Balanced Allocations with the Choice of Noise

<u>Dimitrios Los^1 </u>, Thomas Sauerwald¹

¹University of Cambridge, UK

Balanced allocations: Background

Allocate m tasks (balls) sequentially into n machines (bins).

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the **maximum load** $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the **gap**, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

Balanced allocations: Background

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
Meaning with probability
at least $1 - n^{-c}$ for constant $c > 0$.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>TWO-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $Gap(n) = log_2 log n + \Theta(1)$ [KLMadH96, ABKU99].

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

TWO-CHOICE Process:

Iteration: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case (m = n), w.h.p. $Gap(n) = log_2 log n + \Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].

Balanced allocations: Background

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \log_2 \log n + \bigoplus(1)$ [KLMadH96, ABKU99].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].

Balanced allocations: Background

Noisy processes

1. What if the load information of a bin is **outdated**?

1. What if the load information of a bin is **outdated**?

2. What if an **adversary** can **perturb** the load of a bin by some additive amount?

1. What if the load information of a bin is **outdated**?

2. What if an **adversary** can **perturb** the load of a bin by some additive amount?

3. What about **random** (additive) perturbations?

1. What if the load information of a bin is **outdated**?

- 2. What if an **adversary** can **perturb** the load of a bin by some additive amount?
- 3. What about random (additive) perturbations?

In Two-CHOICE, we sample two bins i_1 and i_2

In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

In TWO-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin. In a *g*-ADV process (say for g = 3), again we sample two bins:

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
- In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \le g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
- In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \le g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
- In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \le g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
- In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \leq g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
 - In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \leq g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

- In Two-CHOICE, we sample two bins i_1 and i_2 and allocate to the least loaded bin.
 - In a *g*-ADV process (say for g = 3), again we sample two bins:
 - ▶ If $|x_{i_1}^t x_{i_2}^t| \leq g$, the adversary can allocate to **any** of the two bins.
 - ▶ Otherwise, allocate to the **lesser** loaded of the two.

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - $\blacktriangleright \ \text{ If } g \geq \log n \text{, then for any } m \text{, w.h.p. } \mathrm{Gap}(m) = \mathcal{O}(g).$

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. Gap(m) = O(g).

Gap $(m), m = 1000n, n \in [10^4, 5 \cdot 10^4, 10^5]$

Noise parameter \boldsymbol{g}

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{g}{\log g} \cdot \log \log n)$.

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{g}{\log g} \cdot \log \log n)$.

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{g}{\log g} \cdot \log \log n)$.

For $g = \mathcal{O}(1)$: Gap $(m) = \mathcal{O}(\log \log n)$.

For $g = \Omega(\operatorname{polylog}(n))$: Gap $(m) = \mathcal{O}(g)$.

- Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK⁺18] analyzed the g-BOUNDED process.
- They proved that for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng))$.
- We prove that for any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{g}{\log g} \cdot \log \log n)$.
- For both cases, we prove a matching lower bound for *g*-MYOPIC-COMP.

For $g = \mathcal{O}(1)$: Gap $(m) = \mathcal{O}(\log \log n)$.

For $g = \Omega(\operatorname{polylog}(n))$: $\operatorname{Gap}(m) = \mathcal{O}(g)$.

$\ensuremath{\mathrm{TWO-CHOICE}}$ with outdated information

$\operatorname{Two-Choice}$ with outdated information

$\operatorname{Two-Choice}$ with outdated information

$\operatorname{Two-Choice}$ with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ studied TWO-CHOICE where balls are allocated in *batches* of size b (*b*-BATCH).

For b = n, they showed that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\log n)$.

$\operatorname{Two-Choice}$ with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ studied TWO-CHOICE where balls are allocated in *batches* of size *b* (*b*-BATCH).
- For b = n, they showed that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\log n)$.
- For $b \in [n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m) = \Theta(b/n)$.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ studied TWO-CHOICE where balls are allocated in *batches* of size *b* (*b*-BATCH).
- For b = n, they showed that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\log n)$.
- For $b \in [n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m) = \Theta(b/n)$.
- For b = n, we show that w.h.p. $\operatorname{Gap}(m) = \Theta(\frac{\log n}{\log \log n})$

$\operatorname{Two-Choice}$ with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ studied TWO-CHOICE where balls are allocated in *batches* of size *b* (*b*-BATCH).
- For b = n, they showed that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\log n)$.
- For $b \in [n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m) = \Theta(b/n)$.
- For b = n, we show that w.h.p. $\operatorname{Gap}(m) = \Theta(\frac{\log n}{\log \log n})$, like ONE-CHOICE with n balls.

$\operatorname{Two-Choice}$ with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ studied TWO-CHOICE where balls are allocated in *batches* of size *b* (*b*-BATCH).
- For b = n, they showed that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\log n)$.
- For $b \in [n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m) = \Theta(b/n)$.
- For b = n, we show that w.h.p. $\operatorname{Gap}(m) = \Theta(\frac{\log n}{\log \log n})$, like ONE-CHOICE with n balls.
- More generally, for $b \in \left[\frac{n}{\text{polylog}(n)}, n \log n\right]$ it follows ONE-CHOICE with b balls.

$\ensuremath{\mathrm{TWO-CHOICE}}$ with outdated information: Reduction

$\operatorname{Two-Choice}$ with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most $\mathcal{O}(\frac{\log n}{\log \log n})$ times in a batch.

TWO-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most $\mathcal{O}(\frac{\log n}{\log \log n})$ times in a batch.

So, w.h.p. we can simulate *b***-BATCH** with a *g***-ADV** process with $g = \Theta(\frac{\log n}{\log \log n})$.

TWO-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(log log n) times in a batch.
So, w.h.p. we can simulate b-BATCH with a g-ADV process with g = Θ(log n)/log log n).
Hence, w.h.p.

$$\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right).$$
TWO-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(log n/log log n) times in a batch.
So, w.h.p. we can simulate b-BATCH with a g-ADV process with g = Θ(log n/log log n).
Hence, w.h.p.

$$\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right).$$

For $b \in \left[\frac{n}{\operatorname{polylog}(n)}, n \log n\right]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.

TWO-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(log n/log log n) times in a batch.
So, w.h.p. we can simulate b-BATCH with a g-ADV process with g = Θ(log n/log log n).
Hence, w.h.p.

$$\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right).$$

For $b \in \left[\frac{n}{\operatorname{polylog}(n)}, n \log n\right]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.

Noisy processes

Same argument applies when the reported bin load $\widetilde{x}_i^{t-1} \in [x_i^{t-\tau}, x_i^{t-1}]$.

Same argument applies when the reported bin load x̃^{t-1}_i ∈ [x_i^{t-τ}, x_i^{t-1}].
We call this the τ-DELAY process (τ = b).
Same upper bounds apply here.

Sample two random bins.

Sample two random bins.

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

Sample two random bins.

Obtain *load estimates* by adding noise to the bin loads.

▶ (e.g., normal noise $\rightsquigarrow \sigma$ -NOISY-LOAD)

We can further generalize this setting.

We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

$$\rho(|x_{i_1}^t - x_{i_2}^t|).$$

We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

 $\rho(|x_{i_1}^t - x_{i_2}^t|).$

Captures several processes:

• We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

 $\rho(|x_{i_1}^t - x_{i_2}^t|).$

Captures several processes: *g*-BOUNDED,

• We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

 $\rho(|x_{i_1}^t - x_{i_2}^t|).$

Captures several processes: g-BOUNDED, g-MYOPIC-COMP,

• We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

 $\rho(|x_{i_1}^t - x_{i_2}^t|).$

Captures several processes: g-BOUNDED, g-MYOPIC-COMP, σ -NOISY-LOAD

• We can further generalize this setting.

Define the probability that the comparison between bins i_1 and i_2 is correct as

 $\rho(|x_{i_1}^t - x_{i_2}^t|).$

Captures several processes: g-BOUNDED, g-MYOPIC-COMP, σ -NOISY-LOAD ...

Techniques

Overview

Overview

Techniques

Techniques

Probability allocation vector p^t , where p_i^t is the prob. of allocating to *i*-th heaviest bin.

Probability allocation vector p^t , where p_i^t is the prob. of allocating to *i*-th heaviest bin.

For ONE-CHOICE,
$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$
.

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th heaviest bin.
- For ONE-CHOICE, $p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$.
- For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th heaviest bin.
- For ONE-CHOICE, $p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$.
- For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

For g-ADV, the probability vector q^t , is obtained from $p_{\text{TWO-CHOICE}}$, by possibly moving $2/n^2$ probability between bins i_1, i_2 with loads $|x_{i_1}^t - x_{i_2}^t| \leq g$.

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th heaviest bin.
- For ONE-CHOICE, $p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$
- For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

For *g*-ADV, the probability vector q^t , is obtained from $p_{\text{TWO-CHOICE}}$, by possibly moving $2/n^2$ probability between bins i_1, i_2 with loads $|x_{i_1}^t - x_{i_2}^t| \leq g$.

We use the hyperbolic cosine potential [PTW15] with constant $\gamma > 0$: $\Gamma^{t} := \sum_{i=1}^{n} \left[\exp\left(\gamma (x_{i}^{t} - t/n - 730g)^{+}\right) + \exp\left(\gamma (-(x_{i}^{t} - t/n) - 730g)^{+}\right) \right].$

We use the hyperbolic cosine potential [PTW15] with constant $\gamma > 0$: $\Gamma^{t} := \sum_{i=1}^{n} \left[\exp\left(\gamma (x_{i}^{t} - t/n - 730g)^{+}\right) + \exp\left(\gamma (-(x_{i}^{t} - t/n) - 730g)^{+}\right) \right].$ Γ_i^t -730q730q0 $u_i^t = x_i^t - t/n$

We use the **hyperbolic cosine potential** [PTW15] with constant $\gamma > 0$: $\Gamma^{t} := \sum_{i=1}^{n} \left[\exp\left(\gamma(x_{i}^{t} - t/n - 730g)^{+}\right) + \exp\left(\gamma(-(x_{i}^{t} - t/n) - 730g)^{+}\right) \right].$

When $\Gamma^t = \mathcal{O}(n)$, then $\operatorname{Gap}(t) = \mathcal{O}(g + \log n)$.

We use the **hyperbolic cosine potential** [PTW15] with constant $\gamma > 0$: $\Gamma^t := \sum_{i=1}^n \left[\exp\left(\gamma(x_i^t - t/n - 730g)^+\right) + \exp\left(\gamma(-(x_i^t - t/n) - 730g)^+\right) \right].$

When $\Gamma^t = \mathcal{O}(n)$, then $\operatorname{Gap}(t) = \mathcal{O}(g + \log n)$. Goal: Show w.h.p. $\Gamma^t = \mathcal{O}(n)$.

We use the **hyperbolic cosine potential** [PTW15] with constant $\gamma > 0$: $\Gamma^t := \sum_{i=1}^n \left[\exp\left(\gamma(x_i^t - t/n - 730g)^+\right) + \exp\left(\gamma(-(x_i^t - t/n) - 730g)^+\right) \right].$

When $\Gamma^t = \mathcal{O}(n)$, then $\operatorname{Gap}(t) = \mathcal{O}(g + \log n)$. Goal: Show w.h.p. $\Gamma^t = \mathcal{O}(n)$.

Challenge: For *some* configurations, Γ^t may *increase* in expectation, even when large. But, we always have the following loose upper bound:

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t, \Gamma^t \ge cn\right] \le \Gamma^t \cdot \left(1 + \frac{3\gamma}{n}\right).$$

We use the **hyperbolic cosine potential** [PTW15] with constant $\gamma > 0$: $\Gamma^t := \sum_{i=1}^n \left[\exp\left(\gamma(x_i^t - t/n - 730g)^+\right) + \exp\left(\gamma(-(x_i^t - t/n) - 730g)^+\right) \right].$

When $\Gamma^t = \mathcal{O}(n)$, then $\operatorname{Gap}(t) = \mathcal{O}(g + \log n)$. Goal: Show w.h.p. $\Gamma^t = \mathcal{O}(n)$.

Challenge: For *some* configurations, Γ^t may *increase* in expectation, even when large. But, we always have the following loose upper bound:

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t, \Gamma^t \ge cn\right] \le \Gamma^t \cdot \left(1 + \frac{3\gamma}{n}\right).$$

How can we prove that the potential drops in expectation over multiple steps when large?

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

When $\Delta^t \leq Dng \ (D = 365)$, then at most n/3 bins *i* with load $\geq t/n + \frac{3}{2}Dg$.

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

When $\Delta^t \leq Dng \ (D = 365)$, then at most n/3 bins *i* with load $\geq t/n + \frac{3}{2}Dg$. So, there is a bias to place away from bins with load $\geq t/n + 2Dg$.

4

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

When $\Delta^t \leq Dng \ (D = 365)$, then at most n/3 bins *i* with load $\geq t/n + \frac{3}{2}Dg$. So, there is a bias to place away from bins with load $\geq t/n + 2Dg$.

Good step): This bias enough to prove that for some constant $\epsilon > 0$,

Z

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t, \Delta^t \leq Dng, \Gamma^t \geq cn\right] \leq \Gamma^t \cdot \left(1 - \frac{\gamma\epsilon}{n}\right).$$

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

When $\Delta^t \leq Dng \ (D = 365)$, then at most n/3 bins *i* with load $\geq t/n + \frac{3}{2}Dg$. So, there is a bias to place away from bins with load $\geq t/n + 2Dg$.

Good step): This bias enough to prove that for some constant $\epsilon > 0$,

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t, \Delta^t \le Dng, \Gamma^t \ge cn\right] \le \Gamma^t \cdot \left(1 - \frac{\gamma\epsilon}{n}\right).$$

• A properly *adjusted* potential function drops in expectation in every step, for any interval with constant fraction of good steps.

Solution: Use the absolute value potential:

$$\Delta^t := \sum_{i=1}^n \left| x_i^t - \frac{t}{n} \right|.$$

When $\Delta^t \leq Dng \ (D = 365)$, then at most n/3 bins *i* with load $\geq t/n + \frac{3}{2}Dg$. So, there is a bias to place away from bins with load $\geq t/n + 2Dg$.

Good step): This bias enough to prove that for some constant $\epsilon > 0$,

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t, \Delta^t \le Dng, \Gamma^t \ge cn\right] \le \Gamma^t \cdot \left(1 - \frac{\gamma\epsilon}{n}\right).$$

• A properly *adjusted* potential function drops in expectation in every step, for any interval with constant fraction of good steps.

How can we prove that there is a constant fraction of good steps?

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n (x_i^t - \frac{t}{n})^2 = \sum_{i=1}^n (y_i^t)^2$.

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1$$

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

For g-ADV,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1$$

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

For g-ADV,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1 \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 + 2g$$

using the "probability transfer" argument.

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n (x_i^t - \frac{t}{n})^2 = \sum_{i=1}^n (y_i^t)^2$. For Two-Choice,

$$\mathbf{E} \left[\Upsilon^{t+1} \mid \mathfrak{F}^t \right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

$$\mathbf{E} \left[\Upsilon^{t+1} \mid \mathfrak{F}^t \right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1 \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 + 2g \leq \Upsilon^t - \frac{\Delta^t}{n} + 1 + 2g,$$

using the "probability transfer" argument.

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

For g-ADV,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1 \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 + \frac{2g}{2g} \leq \Upsilon^t - \frac{\Delta^t}{n} + 1 + \frac{2g}{2g},$$

using the "probability transfer" argument. By induction, we get

$$\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^t\right] \leq \Upsilon^t - \sum_{r=t}^{t+k} \frac{\Delta^t}{n} + (1+2g) \cdot (k+1).$$

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

For g-ADV,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1 \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 + \frac{2g}{2g} \leq \Upsilon^t - \frac{\Delta^t}{n} + 1 + \frac{2g}{2g},$$

using the "probability transfer" argument. By induction, we get

$$\mathbf{E}\left[\left.\Upsilon^{t+k+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t - \sum_{r=t}^{t+k} \frac{\Delta^t}{n} + (1+2g) \cdot (k+1).$$

When $k = \Omega(\Upsilon^t/g)$, then for a constant fraction of the steps $s \in [t, t+k]$ with $\mathbf{E}[\Delta^s \mid \mathfrak{F}^t] \leq Dng.$

Solution: Use the quadratic potential: $\Upsilon^t := \sum_{i=1}^n \left(x_i^t - \frac{t}{n}\right)^2 = \sum_{i=1}^n \left(y_i^t\right)^2$. For Two-Choice,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 \leq \Upsilon^t - \frac{\Delta^t}{n} + 1.$$

For g-ADV,

$$\mathbf{E}\left[\left.\Upsilon^{t+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t + \sum_{i=1}^n 2q_i^t y_i^t + 1 \leq \Upsilon^t + \sum_{i=1}^n 2p_i^t y_i^t + 1 + \frac{2g}{2g} \leq \Upsilon^t - \frac{\Delta^t}{n} + 1 + \frac{2g}{2g},$$

using the "probability transfer" argument. By induction, we get

$$\mathbf{E}\left[\left.\Upsilon^{t+k+1} \mid \mathfrak{F}^t\right.\right] \leq \Upsilon^t - \sum_{r=t}^{t+k} \frac{\Delta^t}{n} + (1+2g) \cdot (k+1).$$

When $k = \Omega(\Upsilon^t/g)$, then for a constant fraction of the steps $s \in [t, t+k]$ with $\mathbf{E}[\Delta^s \mid \mathfrak{F}^t] \leq Dng.$

This concludes the $\mathcal{O}(g + \log n)$ bound.

Summary & Future Work

Summary of results:
Summary of results: For any *g*-ADV process,

Summary of results:

For any g-ADV process,

▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.

Summary of results:

- For any q-ADV process,

 - ▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
 ▶ Otherwise, for any m, w.h.p. Gap(m) = O(^g/_{log g} · log log n).

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log q} \cdot \log \log n\right)$.

• Matching lower bound for the g-MYOPIC-COMP process.

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- **I** Matching lower bound for the g-MYOPIC-COMP process.
- **Tight bounds for TWO-CHOICE with outdated information.**

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- **I** Matching lower bound for the g-MYOPIC-COMP process.

Tight bounds for TWO-CHOICE with outdated information. Future work:

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-MYOPIC-COMP process.
- Tight bounds for TWO-CHOICE with outdated information.

Future work:

Improve the bounds for σ -NOISY-LOAD (or other distributions ρ).

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-MYOPIC-COMP process.
- Tight bounds for TWO-CHOICE with outdated information.

Future work:

Improve the bounds for σ -NOISY-LOAD (or other distributions ρ).

Analyze the noisy and outdated setting for other processes.

Summary of results:

- For any g-ADV process,
 - ▶ If $g \ge \log n$, then for any m, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(g)$.
 - ▶ Otherwise, for any *m*, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-MYOPIC-COMP process.
- Tight bounds for TWO-CHOICE with outdated information.

Future work:

- Improve the bounds for σ -NOISY-LOAD (or other distributions ρ).
- Analyze the noisy and outdated setting for other processes.

Questions?

 $Visualisations: \tt dimitrioslos.com/podc22$

Techniques

Questions?

 $Visualisations: \tt dimitrioslos.com/podc22$

Techniques

Appendix A: Detailed results for noise models

Model	Range	Lower Bound	Upper Bound
g-Bounded	$1 \leq g$	_	$\mathcal{O}(g \cdot \log(ng))$
$g ext{-}\operatorname{Adv}$	$1 \leq g$	_	$\mathcal{O}(g + \log n)$
$g ext{-}\operatorname{Adv}$	$1 < g \le \log n$	_	$\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$
g-Myopic-Comp	$\frac{\log n}{\log \log n} \le g$	$\Omega(g)$	—
<i>g</i> -Муоріс-Сомр	$1 < g \leq \tfrac{\log n}{\log \log n}$	$\Omega\left(\frac{g}{\log g} \cdot \log \log n\right)$	-
σ -Noisy-Load	$1 \le \sigma$	-	$\mathcal{O}(\sigma\sqrt{\log n} \cdot \log(n\sigma))$
σ -Noisy-Load	$2 \cdot (\log n)^{-1/3} \le \sigma$	$\Omega(\min\{1,\sigma\}\cdot (\log n)^{1/3})$	_
σ -Noisy-Load	$32 \le \sigma$	$\Omega(\min\{\sigma^{4/5}, \sigma^{2/5} \cdot \sqrt{\log n}\})$	-

Table: Overview of the lower and upper bounds for TWO-CHOICE with noisy information derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold for all values of $m \ge n$, while lower bounds may only hold for a suitable value of m.

Appendix A: Detailed results for outdated information

Model	Range	Lower Bound	Upper Bound
b-Batch	$b = \Omega(n \log n)$	$\Omega(b/n)$	$\mathcal{O}(b/n)$
b-Batch	b = n	$\Omegaig(rac{\log n}{\log\log n}ig)$	$\mathcal{O}(\log n)$
τ -Delay	$\tau = n$	_	$\mathcal{O}(rac{\log n}{\log\log n})$
τ -Delay	$\tau \in \left[n \cdot e^{-(\log n)^c}, n \log n\right]$	_	$\mathcal{O}\left(\frac{\log n}{\log((4n/\tau)\log n)}\right)$
τ -Delay	$\tau = n^{1-\epsilon}$	_	$\mathcal{O}(\log \log n)$
b-Batch	b = n	$\Omega(\frac{\log n}{\log\log n})$	_
b-Batch	$b \in \left[n \cdot e^{-(\log n)^c}, n \log n\right]$	$\Omega\left(rac{\log n}{\log((4n/b)\log n)} ight)$	_
b-Batch	$b = n^{1-\epsilon}$	$\Omega(\log \log n)$	-

Table: Overview of the lower and upper bounds for TWO-CHOICE with outdated information, derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold for all values of $m \ge n$, while lower bounds may only hold for a suitable value of m.

Appendix B: Analysis outline for outdated information

Figure: τ -DELAY (and *b*-BATCH) can be exactly simulated using a g_1 -ADV-COMP process with $g_1 = \tau \leq n \log n$. This gives the $\mathcal{O}(n \log^2 n)$ gap (since $\tau \leq n \log n$). Then w.h.p. for n^3 steps it can be simulated using a g_2 -ADV-COMP process where g_2 is the ONE-CHOICE gap for 2τ balls.

■ [PTW15] used the **hyperbolic cosine potential** (with no offset)

$$\Gamma^t(x^t) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

■ [PTW15] used the **hyperbolic cosine potential** (with no offset)

$$\Gamma^t(x^t) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

[PTW15] showed that for **TWO-CHOICE**, for small enough γ ,

$$\mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] \leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right)$$
$$\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{48n}\right) + c.$$

■ [PTW15] used the hyperbolic cosine potential (with no offset)

$$\Gamma^t(x^t) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

[PTW15] showed that for **Two-CHOICE**, for small enough γ ,

$$\mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] \leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right)$$
$$\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{48n}\right) + c.$$

Implies that $\mathbf{E} [\Gamma^m] \leq \frac{48c}{\gamma} \cdot n.$

[PTW15] used the **hyperbolic cosine potential** (with no offset)

[PTW15] showed that for Two-CHOICE, for small enough γ ,

$$\mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] \leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right)$$
$$\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{48n}\right) + c.$$

Implies that E [Γ^m] ≤ 48c/γ ⋅ n.
 By Markov's inequality, we get Pr [Γ^m ≤ n³/γ] ≥ 1 − n⁻²

[PTW15] used the **hyperbolic cosine potential** (with no offset)

[PTW15] showed that for Two-CHOICE, for small enough γ ,

$$\mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] \leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right)$$
$$\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{48n}\right) + c.$$

Implies that $\mathbf{E} [\Gamma^m] \leq \frac{48c}{\gamma} \cdot n.$ By Markov's inequality, we get $\mathbf{Pr} \left[\Gamma^m \leq \frac{n^3}{\gamma}\right] \geq 1 - n^{-2}$ which implies $\mathbf{Pr} \left[\operatorname{Gap}(m) \leq 3 \cdot \frac{\log(n/\gamma)}{\gamma}\right] \geq 1 - n^{-2}.$

[PTW15] used the **hyperbolic cosine potential** (with no offset)

$$\Gamma^{t}(x^{t}) := \underbrace{\sum_{i=1}^{n} e^{\gamma(x_{i}^{t} - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^{n} e^{-\gamma(x_{i}^{t} - t/n)}}_{\text{Underload potential}}.$$

[PTW15] showed that for **TWO-CHOICE**, for small enough γ ,

$$\mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] \leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right)$$
$$\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{48n}\right) + c.$$

 Implies that E [Γ^m] ≤ 48c/γ ⋅ n.
 By Markov's inequality, we get Pr [Γ^m ≤ n³/γ] ≥ 1 - n⁻² which implies Pr [Gap(m) ≤ 3 ⋅ log(n/γ)/γ] ≥ 1 - n⁻².
 This gives that Gap(m) = O(log(n/γ)/γ).

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right)$$

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right) = \frac{2}{n^2} \cdot \gamma \cdot e^{\gamma(x_i^t - t/n)} \cdot (e^{\gamma g} - 1)$$

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right) = \frac{2}{n^2} \cdot \gamma \cdot e^{\gamma(x_i^t - t/n)} \cdot (e^{\gamma g} - 1) \le \frac{2}{n^2} \cdot \gamma^2 \cdot e^{\gamma(x_i^t - t/n)},$$
 by choosing $\gamma = \Theta(1/g).$

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right) \\ = \frac{2}{n^2} \cdot \gamma \cdot e^{\gamma(x_i^t - t/n)} \cdot (e^{\gamma g} - 1) \\ \le \frac{2}{n^2} \cdot \gamma^2 \cdot e^{\gamma(x_i^t - t/n)},$$

by choosing $\gamma = \Theta(1/g)$. Similarly for the underloaded component.

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right) = \frac{2}{n^2} \cdot \gamma \cdot e^{\gamma(x_i^t - t/n)} \cdot (e^{\gamma g} - 1) \le \frac{2}{n^2} \cdot \gamma^2 \cdot e^{\gamma(x_i^t - t/n)},$$

by choosing $\gamma = \Theta(1/g)$. Similarly for the underloaded component.

Hence, on aggregate

$$\begin{split} \mathbf{E}\left[\left|\Gamma^{t+1}\right| y^{t}\right] &\leq \Gamma^{t} + \sum_{i=1}^{n} p_{i} \cdot (\gamma + \gamma^{2}) \cdot e^{\gamma y_{i}^{t}} + p_{i} \cdot (-\gamma + \gamma^{2}) \cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right) + \mathcal{O}\left(\frac{\gamma^{2}}{n}\Gamma^{t}\right) \\ &\leq \Gamma^{t} \cdot \left(1 - \frac{\gamma}{96n}\right) + c. \end{split}$$

For g-ADV, the adversary can "transfer" $2/n^2$ probability from i_1 to i_2 if $|x_{i_1}^t - x_{i_2}^t| \le g$.

Each transfer increases the bound by at most

$$\frac{2}{n^2} \cdot \gamma \cdot \left(e^{\gamma(x_i^t - t/n + g)} - e^{\gamma(x_i^t - t/n)} \right) = \frac{2}{n^2} \cdot \gamma \cdot e^{\gamma(x_i^t - t/n)} \cdot (e^{\gamma g} - 1) \le \frac{2}{n^2} \cdot \gamma^2 \cdot e^{\gamma(x_i^t - t/n)},$$

by choosing $\gamma = \Theta(1/g)$. Similarly for the underloaded component.

Hence, on aggregate

$$\begin{split} \mathbf{E}\left[\left.\Gamma^{t+1}\right|\,y^{t}\,\right] &\leq \Gamma^{t} + \sum_{i=1}^{n} p_{i}\cdot(\gamma+\gamma^{2})\cdot e^{\gamma y_{i}^{t}} + p_{i}\cdot(-\gamma+\gamma^{2})\cdot e^{-\gamma y_{i}^{t}} + \mathcal{O}\left(\frac{\gamma}{n}\Gamma^{t}\right) + \mathcal{O}\left(\frac{\gamma^{2}}{n}\Gamma^{t}\right) \\ &\leq \Gamma^{t}\cdot\left(1-\frac{\gamma}{96n}\right) + c. \end{split}$$

This implies that $\operatorname{Gap}(m) = \mathcal{O}(g \log(ng)).$

We define the **super-exponential potentials**, for $1 \le j \le \frac{\log \log n}{\log q} := k$:

$$\Phi_j^t := \sum_{i=1}^n \exp\left(\gamma \cdot (\log n) \cdot g^{j-k} \cdot \left(x_i^t - \frac{t}{n} - z_j\right)^+\right),$$

where $z_j := \Theta(j \cdot g)$.

We define the super-exponential potentials, for $1 \le j \le \frac{\log \log n}{\log q} := k$:

$$\Phi_j^t := \sum_{i=1}^n \exp\left(\gamma \cdot (\log n) \cdot g^{j-k} \cdot \left(x_i^t - \frac{t}{n} - z_j\right)^+\right),$$

where $z_j := \Theta(j \cdot g)$. When $\Phi_{j-1}^t = \mathcal{O}(n)$, then the number of bins *i* with $x_i^t \ge \frac{t}{n} + z_j$ is at most $n \cdot e^{-(\log n) \cdot g^{j-k}} := n \cdot \delta_j$. Hence, $q_i^t \le \frac{2\delta_j}{n}$.

We define the super-exponential potentials, for $1 \le j \le \frac{\log \log n}{\log q} := k$:

$$\Phi_j^t := \sum_{i=1}^n \exp\left(\gamma \cdot (\log n) \cdot g^{j-k} \cdot \left(x_i^t - \frac{t}{n} - z_j\right)^+\right),$$

where $z_j := \Theta(j \cdot g)$. When $\Phi_{j-1}^t = \mathcal{O}(n)$, then the number of bins i with $x_i^t \ge \frac{t}{n} + z_j$ is at most $n \cdot e^{-(\log n) \cdot g^{j-k}} := n \cdot \delta_j$. Hence, $q_i^t \le \frac{2\delta_j}{n}$. Similarly to [LS22b] $\mathbf{E} \left[\Phi_j^{t+1} \mid \mathfrak{F}^t, \Phi_{j-1}^t = \mathcal{O}(n) \right] \le \Phi_j^t \cdot \left(1 - \frac{1}{n}\right) + 2$.

We define the super-exponential potentials, for $1 \le j \le \frac{\log \log n}{\log q} := k$:

$$\Phi_j^t := \sum_{i=1}^n \exp\left(\gamma \cdot (\log n) \cdot g^{j-k} \cdot \left(x_i^t - \frac{t}{n} - z_j\right)^+\right),$$

where $z_j := \Theta(j \cdot g)$. When $\Phi_{j-1}^t = \mathcal{O}(n)$, then the number of bins i with $x_i^t \ge \frac{t}{n} + z_j$ is at most $n \cdot e^{-(\log n) \cdot g^{j-k}} := n \cdot \delta_j$. Hence, $q_i^t \le \frac{2\delta_j}{n}$. Similarly to [LS22b] $\mathbf{E} \left[\Phi_j^{t+1} \mid \mathfrak{F}^t, \Phi_{j-1}^t = \mathcal{O}(n) \right] \le \Phi_j^t \cdot \left(1 - \frac{1}{n}\right) + 2$. And so, after $s = n \cdot \text{polylog}(n)$ steps, we get $\mathbf{E} \left[\Phi_j^{t+s} \mid \mathfrak{F}^t, \cap_{r \in [t,t+s)} \Phi_{j-1}^r = \mathcal{O}(n) \right] = \mathcal{O}(n)$.

We define the **super-exponential potentials**, for $1 \le j \le \frac{\log \log n}{\log q} := k$:

$$\Phi_j^t := \sum_{i=1}^n \exp\left(\gamma \cdot (\log n) \cdot g^{j-k} \cdot \left(x_i^t - \frac{t}{n} - z_j\right)^+\right),$$

where $z_i := \Theta(i \cdot q)$. When $\Phi_{i-1}^t = \mathcal{O}(n)$, then the number of bins *i* with $x_i^t \geq \frac{t}{n} + z_i$ is at most $n \cdot e^{-(\log n) \cdot g^{j-k}} := n \cdot \delta_j.$ Hence, $q_i^t \leq \frac{2\delta_j}{r}$. Similarly to [LS22b] $\mathbf{E}\left[\left.\Phi_{j}^{t+1}\right| \mathfrak{F}^{t}, \Phi_{j-1}^{t}=\mathcal{O}(n)\right] \leq \Phi_{j}^{t} \cdot \left(1-\frac{1}{n}\right)+2.$ And so, after $s = n \cdot \text{polylog}(n)$ steps, we get $\mathbf{E}\left[\Phi_{i}^{t+s} \mid \mathfrak{F}^{t}, \bigcap_{r \in [t,t+s)} \Phi_{i-1}^{r} = \mathcal{O}(n)\right] = \mathcal{O}(n).$ Finally, when $\Phi_{k-1}^t = \mathcal{O}(n)$, we obtain that $\operatorname{Gap}(t) = \mathcal{O}(k \cdot g) = \mathcal{O}\left(\frac{g}{\log a} \log \log n\right).$

Appendix E: Proving $Gap(m) = O(k \cdot g)$, for $g = (\log n)^{1/3}$

Appendix E: Proving $Gap(m) = O(k \cdot g)$, for $g = (\log n)^{1/3}$

Bibliography I

- D. Alistarh, T. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, *Distributionally linearizable data structures*, 30th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'18), ACM, 2018, pp. 133–142.
- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, *Balanced allocations*, SIAM J. Comput. 29 (1999), no. 1, 180–200.
- P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, *Multiple-choice balanced allocation in (almost) parallel*, 16th International Workshop on Randomization and Computation (RANDOM'12) (Berlin Heidelberg), Springer-Verlag, 2012, pp. 411–422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385.
- R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing modelling and behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier, Amsterdam, 1988.

Bibliography II

- ▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. **28** (1981), no. 2, 289–304.
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542.
- D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized, 34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'22), ACM, 2022, p. 389–400.
- Balanced Allocations with Incomplete Information: The Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference (ITCS'22) (Dagstuhl, Germany), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 103:1–103:23.
- R. Pagh and F. F. Rodler, *Cuckoo hashing*, Algorithms—ESA 2001 (Århus), Lecture Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121–133.

Bibliography III

- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the (1+β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775.
- M. Raab and A. Steger, "Balls into bins"—a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159–170.
- ▶ U. Wieder, *Hashing, load balancing and multiple choice*, Found. Trends Theor. Comput. Sci. **12** (2016), no. 3-4, front matter, 276–379.