
Balanced Allocations with the Choice of Noise

Dimitrios Los1, Thomas Sauerwald1

1University of Cambridge, UK

1

Balanced allocations: Background

Balanced allocations: Background 2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

Balanced allocations: Background 3

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

Noisy processes

Noisy processes 5

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes 6

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes 6

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes 6

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes 6

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes 6

The Adversarial Comparison (g-Adv) setting

■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting

■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2

and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.

■ In a g-Adv process (say for g = 3), again we sample two bins:
▶ If |xt

i1 − xt
i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

2 ≤ g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

2 ≤ g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.

▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

4 > g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

4 > g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

4 > g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

4 > g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-Adv) setting
■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

i1 i2

4 > g

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

Result for the g-Adv setting (Main result of our work)

■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded
process.

■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.

■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).

■ We prove that for any g-Adv process,
▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).

▶ Otherwise, for any m, w.h.p. Gap(m) = O(g
log g

· log log n).
■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).

▶ Otherwise, for any m, w.h.p. Gap(m) = O(g
log g

· log log n).
■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Result for the g-Adv setting (Main result of our work)
■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded

process.
■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O(g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.

0 5 10 15 20
0

10

20

30

Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded
g-Myopic-Comp

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).

Noisy processes 8

Two-Choice with outdated information

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice
where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).

■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).

■ For b = n, we show that w.h.p. Gap(m) = Θ
(log n

log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)

, like One-Choice with n balls.
■ More generally, for b ∈

[
n

polylog(n) , n log n
]

it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batch).
■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

(log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-Choice with outdated information: Reduction

■ For b = n, w.h.p. any bin can be selected at most O
(log n

log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
a
p
(m

)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: Reduction
■ For b = n, w.h.p. any bin can be selected at most O

(log n
log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
a
p
(m

)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: Reduction
■ For b = n, w.h.p. any bin can be selected at most O

(log n
log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
a
p
(m

)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: Reduction
■ For b = n, w.h.p. any bin can be selected at most O

(log n
log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
a
p
(m

)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: Reduction
■ For b = n, w.h.p. any bin can be selected at most O

(log n
log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
a
p
(m

)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: Reduction
■ For b = n, w.h.p. any bin can be selected at most O

(log n
log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
(log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

(g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).

100 101 102 103 104 105
0

10

20

30

Batch size b

G
ap

(m
)

b-Batch

b-Batch for m = 1000 · n
One-Choice for m = b

Noisy processes 10

Two-Choice with outdated information: τ-Delay

■ Same argument applies when the reported bin load x̃t−1
i ∈ [xt−τ

i , xt−1
i].

■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i1

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].

■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i1

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i1

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− 1

xt
i1

t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).
■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with outdated information: τ-Delay
■ Same argument applies when the reported bin load x̃t−1

i ∈ [xt−τ
i , xt−1

i].
■ We call this the τ-Delay process (τ = b).
■ Same upper bounds apply here.

t− τ t− 1

xt
i1

t− τ t− 1

xt
i2

Open in Visualiser.

Noisy processes 11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-Choice with random noise (I)

■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.

■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.

■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (I)
■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)
■ Allocate to the bin with smaller load estimate.

i1 i2 Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-Choice with random noise (II)

■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.

■ Define the probability that the comparison between bins i1 and i2 is correct as
ρ(|xt

i1
− xt

i2
|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes:

g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded,

g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp,

σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load

...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Two-Choice with random noise (II)
■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

1

0.5

0
g

δ

ρ(δ)

1

0.5

0
g

δ

ρ(δ)

1

0.5

0

σ 2σ

δ

ρ(δ)

Noisy processes 13

Techniques

Techniques 14

Overview

Techniques 15

Overview

Gap(𝑡)

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

𝑔 log(𝑛𝑔)

𝑚

𝑡

Techniques 15

Overview

Gap(𝑡)

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Recovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

𝑔 + log 𝑛

Techniques 15

Overview

Gap(𝑡)

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Recovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

Interplay between three
potential functions

𝑔 + log 𝑛

Techniques 15

Overview

Gap(𝑡)

𝑔 + log 𝑛

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Stabilization phaseRecovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

Interplay between three
potential functions

Techniques 15

Overview

Gap(𝑡)

𝑔 + log 𝑛

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Stabilization phaseRecovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

𝑠1

Interplay between three
potential functions

Techniques 15

Overview

Gap(𝑡)

𝑔 + log 𝑛

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Stabilization phaseRecovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

𝑠1 𝑠2

Interplay between three
potential functions

Techniques 15

Overview

Gap(𝑡)

𝑔 + log 𝑛

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Stabilization phaseRecovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

𝑠1 𝑠2

𝑔

log 𝑔
⋅ log log 𝑛

𝑠3 ⋯

⋮

Interplay between three
potential functions

Techniques 15

Overview

Gap(𝑡)

𝑔 + log 𝑛

𝑚 − Θ(𝑛𝑔 log 𝑛𝑔 2)

Stabilization phaseRecovery phase

𝑔 log(𝑛𝑔)

𝑠0 𝑚

𝑡

𝑠1 𝑠2

𝑔

log 𝑔
⋅ log log 𝑛

𝑠3 ⋯

⋮

Interplay between three
potential functions

Layered induction over
super-exponential

potentials

Techniques 15

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
i: 21 19 13 12 12 11 8 6

i: 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Two-Choice p

g-Adv qt

Techniques 16

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
i: 21 19 13 12 12 11 8 6

i: 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Two-Choice p

g-Adv qt

Techniques 16

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
i: 21 19 13 12 12 11 8 6

i: 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Two-Choice p

g-Adv qt

Techniques 16

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
i: 21 19 13 12 12 11 8 6

i: 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Two-Choice p

g-Adv qt

Techniques 16

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
i: 21 19 13 12 12 11 8 6

i: 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Two-Choice p

g-Adv qt

Techniques 16

Upper Bound: O(g + log n)

■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

0−730g 730g

yti = xt
i − t/n

Γt
i

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n).

Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).

■ Challenge: For some configurations, Γt may increase in expectation, even when
large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)
■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+)]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques 17

Upper Bound: O(g + log n)

■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg.

So,
there is a bias to place away from bins with load ≥ t/n + 2Dg.

■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.

■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3

Techniques 18

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1

≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g

≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.

■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.

■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [∆s | Ft] ≤ Dng.

■ This concludes the O(g + log n) bound.

Techniques 19

Summary & Future Work
Summary of results:

■ For any g-Adv process,
▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).

▶ Otherwise, for any m, w.h.p. Gap(m) = O
(

g
log g

· log log n
)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.

■ Tight bounds for Two-Choice with outdated information.
Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:

■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).

■ Analyze the noisy and outdated setting for other processes.

0 5 10 15 20
0

10

20

30

Noise parameter g (or σ)

G
ap

(m
),

m
=

10
00

·n
g-Bounded
g-Myopic-Comp
σ-Noisy-Load

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

0 5 10 15 20
0

10

20

30

Noise parameter g (or σ)

G
ap

(m
),

m
=

10
00

·n
g-Bounded
g-Myopic-Comp
σ-Noisy-Load

Techniques 20

Summary & Future Work
Summary of results:
■ For any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.

100 101 102 103 104 105
0

10

20

30

Batch size b

G
ap

(m
)

b-Batch for m = 1000 · n
One-Choice for m = b

Techniques 20

Questions?

Visualisations: dimitrioslos.com/podc22
Techniques 21

https://dimitrioslos.com/podc22

Questions?

Visualisations: dimitrioslos.com/podc22
Techniques 22

https://dimitrioslos.com/podc22

Appendix A: Detailed results for noise models

Model Range Lower Bound Upper Bound

g-Bounded 1 ≤ g – O(g · log(ng))

g-Adv 1 ≤ g – O(g + log n)

g-Adv 1 < g ≤ log n – O
(

g
log g · log log n

)
g-Myopic-Comp log n

log log n ≤ g Ω(g) ––

g-Myopic-Comp 1 < g ≤ log n
log log n

Ω
(

g
log g · log log n

)
–

σ-Noisy-Load 1 ≤ σ – O(σ
√

log n · log(nσ))

σ-Noisy-Load 2 · (log n)−1/3 ≤ σ Ω(min{1, σ} · (log n)1/3) –

σ-Noisy-Load 32 ≤ σ Ω(min{σ4/5, σ2/5 ·
√

log n}) –

Table: Overview of the lower and upper bounds for Two-Choice with noisy information derived
in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold for all
values of m ≥ n, while lower bounds may only hold for a suitable value of m.

23

Appendix A: Detailed results for outdated information

Model Range Lower Bound Upper Bound

b-Batch b = Ω(n log n) Ω(b/n) O(b/n)

b-Batch b = n Ω
(log n

log log n

)
O(log n)

τ-Delay τ = n – O(log n
log log n)

τ-Delay τ ∈
[
n · e−(log n)c

, n log n
]

– O
(

log n
log((4n/τ) log n)

)
τ-Delay τ = n1−ϵ – O(log log n)

b-Batch b = n Ω(log n
log log n) –

b-Batch b ∈
[
n · e−(log n)c

, n log n
]

Ω
(

log n
log((4n/b) log n)

)
–

b-Batch b = n1−ϵ Ω(log log n) –

Table: Overview of the lower and upper bounds for Two-Choice with outdated information,
derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold
for all values of m ≥ n, while lower bounds may only hold for a suitable value of m.

24

Appendix B: Analysis outline for outdated information

g1-Adv-CompInstance g2-Adv-CompInstance

0 t0 t1 m

Gap(t)

Phase 1 Phase 2 Phase 3

n log2 n

g2 log(ng2)

g2
log g2

· log log n

t

Γ drops in expectation Tight analysis

. . .

Figure: τ -Delay (and b-Batch) can be exactly simulated using a g1-Adv-Comp process with
g1 = τ ≤ n log n. This gives the O(n log2 n) gap (since τ ≤ n log n). Then w.h.p. for n3 steps it
can be simulated using a g2-Adv-Comp process where g2 is the One-Choice gap for 2τ balls.

25

Appendix C: Upper bound of O(g log(ng)) (I)

■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2

which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (I)
■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [Γm] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O(log(n/γ)
γ).

26

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.

■ Each transfer increases the bound by at most
2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)

= 2
n2 · γ · eγ(xt

i−t/n) · (eγg − 1) ≤ 2
n2 · γ2 · eγ(xt

i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1)

≤ 2
n2 · γ2 · eγ(xt

i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g).

Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.

■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.
■ Each transfer increases the bound by at most

2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).

27

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).

■ When Φt
j−1 = O(n), then the number of bins i with xt

i ≥ t
n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .

■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix D: Upper bound of O(g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.

28

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦1

𝑡 < log𝑛

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

log𝑛 Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿1⋅𝑛

𝑡 < log𝑛 1/3 ∧ 𝑝𝛿1⋅𝑛 ≤
2𝛿1
𝑛

𝛿1

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

log𝑛

𝛿1

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛

𝛿1𝛿2

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿2⋅𝑛

𝑡 < 2 log𝑛 1/3 ∧ 𝑝𝛿2⋅𝑛 ≤
2𝛿2
𝑛

𝛿1𝛿2

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

2 ⋅ log𝑛 1/3 + log𝑛 1/3

𝛿1𝛿2

Φt
0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))

29

Bibliography I
▶ D. Alistarh, T. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally

linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’18), ACM, 2018, pp. 133–142.

▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.
Comput. 29 (1999), no. 1, 180–200.

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12) (Berlin Heidelberg), Springer-Verlag, 2012,
pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385.

▶ R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing – modelling and
behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy,
Elsevier, Amsterdam, 1988.

30

Bibliography II
▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.

Assoc. Comput. Mach. 28 (1981), no. 2, 289–304.

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542.

▶ D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,
34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22),
ACM, 2022, p. 389–400.

▶ , Balanced Allocations with Incomplete Information: The Power of Two Queries,
13th Innovations in Theoretical Computer Science Conference (ITCS’22) (Dagstuhl,
Germany), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
pp. 103:1–103:23.

▶ R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms—ESA 2001 (Århus), Lecture
Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121–133.

31

Bibliography III
▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the

(1 + β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775.

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170.

▶ U. Wieder, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput.
Sci. 12 (2016), no. 3-4, front matter, 276–379.

32

	Balanced allocations: Background
	Noisy processes
	Techniques
	Appendix

	anm1:
	1.0:
	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

