=\Theta(1 / n)$.

But what happens for Γ^{t} with constant γ ?

Mean-Thinning: Bad configuration

- There is a very small bias to allocate away from overloaded bins.

The potential $\Gamma:=\Gamma(\gamma)$ for constant γ increases in expectation.

A closer look at Γ^{t}

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that
> (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\gamma}{n}\right)\right) .
$$

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that

- (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\gamma}{n}\right)\right) .
$$

- (Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\gamma^{2}}{n}\right)\right)
$$

A closer look at Γ^{t}

- An analysis similar to [PTW15] shows that
- (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\gamma}{n}\right)\right) .
$$

- (Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\gamma^{2}}{n}\right)\right)
$$

- A properly adjusted potential function drops in expectation for any interval with constant fraction of good steps.

A closer look at Γ^{t}

- An analysis similar to [PTW15] shows that
$\Rightarrow($ Good step $)$ If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\gamma}{n}\right)\right)
$$

(Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\gamma^{2}}{n}\right)\right)
$$

A properly adjusted potential function drops in expectation for any interval with constant fraction of good steps.

How can we prove that there is a constant fraction of good steps?

Mean quantile stabilisation

Mean quantile stabilisation

Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right|
$$

Mean quantile stabilisation

\square Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right|
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right|
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{W^{t}}{n}\right)^{2}
$$

Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

- Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{W^{t}}{n}\right)^{2}
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\left(p_{-}^{t} \cdot w_{-}-p_{+}^{t} \cdot w_{+}\right) \cdot \Delta^{t}+4 \cdot\left(w_{-}\right)^{2}
$$

Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right|
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

- Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{W^{t}}{n}\right)^{2}
$$

We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{\kappa_{1}}{n} \cdot \Delta^{t}+\kappa_{2} .
$$

Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

- Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{W^{t}}{n}\right)^{2}
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{\kappa_{1}}{n} \cdot \Delta^{t}+\kappa_{2} .
$$

- By induction we get,

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{\kappa_{1}}{n} \cdot \sum_{r=t}^{t+k} \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]+\kappa_{2} \cdot(k+1)
$$

Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{W^{t}}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

- Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{W^{t}}{n}\right)^{2}
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\underline{\kappa_{1}} \cdot \Delta^{t}+\kappa_{2} .
$$

$$
\text { For } k=\Theta\left(\Upsilon^{t}\right) \text {, for constant fraction of }
$$

- By induction we get,

$$
\text { steps } r \in[t, t+k], \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]=\mathcal{O}(n) .
$$

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{\kappa_{1}}{n} \cdot \sum_{r=t}^{t+k} \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]+\kappa_{2} \cdot(k+1) .
$$

Recovery from a bad configuration $(n=1000)$

Recovery for Mean-Thinning

$\left.\begin{array}{|cc|}\hline- & \text { Exponential potential } \\ - & \text { Quadratic potential } \\ - & \text { Absolute potential } \\ \text { Quantile position }\end{array}\right]$

Recovery from a bad configuration $(n=1000)$

Recovery for Mean-Thinning

$\left.\begin{array}{|cc|}\hline- & \text { Exponential potential } \\ - & \text { Quadratic potential } \\ - & \text { Absolute potential } \\ \text { Quantile position }\end{array}\right]$

As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.

Recovery from a bad configuration $(n=1000)$

Recovery for Mean-Thinning

\square As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.
\square As Δ^{t} becomes smaller, δ^{t} improves and Γ^{t} drops in expectation.

Recovery from a bad configuration $(n=1000)$

First steps of recovery for Mean-Thinning

As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.
As Δ^{t} becomes smaller, δ^{t} improves and Γ^{t} drops in expectation.

Completing the analysis

Other applications of quantile stabilisation:

Completing the analysis

Other applications of quantile stabilisation:
Sample efficiency: $2-\epsilon$ for Mean-Thinning and $1-\epsilon$ for Twinning.

Completing the analysis

Other applications of quantile stabilisation:

- Sample efficiency: $2-\epsilon$ for Mean-Thinning and $1-\epsilon$ for Twinning.

Lower bound of $\Omega(\log n)$ for Mean-Thinning and Twinning.

Packing (and Caching)

Packing: Definition

Packing: Definition

Packing: Definition

Packing Process:
Iteration: For each $t \geq 0$, sample bin i u.a.r., and update its load:

$$
x_{i}^{t+1}= \begin{cases}\left\lceil\frac{W^{t}}{n}\right\rceil+1 & \text { if } x_{i}^{t}<\frac{W^{t}}{n} \\ x_{i}^{t}+1 & \text { if } x_{i}^{t} \geq \frac{W^{t}}{n}\end{cases}
$$

Packing: Definition

- We analyze another general framework that includes Packing and Caching [MPS02].
\square We prove an $\mathcal{O}(\log n)$ gap for these processes.

Conclusion

Conclusion

Summary of results:

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

Conclusion

Summary of results:

- Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.
- Proved a matching lower bound for Mean-Thinning and Twinning.

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

- Proved a matching lower bound for Mean-Thinning and Twinning.

Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Packing and Caching.

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

- Proved a matching lower bound for Mean-Thinning and Twinning.
\square Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Packing and Caching.
Future work:

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

- Proved a matching lower bound for Mean-Thinning and Twinning.

Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Packing and Caching.
Future work:
Extend the framework to non-constant probability and weight biases.

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

- Proved a matching lower bound for Mean-Thinning and Twinning.

Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Packing and Caching.
Future work:
\square Extend the framework to non-constant probability and weight biases.

- Find a natural framework that implies $o(\log n)$ gap bounds.

Conclusion

Summary of results:
Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Mean-Thinning and Twinning.

- Proved a matching lower bound for Mean-Thinning and Twinning.
\square Proved $\operatorname{Gap}(m)=\mathcal{O}(\log n)$ for a set of processes including Packing and Caching.
Future work:
\square Extend the framework to non-constant probability and weight biases.
Find a natural framework that implies $o(\log n)$ gap bounds.
- Investigate Mean-Thinning with outdated information and noise.

Questions?

Visualisations: dimitrioslos.com/soda22

Questions?

Visualisations: dimitrioslos.com/soda22

Appendix

Appendix A: Table of results

Process	Lightly Loaded Case $m=\mathcal{O}(n)$		Heavily Loaded Case $m=\omega(n)$	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
$(1+\beta)$, const $\beta \in(0,1)$	$\frac{\log n}{\log \log n}$	[PTW15]	$\log n$	$\log n$
Caching	$\log \log n$	[MPS02]	-	$\log n$
Packing	$\frac{\log n}{\log \log n}$		$\frac{\log n}{\log \log n}$	$\log n$
Twinning	$\frac{\log n}{\log \log n}$		$\log n$	
Mean-Thinning	$\frac{\log n}{\log \log n}$		$\log n$	
Relative-Threshold $(f(n))$	$\sqrt{\frac{\log n}{\log \log n}} \quad$ [FL20]	$\frac{\log n}{\log \log n}$	$\frac{\log n}{\log \log n} \quad[\mathrm{LS} 22]$	$f(n)+\log n$
Adaptive-Two-Thinning	$\sqrt{\frac{\log n}{\log \log n}}$	[FL20]	$\frac{\log n}{\log \log n} \quad[\mathrm{LS} 22]$	$\frac{\log n}{\log \log n} \text { [FGGL21] }$

Table: Overview of the Gap achieved (with probability at least $1-n^{-1}$), by different allocation processes considered in this work (rows in Green) and related works (rows in white and Gray).

Appendix B: Experimental results

Figure: Average Gap vs. $n \in\left\{10^{3}, 10^{4}, 5 \cdot 10^{4}, 10^{5}\right\}$ and $m=1000 \cdot n$.

Appendix C: Detailed experimental results

n	MEAN-THINNING	TWINNING	PACKING	Caching
10^{5}	$\begin{array}{rr} 8: & 3 \% \\ \mathbf{9}: & 32 \% \\ \mathbf{1 0}: & 38 \% \\ \mathbf{1 1}: & 15 \% \\ 12: & 6 \% \\ 13: & 3 \% \\ 14: & 3 \% \end{array}$	$14:$ 2% $15:$ 5% $16:$ 25% $17:$ 28% $18:$ 17% $19:$ 10% $20:$ 8% $21:$ 1% $22:$ 1% $23:$ 3%	$\begin{aligned} & 12: \\ & 13: \\ & 13 \\ & 14: \\ & 14 \\ & \mathbf{1 5}: \\ & \mathbf{1 6}: \\ & 16 \% \\ & 17: \\ & 18: \\ & 18: \\ & 19: \\ & 19 \% \\ & 20: \\ & \hline 0 \% \\ & \hline \end{aligned}$	3: 100\%

Table: Summary of observed gaps for $n \in\left\{10^{3}, 10^{4}, 10^{5}\right\}$ bins and $m=1000 \cdot n$ number of balls, for 100 repetitions. The observed gaps are in bold and next to that is the $\%$ of runs where this gap value was observed.

Appendix D1: Recovery from a bad configuration

Appendix D2: Recovery from a bad configuration

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385.
- O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation, Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.
- O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via thinning, 2021, arXiv:2110.05009.
- O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab. 25 (2020), Paper No. 1, 13.
- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.

Bibliography II

- Kazuo Iwama and Akinori Kawachi, Approximated two choices in randomized load balancing, 15th International Symposium on Algorithms and Computation (ISAAC'04), Lecture Notes in Computer Science, vol. 3341, Springer, 2004, pp. 545-557.
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.
- Dimitrios Los and Thomas Sauerwald, Balanced allocations with incomplete information: The power of two queries, 13th Innovations in Theoretical Computer Science Conference (ITCS'22), vol. 215, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 103:1-103:23.
- M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis, University of California at Berkeley, 1996.
- M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'02), IEEE, 2002, pp. 799-808.

Bibliography III

- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures \& Algorithms 47 (2015), no. 4, 760-775.
- M. Raab and A. Steger, "Balls into bins"- a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170.

