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Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
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Applications in hashing [PRO01], load balancing [Wiel6] and routing [GKKS88].
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Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @( logn ) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @( logn ) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @( logn ) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @( logn ) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% v log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @( logn ) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

Balanced allocations: Background



ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = O &2 Gon8l1].
loglogn
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
x

AY

AY

Two-CHOICE Process: \
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background



Noisy processes

Noisy processes



Motivation

Noisy processes



Motivation

1. What if the load information of a bin is outdated?

Noisy processes



Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

Noisy processes



Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes



Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive

amount? /

3. What about random (additive) perturbations?

Noisy processes



The Adversarial Comparison (g-ADV) setting


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting



https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 5

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

1O

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

1O

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

4>g

1O

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

4>g

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |x’f1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

g-BOUNDED: Adw

prefers heavier bins.

4>g

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and i5 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:U’§1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

g-BOUNDED: Adversary
prefers heavier bins.

4>g

g-Myopric-Comp: Adversary
allocates randomly.

11 19

Noisy processes


https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and i5 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:Uf1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

Isl g-BOUNDED: Open
in Visualiser.

Il g-MyYOPIC-COMP: Open
in Visualiser.

Noisy processes

11

4>g

g-BOUNDED: Adversary
prefers heavier bins.

g-Myopric-Comp: Adversary
allocates randomly.



https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

Result for the g-ADV setting (Main result of our work)



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.

Noisy processes



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).

Noisy processes



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.

They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).

We prove that for any g-ADV process,

Noisy processes



Result for the g-ADV setting (Main result of our work)

Noisy processes

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Gap(m), m = 1000n, n € [10%,5 - 10%,10°]

30} €

10 |- 1

0 5 10 15 20

Noise parameter g

Noisy processes



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Otherwise, for any m, w.h.p. Gap(m) = O( ;% - loglogn).

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30 e

20 - b

10| B
0 5 10 15 20

Noise parameter g

Noisy processes



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(-- - loglogn).

log g

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30| g For g = O(1):

Gap(m) = O(loglogn).

10 | 1

0 5 10 15 20

Noise parameter g

Noisy processes



Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Otherwise, for any m, w.h.p. Gap(m) = O( ;2 - loglogn).

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30| g For g = O(1):
Gap(m) = O(loglogn).

20 ]

10l , For g = Q(polylog(n)):
Gap(m) = O(g).
00 5 lb 1‘5 20

Noise parameter g

Noisy processes



Result for the g-ADV setting (Main result of our work)

Noisy processes
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E[A®| 3] < Dng.
This concludes the O(g + logn) bound.
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Appendix A: Detailed results for noise models

Model Range Lower Bound Upper Bound
g-BOUNDED 1<yg - O(g - log(ng))
g-ADVv 1<g O(g + logn)
g-ADV 1< g<logn (’)(& -loglog )
g-Myopic-Comp e < g Q(g) -
g-Myopic-Comp 1< g < o8t Q(L; - loglogn) -
0-NOISY-LOAD 1<o O(o+/logn - log(no))

Q(min{1, 0} - (logn)'/3)
Q(min{c*/%,5%/> . \/logn})

-NoI1sY-Loap  2-(logn) /3 <o

o-NoIsy-LOAD 32<o0

Table: Overview of the lower and upper bounds for TwWO-CHOICE with noisy information derived
in previous works (rows in /Gray ) and in this work (rows in Green). Upper bounds hold for all
values of m > n, while lower bounds may only hold for a suitable value of m.
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Appendix A: Detailed results for outdated information

Model Range Lower Bound Upper Bound
b-BATCH b= Q(nlogn) Q(b/n) O(b/n)
b-BaTCH b=n Q=) O(logn)
7-DELAY T=n O
T-DELAY 7 € [n-e” (8™ nlogn] - o (log(@ﬁ’/%)
7-DELAY T =nl=¢ - O(loglogn)
b-BATCH b=n AU in) -
b-BarcH b€ [n-e (€™ nlogn] Q (M%) -
b-BATCH b=n'"¢ Q(loglogn) -

Table: Overview of the lower and upper bounds for Two-CHOICE with outdated information,
derived in previous works (rows in Gray) and in this work (rows in Green ). Upper bounds hold
for all values of m > n, while lower bounds may only hold for a suitable value of m.

24



Appendix B: Analysis outline for outdated information

4

GAaP(t)

g1-Apv-ComPInstance g2-ADV-CoMPInstance
Phase 1 Phase 2 Phase 3

nlog*n

g21og(ngz)

9
log g2

-loglogn

T drops in expectation Tight analysis

Figure: 7-DELAY (and b-BATCH) can be exactly simulated using a g1-ADvV-COMP process with
g1 = 7 < nlogn. This gives the O(nlog?n) gap (since 7 < nlogn). Then w.h.p. for n® steps it
can be simulated using a g2-ADV-COMP process where go is the ONE-CHOICE gap for 27 balls.
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Appendix C: Upper bound of O(glog(ng)) (I)
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i=1 i=1

Overload potential ~ Underload potential
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By Markov’s inequality, we get Pr [I‘m } >1—n"2
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n

Implies that E[T™] < % -n.
By Markov’s inequality, we get Pr [I‘m < %3} > 1 —n~2 which implies

log(n/v)

Pr [Gap(m) <3 5

]>1—n_2.
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Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)
Piat) = Y eral=t/m) o 3 emtel=t/m) |
i=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g ] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1

<Ft-(1—l) )
= asn) €

Implies that E[T™] < % -n.

By Markov’s inequality, we get Pr [I‘m < %3} > 1 —n~2 which implies

Pr | Gap(m) <3-

bg(n//y)] >1— n—2.
This gives that Gap(m) = O(M)‘

v
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Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.
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Appendix C: Upper bound of O(glog(ng)) (II)
For g-ADV, the adversary can “transfer” 2/n? probability from i; to iy if
|x§1 - x§2| é «g'
Each transfer increases the bound by at most
2 t t 2 t 2 t
= (ewmi—t/nw) _ ev(m,-,—t/n)) =5 Y@=t (19 1) < - A2 =t/
by choosing v = ©(1/g). Similarly for the underloaded component.
Hence, on aggregate

n AQ
E[TT |y ] ST 4> i (v+92) € 4 pi (-7 +97) e+ 0 (%Ft) +0 <1‘T>

Y
- n
i=1

<Ft.(1—l) .
= o6n) ¢

27



Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to iy if

|z}, — 2, < g.

Each transfer increases the bound by at most

% - (ewz;—t/nw) _ ev(ms—t/n)> _ % M) (19 1) < % 2 (el —t/n),
by choosing v = ©(1/g). Similarly for the underloaded component.

Hence, on aggregate

n AQ
E[TT |y ] ST 4> i (v+92) € 4 pi (-7 +97) e+ 0 (%Ft) +0 <1‘T>

- n
=1

v (1o ) e

- 96n te

This implies that Gap(m) = O(glog(ng)).
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Appendix D: Upper bound of (’)( ; loglog n) for g <logn

We define the super-exponential potentlals, for 1<5< 10531% =k:

Zexp( (logm) - j_k-(xﬁ—i—zj)+),

n

where z; :==©(j - g).
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We define the super-exponential potentlals for 1<5<

Zexp( (logn) - g/ * t

t .
'(xi_g_zj) ),
where z; :==©(j - g).

=k

log logn
log g

When ®%_; = O(n), then the number of bins 7 with z} > L 4 2; is at most

i=n-0;

-
25,
Hence, ¢! < =2

n
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Similarly to [LS?Qb]
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Hence, qz <=k

Similarly to [LS?Qb]

1
E[o* | 3,0\, =On)] gq>§.(1—g>+2.

And so, after s = n - polylog(n) steps, we get
E [ [ § Nrefti46)Pj_1 = O(n) | = O(n).
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Hence, qz <=k

Similarly to [LS?Qb]

1
E[o* | 3,0\, =On)] gq>§.(1—g>+2.

And so, after s = n - polylog(n) steps, we get
E [ [ § Nrefti46)Pj_1 = O(n) | = O(n).
Finally, when ®! | = O(n), we obtain that

Gap(t) =0(k-g) =0 (

9 1
log log n) .
log g



Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

yt 1 |
--------- T s f = T exp(y - (...))
P =Y exp(y- (logn)'/®- (..
P =Y exp(y- (logn)?/® - (..
0 _____________ D ——
df=0(mn) = yf <logn

)
)
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v p
S v logn ®f = > exp(y-(...)
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@5 = Y exp(y - (logn)*/® - (..))
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