Balanced Allocations with the Choice of Noise

Dimitrios Los', Thomas Sauerwald®

LUniversity of Cambridge, UK

Balanced allocations: Background

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

@e)
e ee)
0O

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing [PRO01], load balancing [Wiel6] and routing [GKKS88].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% v log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = O &2 Gon8l1].
loglogn
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
x

AY

AY

Two-CHOICE Process: \
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background

Noisy processes

Noisy processes

Motivation

Noisy processes

Motivation

1. What if the load information of a bin is outdated?

Noisy processes

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

Noisy processes

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?

Noisy processes

Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive

amount? /

3. What about random (additive) perturbations?

Noisy processes

The Adversarial Comparison (g-ADV) setting

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 5

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:
If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

1O

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

1O

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

4>g

1O

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:ch1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

4>g

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and 45 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |x’f1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

g-BOUNDED: Adw

prefers heavier bins.

4>g

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and i5 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:U’§1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

g-BOUNDED: Adversary
prefers heavier bins.

4>g

g-Myopric-Comp: Adversary
allocates randomly.

11 19

Noisy processes

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

The Adversarial Comparison (g-ADV) setting

In Two-CHOICE, we sample two bins ¢; and i5 and allocate to the least loaded bin.
In a g-ADV process (say for g = 3), again we sample two bins:

If |:Uf1 — x§2| < g, the adversary can allocate to any of the two bins.

Otherwise, allocate to the lesser loaded of the two.

Isl g-BOUNDED: Open
in Visualiser.

Il g-MyYOPIC-COMP: Open
in Visualiser.

Noisy processes

11

4>g

g-BOUNDED: Adversary
prefers heavier bins.

g-Myopric-Comp: Adversary
allocates randomly.

https://dimitrioslos.com/phdthesis/settings/g_bounded/g_bounded.html
https://dimitrioslos.com/phdthesis/settings/g_myopic/g_myopic.html

Result for the g-ADV setting (Main result of our work)

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.

Noisy processes

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).

Noisy processes

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.

They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).

We prove that for any g-ADV process,

Noisy processes

Result for the g-ADV setting (Main result of our work)

Noisy processes

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Gap(m), m = 1000n, n € [10%,5 - 10%,10°]

30} €

10 |- 1

0 5 10 15 20

Noise parameter g

Noisy processes

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Otherwise, for any m, w.h.p. Gap(m) = O(;% - loglogn).

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30 e

20 - b

10| B
0 5 10 15 20

Noise parameter g

Noisy processes

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(-- - loglogn).

log g

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30| g For g = O(1):

Gap(m) = O(loglogn).

10 | 1

0 5 10 15 20

Noise parameter g

Noisy processes

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Otherwise, for any m, w.h.p. Gap(m) = O(;2 - loglogn).

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30| g For g = O(1):
Gap(m) = O(loglogn).

20]

10l , For g = Q(polylog(n)):
Gap(m) = O(g).
00 5 lb 1‘5 20

Noise parameter g

Noisy processes

Result for the g-ADV setting (Main result of our work)

Noisy processes

Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK™18] analyzed the g-BOUNDED
process.
They proved that for any m, w.h.p. Gap(m) = O(glog(ng)).
We prove that for any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(;2 - loglogn).
For both cases, we prove a matching lower bound for g-Myoric-Comp.

Gap(m), m = 1000n, n € [10,5 - 10%,10°]

30| For g = O(1):
Gap(m) = O(loglogn).

ol For g = Q(polylog(n)):
Gap(m) = O(g).

Noise parameter g

Two-CHOICE with outdated information

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

OO0

@@
O
O
O

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

OO0
© 90
KOO

@@
O
O
©O

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

©00)
©Q0
OO0
GO
OO
o

@]

o

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

COOOO

©00)
©Q0
OO0
GO
OO
©.0.00)
o

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

000 00)
OO0
OO00
COO
OO0
@)

e

o

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

000 00)
000000
.00 00)
COO
OO0
OO0
COO

@)

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

0000 0)
@000
IOOOO
OO0

OO0
OO0
@)

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

:

OO0
0000 0)
OOOO
IOOOO
©OO
©.0000)

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

X

ICOOOO0O
OO0
ICOOOO
OOOO
OO0
OO0

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).
For b = n, they showed that w.h.p. Gap(m) = O(logn).

X

ICOOOO0O
OO0
ICOOOO
OOOO
OO0
OO0

Ia8 Open in Visualiser.

Noisy processes 9

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).
For b = n, they showed that w.h.p. Gap(m) = O(logn).
For b € [nlogn,poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = O(b/n).

X

o

ICOOOO0O
OO0
ICOOOO
OOOO
OO0
OO0

Ia8 Open in Visualiser.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

For b = n, they showed that w.h.p. Gap(m) = O(logn).

For b € [nlogn,poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = O(b/n).
For b = n, we show that w.h.p. Gap(m) = (9(logn)

loglogn

X

OO0
ICOOOO
OOOO
OO0
OO0

Ia8 Open in Visualiser.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

For b = n, they showed that w.h.p. Gap(m) = O(logn).

For b € [nlogn,poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = O(b/n).
For b = n, we show that w.h.p. Gap(m) = (9(logn), like ONE-CHOICE with n balls.

loglogn

X

OO0
ICOOOO
OOOO
OO0
OO0

Ia8 Open in Visualiser.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE*12] studied Two-CHOICE
where balls are allocated in batches of size b (b-BAaTCH).

For b = n, they showed that w.h.p. Gap(m) = O(logn).

For b € [nlogn,poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = O(b/n).
For b = n, we show that w.h.p. Gap(m) = (9(101;5);1 ”), like ONE-CHOICE with n balls.

nlog n} it follows ONE-CHOICE with b balls.

i

More generally, for b € [m

8§

Q

OO0
OO

Ia8 Open in Visualiser.

Noisy processes

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Two-CHOICE with outdated information: Reduction

Noisy processes

10

Two-CHOICE with outdated information: Reduction

logn
loglogn

For b = n, w.h.p. any bin can be selected at most (9() times in a batch.

Noisy processes

10

Two-CHOICE with outdated information: Reduction

logn
loglogn

For b = n, w.h.p. any bin can be selected at most (9() times in a batch.

logn

So, w.h.p. we can simulate b-BAaTcH with a g-ADV process with g = @(log oa T

Noisy processes

).

10

Two-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(IOE’ign) times in a batch.
So, w.h.p. we can simulate b-BAaTcH with a g-ADV process with g = @(lolgolgogn).

Hence, w.h.p.

Gap(m) = O(é -log log n)

Noisy processes 10

Two-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(lol;ﬁ)gn) times in a batch.
So, w.h.p. we can simulate b-BAaTcH with a g-ADV process with g = @(lolgoign).
Hence, w.h.p.
Gap(m) = O(L -log log n)
logg
For b € [m nlog n} w.h.p. Gap(m) = O(g).

Noisy processes 10

Two-CHOICE with outdated information: Reduction

For b = n, w.h.p. any bin can be selected at most O(logn) times in a batch.

loglogn
So, w.h.p. we can simulate b-BAaTcH with a g-ADV process with g = @(lolgign).
Hence, w.h.p.
Gap(m) = O(L -log log n)
logg
For b € [m nlog n}, w.h.p. Gap(m) = O(g).
b-BATcH
B | —— b-BATCH for m = 1000 - n.
301 | | — ONE-CHOICE for m = b
T 20| 1
z
S
10} .

0 . . .
10° 10! 10% 10% 10* 10°

Noisy processes Batch size b 10

Two-CHOICE with outdated information: T-DELAY

Noisy processes

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [:cﬁ*T

Noisy processes

tfl]-

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [:cﬁ*T

We call this the 7-DELAY process (7 = b).

Noisy processes

tfl]-

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

e

t—1
i

:

tfly

OO0 1000

e

t—1

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

e

t—1
i

:

tfly

OO0 1000

t—1

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

i

t—1
i

:

tfly

OO0 1000

t—1

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

e

t—1
i

:

tfly

OO0 1000

t—1

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

Sk

t—1
i

:

tfly

000 1000

t—1

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Noisy processes

Sk

t—1
i

:

tfly

OO0 1000

t—1

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 9?271 € [z
We call this the 7-DELAY process (7 = b).

Same upper bounds apply here.

ot
xf

Sk

t—1
i

:

tfly

OO0 1000

t—1

Noisy processes

e

11

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with outdated information: T-DELAY

Same argument applies when the reported bin load 97271 € [xt 7, 2l

We call this the 7-DELAY process (7 = b).
Same upper bounds apply here.

Noisy processes 11

ot
xf

q 1 Open in Visualiser.

https://dimitrioslos.com/phdthesis/settings/tau_delay/tau_delay.html

Two-CHOICE with random noise (I)

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

11 12

Noisy processes

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.
Obtain load estimates by adding noise to the bin loads.

11 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.
Obtain load estimates by adding noise to the bin loads.

11 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

i 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

i 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

i 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

Allocate to the bin with smaller load estimate.

i 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

Allocate to the bin with smaller load estimate.

i 19

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.

Obtain load estimates by adding noise to the bin loads.

(e.g., normal noise ~» o-NOISY-LOAD)

Allocate to the bin with smaller load estimate.

Noisy processes

12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (I)

Sample two random bins.
Obtain load estimates by adding noise to the bin loads.
(e.g., normal noise ~» o-NOISY-LOAD)

Allocate to the bin with smaller load estimate.

Ia8 Open in Visualiser.

Noisy processes 12

https://dimitrioslos.com/phdthesis/processes/sigma_noisy_load/sigma_noisy_load.html

Two-CHOICE with random noise (II)

Noisy processes

13

Two-CHOICE with random noise (II)

We can further generalize this setting.

Noisy processes

13

Two-CHOICE with random noise (II)

We can further generalize this setting.

Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Noisy processes

13

Two-CHOICE with random noise (II)

We can further generalize this setting.

Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Captures several processes:

Noisy processes

13

Two-CHOICE with random noise (II)

We can further generalize this setting.

Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Captures several processes: g-BOUNDED,

p(9)

1 R
0.5

0 +)

Noisy processes

13

Two-CHOICE with random noise (II)

We can further generalize this setting.
Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Captures several processes: g-BOUNDED, g-Mvyopric-COMP,

p(9) p(9)
1 R 1+ S
0.5 05—
0 + § 0 | 5
g g

Noisy processes

Two-CHOICE with random noise (II)

We can further generalize this setting.
Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Captures several processes: g-BOUNDED, g-Mvyopric-ComP, o-NOISY-LOAD

p(9) p(9) p(9)
1 — 1+ — 1
0.5 0.5 +——e 0.5
0 s 5§ 0 % 5§ 0 :)
g g o 20

13

Noisy processes

Two-CHOICE with random noise (II)

We can further generalize this setting.
Define the probability that the comparison between bins 47 and is is correct as

t t
P(‘xil _$i2|)~

Captures several processes: g-BOUNDED, g-MyoprIic-COMP, o-NOISY-LOAD ...

p(9) p(9) p(9)
1 — 1+ — 1
0.5 0.5 +——e 0.5
0 s 5§ 0 % 5§ 0 :)
g g o 20

13

Noisy processes

Techniques

Techniques

14

Overview

Techniques

15

Overview

Gap(t) 1

glogng) - ---=-=-------“------------ -

o~

y

A

s

m — 0(ng(log(ng))?)

Techniques 15

Overview

Gap(t) Recovery phase

glog(ng) +

g +logn =

I
l
l
m — 0(ng(log(ng))?) So m

Techniques 15

Overview

Gap(t) Recovery phase

glog(ng) +

Interplay between three

potential functions

g +logn -

m — 0(ng(log(ng))?) So

Techniques 15

Overview

Gap(t) |

glog(ng) +

g +logn -

Recovery phase Stabilization phase

Interplay between three

potential functions

m — 0(ng(log(ng))?) So

Techniques

15

Overview

Gap(t) Recovery phase Stabilization phase

glog(ng) +

Interplay between three
potential functions

g +logn -

1
:
m — 0(ng(log(ng))?) So $1 m

Techniques 15

Overview

Gap(t) Recovery phase Stabilization phase

glog(ng)

Interplay between three
potential functions

g +logn -

1
1
m — 0(ng(log(ng))?) So s1 Sz m

Techniques 15

Overview

log g

Techniques

Gap(t) |

glog(ng) +

g +logn =

-loglogn =

Recovery phase Stabilization phase

Interplay between three
potential functions

m — 0(ng(log(ng))?) So s1 Sz S3 m

15

Overview

log g

Techniques

Gap(t) |

glog(ng) +

g +logn -

-loglogn =

Recovery phase Stabilization phase

Layered induction over
super-exponential
potentials

Interplay between three
potential functions

m — 0(ng(log(ng))?)

15

Probability allocation vectors

Probability allocation vector p’, where p! is the prob. of allocating to i-th heaviest
bin.

Techniques

16

Probability allocation vectors

Probability allocation vector p’, where p! is the prob. of allocating to i-th heaviest
bin.
For ONE-CHOICE, POxs-Croics = (1 L ,%)

n’n’

Techniques

16

Probability allocation vectors

Probability allocation vector p’, where p! is the prob. of allocating to i-th heaviest

bin.
For ONE-CHOICE, poxg-Croice = (%, .., %)
For Two-CHOICE,
1 3 21 —1 2n — 2
PTwo-CHoicE = (ﬁ’ﬁ""’ O IR)

Techniques

16

Probability allocation vectors

Techniques

Probability allocation vector p’, where p! is the prob. of allocating to i-th heaviest
bin.

For ONE-CHOICE, poe-Crorce = (%7 %7 e %)

For Two-CHOICE,

cey yoeeey

1 3 2i—1 2n—2)

PTwo-Cuoice = (* -
n2’ n?’ n2 n2

For g-ADV, the probability vector ¢, is obtained from prwo-cuoics, by possibly moving
2/n? probability between bins i1, iy with loads |z} —z! | <g.

16

Probability allocation vectors

Techniques

Probability allocation vector p’, where p! is the prob. of allocating to i-th heaviest
bin.

For ONE-CHOICE, poe-Crorce = (%7 %7 e %)

For Two-CHOICE,

1 3 2i—1 2n—2)

pTWO—CHOICE:(ﬁ,ﬁ,-.., CRREEERE R

For g-ADV, the probability vector ¢, is obtained from prwo-cuoics, by possibly moving
2/n? probability between bins i1, iy with loads |z} —z! | <g.

0.3 I I I I I I
—e— Two-CHOICE p

—— g-ADvV ¢t

0.2

| —~ AN

zi: 21 19 13 12 12 11 8 6

3

i 1 2 3 4 5 6 7 8

0.1}

16

Upper Bound: O(g + logn)

Techniques

17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It = Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

Techniques

17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It = Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

It

K2

ol

l l
—730g 730g
yi =z} —t/n

N

Techniques 17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It = Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

When I'* = O(n), then Gap(t) = O(g + logn).

Techniques

17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It = Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

When I'* = O(n), then Gap(t) = O(g + logn). Goal: Show w.h.p. ' = O(n).

Techniques

17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It = Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

When I'* = O(n), then Gap(t) = O(g + logn). Goal: Show w.h.p. ' = O(n).

Challenge: For some configurations, I'¥ may increase in expectation, even when
large. But, we always have the following loose upper bound:

3y
t+1 | et it t.
E ([[§ I > en] <I'- (14 2).

Techniques

17

Upper Bound: O(g + logn)
We use the hyperbolic cosine potential [PTW15] with constant v > 0:

It .= Z {exp (v(xf — t/n —7309)") + exp (v(—(z} — t/n) — 7309)T) }

i=1

When I'* = O(n), then Gap(t) = O(g + logn). Goal: Show w.h.p. ' = O(n).

Challenge: For some configurations, I'¥ may increase in expectation, even when
large. But, we always have the following loose upper bound:

t+1 t t t, 31
E ([[§ I > en] <I'- (14 2).

How can we prove that the potential drops in expectation
over multiple steps when large?

Techniques

17

Upper Bound: O(g + logn)

Techniques

18

Upper Bound: O(g + logn)

Solution: Use the absolute value potential:
t
t

n

Al ::Z

i=1

n

Techniques

x5 ——|.

Upper Bound: O(g + logn)

Solution: Use the absolute value potential:
|
t

n

Ali=)

i=1

When A? < Dng (D = 365), then at most n/3 bins i with load > t/n + 2Dg.

[——
on

Techniques

18

Upper Bound: O(g + logn)

Solution: Use the absolute value potential:

t
A
n

n

A ::Z

i=1

When A? < Dng (D = 365), then at most n/3 bins i with load > t/n+ 2Dg. So,
there is a bias to place away from bins with load > t/n 4+ 2Dg.

| >2Dg 1 [2Dg,2Dg) < 3Dg |

<n/3 >2n/3

Techniques

18

Upper Bound: O(g + logn)

Solution: Use the absolute value potential:

t
A
n

n

Al ::Z

i=1

When A? < Dng (D = 365), then at most n/3 bins i with load > t/n+ 2Dg. So,
there is a bias to place away from bins with load > t/n 4+ 2Dg.

(Good step): This bias enough to prove that for some constant € > 0,
E[I' 5 A < Dng,T* > en] <T*. (1 - f) .
n

Techniques

18

Upper Bound: O(g + logn)

Techniques

Solution: Use the absolute value potential:

n
.t

At::Z T ——|.

‘ n
i=1

When A? < Dng (D = 365), then at most n/3 bins i with load > t/n+ 2Dg. So,
there is a bias to place away from bins with load > t/n 4+ 2Dg.
(Good step): This bias enough to prove that for some constant € > 0,

E[I' 5 A < Dng,T* > en] <T*. (1 - f).
n

A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

18

Upper Bound: O(g + logn)

Solution: Use the absolute value potential:

n
.t

At::Z T ——|.

‘ n
i=1

When A? < Dng (D = 365), then at most n/3 bins i with load > t/n+ 2Dg. So,
there is a bias to place away from bins with load > t/n 4+ 2Dg.
(Good step): This bias enough to prove that for some constant € > 0,

E[I' 5 A < Dng,T* > en] <T*. (1 - f).
n

A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

Techniques

18

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: T := >

Techniques

n

i=1

19

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: T := >

For Two-CHOICE,

E[TtJrl |3ft:| STt+ZQP

i=1

Techniques

t

9

n

yi +1

i=1

19

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: Y*:=3"" | (zf — 2)2 =" (.

For Two-CHOICE,

E[TtJrl |3ft:| STt+ZQP

i=1

Techniques

t

9

At
Y1 <Y - — 4+ 1.
n

19

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: Y*:=3"" | (zf — 2)2 =" (.

For Two-CHOICE,

B [TtJrl | gt:l < Tt+22p
For ¢g-Apv, =

E[YHF] <1+ 2g0yl +1

=1

Techniques

t

9

At
Y1 <Y - — 4+ 1.
n

19

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: T := >

For Two-CHOICE,

i=1

n (t t\2 _

n At
E[T 5] <t iyt +1 <Y — = +1.
[T F] < D 2plyl+1 < —+

i=1
For ¢g-Apv,

E[T" 3] STt+22quf+1§Tt+22p

i=1 i=1
using the “probability transfer” argument.

Techniques

t

%

Y41+ 2g

19

Upper Bound: O(g + logn)

Solution: Use the quadratic potential: Y*:=3"7" | (2! — L)Q =3, (yf)2 .
For Two-CHOICE,
n At
B[§] <1 Y 2yl 1< - S g
P n s
For g-Apv, N
kY4

E[THF] <1+ 200yl + 1< Y 4> 2yl +1429 <TH— = +1+2g,
n
i=1 i=1
using the “probability transfer” argument.

Techniques

19

Upper Bound: O(g + logn)

Techniques

Solution: Use the quadratic potential: Y*:=3"" | (zf — %)2 =" (.
For Two-CHOICE,

n t
BT 5] < 4 Yoty 1< - 2y
=1 n

For ¢g-Apv,

E[YFF] <Y+ 2glyl +1< T 4> 2plyl + 1429 <Y - = 4142,
i=1 i=1 "
using the “probability transfer” argument.
By induction, we get
t+k At
E[THE] <Y =) — + (1+29) (k+1).
[3] <=+ (1+20) (k1)

r=t

19

Upper Bound: O(g + logn)

Techniques

Solution: Use the quadratic potential: Y*:=3"" | (zf — 2)2 =>r, ().

i=1

For Two-CHOICE,

E[YFF] <1+ 2plyl 41T - = + 1.
i=1 n
For ¢g-Apv,

E[YFF] <Y+ 2glyl +1< T 4> 2plyl + 1429 <Y - = 4142,
i=1 i=1 "
using the “probability transfer” argument.
By induction, we get
t+k Ay
E[YHFF] <Y =) — +(1+29) (k+1).
[15 < ;n+<+g)(+>

When k = Q(Y?/g), then for a constant fraction of the steps s € [t,t + k] with
E[A*|§] < Dng.

19

Upper Bound: O(g + logn)

Techniques

n

Solution: Use the quadratic potential: Y*:=3"" | (zf — 2)2 =" (.
For Two-CHOICE,

n t
E[Y"[§] STWZngnygrt—éH.
=1 n

For ¢g-Apv,

n n At
E[YFF] <Y+ 2glyl +1< T 4> 2plyl + 1429 <Y - = 4142,
i=1 i=1 "
using the “probability transfer” argument.
By induction, we get
t+k t
E[YH 1§] <1 =) — + (1+29) (k+1).
[15 < ;n+<+g)(+>
When k = Q(Y?/g), then for a constant fraction of the steps s € [t,t + k] with
E[A®| 3] < Dng.
This concludes the O(g + logn) bound.

19

Summary & Future Work

Summary of results:

Techniques

20

Summary & Future Work

Summary of results:
For any g-ADV process,

Techniques

20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Techniques

Summary & Future Work

Summary of results:
For any g-ADV process,

If g > log n, then for any m, w.h.p. Gap(m) = O(g).

Otherwise, for any m, w.h.p. Gap(m) = O(

Techniques

9 .
log g

log log n).

20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(ﬁ
Matching lower bound for the g-Myoric-CoMP process.

Techniques

- log log n).

20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(%
Matching lower bound for the g-Myoric-CoMP process.

Tight bounds for TwWo-CHOICE with outdated information.

Techniques

- log log n).

20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(%
Matching lower bound for the g-Myoric-CoMP process.

Tight bounds for TwWo-CHOICE with outdated information.

Future work:

Techniques

- log log n).

20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(@ -log log n).
Matching lower bound for the g-Myoric-CoMP process.
Tight bounds for TwWo-CHOICE with outdated information.

Future work:
Improve the bounds for o-Noi1sy-LoaD (or other distributions p).

—— ¢g-BOUNDED
301 —— g-Myoric-Comp

= —— 0-Noisy-LoaDp
S

o20)

1S

£

= 10t

&)

5 20

o

S
—
=)
—

Noise parameter g (or o)
Techniques 20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(@ -log log n).
Matching lower bound for the g-Myoric-CoMP process.
Tight bounds for TwWo-CHOICE with outdated information.

Future work:
Improve the bounds for o-Noi1sy-LoaD (or other distributions p).
Analyze the noisy and outdated setting for other processes.

—— ¢g-BOUNDED
301 —— g-Myoric-Comp

= —— 0-Noisy-LoaDp
S

o20)

1S

£

= 10t

&)

5 20

o

S
—
=)
—

Noise parameter g (or o)
Techniques 20

Summary & Future Work

Summary of results:
For any g-ADV process,
If g > log n, then for any m, w.h.p. Gap(m) = O(g).
Otherwise, for any m, w.h.p. Gap(m) = O(ﬁ -log log n).
Matching lower bound for the g-Myoric-CoMP process.

Tight bounds for TwWo-CHOICE with outdated information.
Future work:

Improve the bounds for o-Noi1sy-LoaD (or other distributions p).
Analyze the noisy and outdated setting for other processes.

—— b-BarcH for m = 1000 - n
- |—— ONE-CHOICE for m = b

20

Gap(m)

10

ol e v v
10° 10! 102 10% 10* 10°
Batch size b
Techniques

20

Questions?

Techniques

Visualisations: dimitrioslos.com/podc22

21

https://dimitrioslos.com/podc22

OO000000000
—000000000000
[6]0/0)
OOC O
X
0010 0/0/0/0/00/0'6] Geee0o0ue0es
00 O %
Q0000000000 00000000000
@] oKX

0000000000 2020000000

P S
O

— 000000080000 OOO000000000

= Bas asens
o]

CO000000000
— X

Questions?

22

Visualisations: dimitrioslos.com/podc22

Techniques

https://dimitrioslos.com/podc22

Appendix A: Detailed results for noise models

Model Range Lower Bound Upper Bound
g-BOUNDED 1<yg - O(g - log(ng))
g-ADVv 1<g O(g + logn)
g-ADV 1< g<logn (’)(& -loglog)
g-Myopic-Comp e < g Q(g) -
g-Myopic-Comp 1< g < o8t Q(L; - loglogn) -
0-NOISY-LOAD 1<o O(o+/logn - log(no))

Q(min{1, 0} - (logn)'/3)
Q(min{c*/%,5%/> . \/logn})

-NoI1sY-Loap 2-(logn) /3 <o

o-NoIsy-LOAD 32<o0

Table: Overview of the lower and upper bounds for TwWO-CHOICE with noisy information derived
in previous works (rows in /Gray) and in this work (rows in Green). Upper bounds hold for all
values of m > n, while lower bounds may only hold for a suitable value of m.

23

Appendix A: Detailed results for outdated information

Model Range Lower Bound Upper Bound
b-BATCH b= Q(nlogn) Q(b/n) O(b/n)
b-BaTCH b=n Q=) O(logn)
7-DELAY T=n O
T-DELAY 7 € [n-e” (8™ nlogn] - o (log(@ﬁ’/%)
7-DELAY T =nl=¢ - O(loglogn)
b-BATCH b=n AU in) -
b-BarcH b€ [n-e (€™ nlogn] Q (M%) -
b-BATCH b=n'"¢ Q(loglogn) -

Table: Overview of the lower and upper bounds for Two-CHOICE with outdated information,
derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold
for all values of m > n, while lower bounds may only hold for a suitable value of m.

24

Appendix B: Analysis outline for outdated information

4

GAaP(t)

g1-Apv-ComPInstance g2-ADV-CoMPInstance
Phase 1 Phase 2 Phase 3

nlog*n

g21og(ngz)

9
log g2

-loglogn

T drops in expectation Tight analysis

Figure: 7-DELAY (and b-BATCH) can be exactly simulated using a g1-ADvV-COMP process with
g1 = 7 < nlogn. This gives the O(nlog?n) gap (since 7 < nlogn). Then w.h.p. for n® steps it
can be simulated using a g2-ADV-COMP process where go is the ONE-CHOICE gap for 27 balls.

25

Appendix C: Upper bound of O(glog(ng)) (I)

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)

I (z") = Ze’y(xf—t/n) 4 Ze—v(xﬁ—t/m)
i=1 i=1

Overload potential ~ Underload potential

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)

I‘t(xt) = Ze’y(xf—t/") 4 Ze—v(afﬁ—t/m)
=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1

<Ft-(1—l))
= asn) €

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)

I‘t(xt) = Ze’y(xf—t/") 4 Ze—v(afﬁ—t/m)
=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1
<Ft-(1—l))
= asn) €

Implies that E[T™] < % -n.

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)

I‘t(xt) = Ze’y(xf—t/") 4 Ze—v(afﬁ—t/m)
=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1

<Ft-(1—i)+c.
n

Implies that E[T™] < % -n.

IN
3

By Markov’s inequality, we get Pr [I‘m } >1—n"2

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)

I‘t(xt) = Ze’y(xf—t/") 4 Ze—v(afﬁ—t/m)
=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1

<Ft-(1—i)+c.
n

Implies that E[T™] < % -n.
By Markov’s inequality, we get Pr [I‘m < %3} > 1 —n~2 which implies

log(n/v)

Pr [Gap(m) <3 5

]>1—n_2.

26

Appendix C: Upper bound of O(glog(ng)) (I)

[PTW15] used the hyperbolic cosine potential (with no offset)
Piat) = Y eral=t/m) o 3 emtel=t/m) |
i=1 i=1

Overload potential ~ Underload potential

[PTW15] showed that for Two-CHOICE, for small enough -,

E[DH g] <D 4> pi (7 +97) e 4 pi (=7 +92) e+ 0 (%Ft>

=1

<Ft-(1—l))
= asn) €

Implies that E[T™] < % -n.

By Markov’s inequality, we get Pr [I‘m < %3} > 1 —n~2 which implies

Pr | Gap(m) <3-

bg(n//y)] >1— n—2.
This gives that Gap(m) = O(M)‘

v

26

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.

27

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.

Each transfer increases the bound by at most

- (ewz;—t/nw) _ ev(@?-ﬁﬂ))

27

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.
Each transfer increases the bound by at most

% . (ewm;—t/nw) _ ev(zz—t/n)> _ % =t (19 1)

27

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.

Each transfer increases the bound by at most
2 (ewz;—t/nw) _ ev(ﬂﬂ?-ﬁﬂ)) = 2 et (e 1)< 22 pattem)
n n n

by choosing v = ©(1/g).

27

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to is if
|z}, — 2, < g.

Each transfer increases the bound by at most
2 (ewz;—t/nw) _ ev(ﬂﬂ?-ﬁﬂ)) = 2 et (e 1)< 22 pattem)
n n n

by choosing v = ©(1/g). Similarly for the underloaded component.

27

Appendix C: Upper bound of O(glog(ng)) (II)
For g-ADV, the adversary can “transfer” 2/n? probability from i; to iy if
|x§1 - x§2| é «g'
Each transfer increases the bound by at most
2 t t 2 t 2 t
= (ewmi—t/nw) _ ev(m,-,—t/n)) =5 Y@=t (19 1) < - A2 =t/
by choosing v = ©(1/g). Similarly for the underloaded component.
Hence, on aggregate

n AQ
E[TT |y] ST 4> i (v+92) € 4 pi (-7 +97) e+ 0 (%Ft) +0 <1‘T>

Y
- n
i=1

<Ft.(1—l) .
= o6n) ¢

27

Appendix C: Upper bound of O(glog(ng)) (II)

For g-ADV, the adversary can “transfer” 2/n? probability from i; to iy if

|z}, — 2, < g.

Each transfer increases the bound by at most

% - (ewz;—t/nw) _ ev(ms—t/n)> _ % M) (19 1) < % 2 (el —t/n),
by choosing v = ©(1/g). Similarly for the underloaded component.

Hence, on aggregate

n AQ
E[TT |y] ST 4> i (v+92) € 4 pi (-7 +97) e+ 0 (%Ft) +0 <1‘T>

- n
=1

v (1o) e

- 96n te

This implies that Gap(m) = O(glog(ng)).

27

Appendix D: Upper bound of (’)(@ loglogn) for g <logn

Appendix D: Upper bound of (’)(; loglog n) for g <logn

We define the super-exponential potentlals, for 1<5< 10531% =k:

Zexp((logm) - j_k-(xﬁ—i—zj)+),

n

where z; :==©(j - g).

28

Appendix D: Upper bound of (’)(; loglog n) for g <logn

We define the super-exponential potentlals for 1<5<

Zexp((logn) - g/ * t

t .
'(xi_g_zj)),
where z; :==©(j - g).

=k

log logn
log g

When ®%_; = O(n), then the number of bins 7 with z} > L 4 2; is at most

i=n-0;

-
25,
Hence, ¢! < =2

n

28

Appendix D: Upper bound of (’)(; loglog n) for g <logn

We define the super-exponential potentlals for 1<5<

Zexp((logn) - g7~ k-(xﬁ—%—zj)+),

loglogn = ke
logg ° ’

where z; :==©(j - g).

When ®%_; = O(n), then the number of bins 7 with z} > L 4 2; is at most
n-e(osm e’y d;.
Hence, qz < @
Similarly to [LS?Qb]
1
E[o* | 3,0\, =On)] gq>§.(1—g>+2.

28

Appendix D: Upper bound of (’)(; loglog n) for g <logn

We define the super-exponential potentlals for 1<5<

Zexp((logn) - g7~ k-(xﬁ—%—zj)+),

loglogn = ke
logg ° ’

where z; :==©(j - g).
When ®%_; = O(n), then the number of bins 7 with z} >

— gl k
n-e"ogma’ " — 5

t s
5 1% 1s at most

26
Hence, qz <=k

Similarly to [LS?Qb]

1
E[o* | 3,0\, =On)] gq>§.(1—g>+2.

And so, after s = n - polylog(n) steps, we get
E [[§ Nrefti46)Pj_1 = O(n) | = O(n).

28

Appendix D: Upper bound of (9(; loglog n) for g <logn

We define the super-exponential potentlals for 1<5<

Zexp((logn) - g7~ k-(xﬁ—%—zj)+),

loglogn = ke
logg ° ’

where z; :==©(j - g).
When ®%_; = O(n), then the number of bins 7 with z} >

— gl k
n-e"ogma’ " — 5

t s
5 1% 1s at most

26
Hence, qz <=k

Similarly to [LS?Qb]

1
E[o* | 3,0\, =On)] gq>§.(1—g>+2.

And so, after s = n - polylog(n) steps, we get
E [[§ Nrefti46)Pj_1 = O(n) | = O(n).
Finally, when ®! | = O(n), we obtain that

Gap(t) =0(k-g) =0 (

9 1
log log n) .
log g

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

yt 1 |
--------- T s f = T exp(y - (...))
P =Y exp(y- (logn)'/®- (..
P =Y exp(y- (logn)?/® - (..
0 _____________ D ——
df=0(mn) = yf <logn

)
)

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

v p
S v logn ®f = > exp(y-(...)
®! =3 exp(y - (logn)'/3 - (...))
@5 = Y exp(y - (logn)*/® - (..))
(logm)!/? |=====c----mmmmmmmmom oo oo oo oo

0 _____________ ——— e o = - - -

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

t

y A

(logn)'/?

___________ ~ logn (1)6 =Sexp(y-(...)
o) =3 exp(y - (logn)/3 - (..
) = 3 exp(y - (logn)*/2 - (..

®f = 0(n) = y§,., < (logm)/3 Aps . <250

8

)
)

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

t

y A

(logn)'/?

®f =Y exp(y-(-..))
@} =Y exp(y- (logn)'/*-(...))
®h = exp(y - (logn)?/3- (...))

8

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)

t

y A

2(logn)/3 |-

(log)1/
0

1/3

®f =3 exp(v-(--.))

i 1/3
v (logn)/® + (logn)?* ®1= > exp(y - (logn)'/? - (..
@) = Y exp(y - (logn)?/? - (..

ot =0(n)

)
)

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)'/?

2(logn)/3 |-

(log)1/
0

» 1
ogm <1>§ :§expgfy-g...)))1/3 (
» (logn)Y/? + (logn)?/? ®] = > exp(v- (logn (..
TR gl = Sep(y - (logm)?/? - (..

i = 0(n) = y§,., < 2(logn)*/® Aps,n < ZT‘SZ

82

8

)
)

29

Appendix E: Proving Gap(m) = O(k - g), for g = (logn)

2(logn)/3

(log)1/
0

1/3

®f =Y exp(y-(-..))
@} =Y exp(y- (logn)'/*-(...))
®h = exp(y - (logn)?/3- (...))

29

Bibliography I

D. Alistarh, T. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally
linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’18), ACM, 2018, pp. 133-142.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, STAM J.
Comput. 29 (1999), no. 1, 180-200.

P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12) (Berlin Heidelberg), Springer-Verlag, 2012,

pp. 411-422.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350—-1385.

R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing — modelling and
behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy,
Elsevier, Amsterdam, 1988.

30

Bibliography 11

G. H. Gonnet, Fxpected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.

D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,
34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22),
ACM, 2022, p. 389—400.

, Balanced Allocations with Incomplete Information: The Power of Two Queries,
13th Innovations in Theoretical Computer Science Conference (ITCS22) (Dagstuhl,
Germany), vol. 215, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022,

pp. 103:1-103:23.

R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms—ESA 2001 (Arhus), Lecture
Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121-133.

31

Bibliography III

Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(14 B)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775.

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159-170.

U. Wieder, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput.
Sci. 12 (2016), no. 3-4, front matter, 276-379.

32

	Balanced allocations: Background
	Noisy processes
	Techniques
	Appendix

	anm1:
	1.0:
	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

