Balanced Allocations with the Choice of Noise

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$

${ }^{1}$ University of Cambridge, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}} \div \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in the least loaded of the two.
i
In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

Noisy processes

Motivation

Motivation

1. What if the load information of a bin is outdated?

Motivation

1. What if the load information of a bin is outdated?
2. What if an adversary can perturb the load of a bin by some additive amount?

Motivation

1. What if the load information of a bin is outdated?
2. What if an adversary can perturb the load of a bin by some additive amount?
3. What about random (additive) perturbations?

Motivation

1. What if the load information of a bin is outdated?
2. What if
3. What if an adversary can perturb the load of a bin by some additive amount?

4. What about random (additive) perturbations?

The Adversarial Comparison (g-ADV) setting

The Adversarial Comparison (g-ADV) setting

The Adversarial Comparison (g-ADv) setting

\square In Two-Choice, we sample two bins i_{1} and i_{2}

The Adversarial Comparison (g-ADv) setting

\square In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.

- In a g-ADV process (say for $g=3$), again we sample two bins:

The Adversarial Comparison (g-ADv) setting

- In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

The Adversarial Comparison (g-ADv) setting

- In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

The Adversarial Comparison (g-ADv) setting

- In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

i_{1}

i_{2}

The Adversarial Comparison (g-ADv) setting

- In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.

In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

The Adversarial Comparison (g-ADv) setting

- In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.
\Rightarrow Otherwise, allocate to the lesser loaded of the two.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.
\Rightarrow Otherwise, allocate to the lesser loaded of the two.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.

- Otherwise, allocate to the lesser loaded of the two.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.
In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.
\Rightarrow Otherwise, allocate to the lesser loaded of the two.

The Adversarial Comparison (g-ADv) setting

In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.
In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.
\Rightarrow Otherwise, allocate to the lesser loaded of the two.

The Adversarial Comparison (g-ADv) setting

\square In Two-Choice, we sample two bins i_{1} and i_{2} and allocate to the least loaded bin.
\square In a g-ADV process (say for $g=3$), again we sample two bins:
$>$ If $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$, the adversary can allocate to any of the two bins.
\Rightarrow Otherwise, allocate to the lesser loaded of the two.

Result for the g-ADV setting (Main result of our work)

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.
1 We prove that for any g-ADV process,

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-ADv process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-ADv process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-ADV process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
- Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-Adv process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
- Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.

> For $g=\mathcal{O}(1):$
> $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-Adv process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
- Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.

Result for the g-ADV setting (Main result of our work)

Alistarh, Brown, Kopinsky, Li and Nadiradze $\left[\mathrm{ABK}^{+} 18\right]$ analyzed the g-Bounded process.
They proved that for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

- We prove that for any g-ADv process,
- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
$>$ Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- For both cases, we prove a matching lower bound for g-Myopic-Comp.
$\operatorname{Gap}(m), m=1000 n, n \in\left[10^{4}, 5 \cdot 10^{4}, 10^{5}\right]$

Two-Choice with outdated information

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТCH).

Two-Choice with outdated information

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАтсн).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-ChoIce with outdated information

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСн).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+ 12$]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Сногсе with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+ 12$]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).

Two-Choice with outdated information

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE ${ }^{+}$12] studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).
For $b=n$, they showed that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Two-Choice with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСн).
■ For $b=n$, they showed that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For $b \in[n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m)=\Theta(b / n)$.

Two-Choice with outdated information

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСн).
■ For $b=n$, they showed that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For $b \in[n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m)=\Theta(b / n)$.
For $b=n$, we show that w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{\log n}{\log \log n}\right)$

Two-Choice with outdated information

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel [$\left.\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСн).
■ For $b=n$, they showed that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For $b \in[n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m)=\Theta(b / n)$.

- For $b=n$, we show that w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{\log n}{\log \log n}\right)$, like One-Choice with n balls.

Two-Choice with outdated information

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel [$\left.\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-ВАТСН).
For $b=n$, they showed that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For $b \in[n \log n, \operatorname{poly}(n)]$, the authors [LS22a] showed that w.h.p. $\operatorname{Gap}(m)=\Theta(b / n)$.

- For $b=n$, we show that w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{\log n}{\log \log n}\right)$, like One-Choice with n balls.
- More generally, for $b \in\left[\frac{n}{\operatorname{polylog}(n)}, n \log n\right]$ it follows One-Choice with b balls.

Two-Choice with outdated information: Reduction

Two-Choice with outdated information: Reduction

For $b=n$, w.h.p. any bin can be selected at most $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ times in a batch.

Two-Chоісе with outdated information: Reduction

\square For $b=n$, w.h.p. any bin can be selected at most $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ times in a batch.
\square So, w.h.p. we can simulate b-BATCH with a g-ADV process with $g=\Theta\left(\frac{\log n}{\log \log n}\right)$.

Two-Choice with outdated information: Reduction

- For $b=n$, w.h.p. any bin can be selected at most $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ times in a batch.
- So, w.h.p. we can simulate b-BATCH with a g-ADV process with $g=\Theta\left(\frac{\log n}{\log \log n}\right)$.
\square Hence, w.h.p.

$$
\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)
$$

Two-Choice with outdated information: Reduction

For $b=n$, w.h.p. any bin can be selected at $\operatorname{most} \mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ times in a batch.
\square So, w.h.p. we can simulate b-BATCH with a g-ADV process with $g=\Theta\left(\frac{\log n}{\log \log n}\right)$.
Hence, w.h.p.

$$
\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)
$$

For $b \in\left[\frac{n}{\operatorname{poly} \log (n)}, n \log n\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.

Two-Choice with outdated information: Reduction

For $b=n$, w.h.p. any bin can be selected at most $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ times in a batch.
\square So, w.h.p. we can simulate b-BATCH with a g-ADV process with $g=\Theta\left(\frac{\log n}{\log \log n}\right)$.

- Hence, w.h.p.

$$
\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)
$$

\square For $b \in\left[\frac{n}{\operatorname{poly} \log (n)}, n \log n\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.

Two-Choice with outdated information: τ-Delay

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.

Two-Choice with outdated information: τ-Delay

1 Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$. We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

\square Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
\square We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
\square We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
\square We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
\square We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
\square We call this the τ-Delay process $(\tau=b)$.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
- We call this the τ-Delay process $(\tau=b)$.
- Same upper bounds apply here.

Two-Choice with outdated information: τ-Delay

- Same argument applies when the reported bin load $\widetilde{x}_{i}^{t-1} \in\left[x_{i}^{t-\tau}, x_{i}^{t-1}\right]$.
- We call this the τ-Delay process $(\tau=b)$.
- Same upper bounds apply here.

Two-Choice with random noise (I)

Two-Choice with random noise (I)

Sample two random bins.

Two-Choice with random noise (I)

- Sample two random bins.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\downarrow (e.g., normal noise $\rightsquigarrow \sigma$-NoISY-LOAD)

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\triangleright (e.g., normal noise $\rightsquigarrow \sigma$-NOISY-LOAD)

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\triangleright (e.g., normal noise $\rightsquigarrow \sigma$-NOISY-LOAD)

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\downarrow (e.g., normal noise $\rightsquigarrow \sigma$-NoISY-LOAD)
Allocate to the bin with smaller load estimate.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\downarrow (e.g., normal noise $\rightsquigarrow \sigma$-NoISY-LOAD)
Allocate to the bin with smaller load estimate.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\downarrow (e.g., normal noise $\rightsquigarrow \sigma$-NoISY-LOAD)
Allocate to the bin with smaller load estimate.

Two-Choice with random noise (I)

- Sample two random bins.
- Obtain load estimates by adding noise to the bin loads.
\triangleright (e.g., normal noise $\rightsquigarrow \sigma$-NoisY-LOAD)
\square Allocate to the bin with smaller load estimate.

Lra Open in Visualiser.

Two-Сноісе with random noise (II)

Two-Сноісе with random noise (II)

- We can further generalize this setting.

Two-Choice with random noise (II)

- We can further generalize this setting.
\square Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right) .
$$

Two-Сноісе with random noise (II)

- We can further generalize this setting.
\square Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right)
$$

- Captures several processes:

Two-Сноісе with random noise (II)

- We can further generalize this setting.

Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right) .
$$

- Captures several processes: g-Bounded,

Two-Сноісе with random noise (II)

- We can further generalize this setting.
\square Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right) .
$$

- Captures several processes: g-Bounded, g-Myopic-Comp,

Two-Сноісе with random noise (II)

- We can further generalize this setting.

Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right) .
$$

Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-LoAD

Two-Сноісе with random noise (II)

- We can further generalize this setting.
\square Define the probability that the comparison between bins i_{1} and i_{2} is correct as

$$
\rho\left(\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right|\right) .
$$

Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...

Techniques

Overview

Overview

Overview

Overview

Overview

Overview

Overview

Overview

Overview

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.
1 For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.
- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p_{\text {TWO-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
$$

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.
- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p_{\text {Two-Сноісе }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) \text {. }
$$

For g-ADv, the probability vector q^{t}, is obtained from $p_{\text {Two-Choice }}$, by possibly moving $2 / n^{2}$ probability between bins i_{1}, i_{2} with loads $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th heaviest bin.

- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice,

$$
p_{\text {TWO-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
$$

For g-ADV, the probability vector q^{t}, is obtained from $p_{\text {Two-Cноісе }}$, by possibly moving $2 / n^{2}$ probability between bins i_{1}, i_{2} with loads $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.

Upper Bound: $\mathcal{O}(g+\log n)$

Upper Bound: $\mathcal{O}(g+\log n)$

We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right] .
$$

Upper Bound: $\mathcal{O}(g+\log n)$

- We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right] .
$$

Upper Bound: $\mathcal{O}(g+\log n)$

- We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right] .
$$

When $\Gamma^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}(g+\log n)$.

Upper Bound: $\mathcal{O}(g+\log n)$

- We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right]
$$

When $\Gamma^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}(g+\log n)$. Goal: Show w.h.p. $\Gamma^{t}=\mathcal{O}(n)$.

Upper Bound: $\mathcal{O}(g+\log n)$

- We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right] .
$$

\square When $\Gamma^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}(g+\log n)$. Goal: Show w.h.p. $\Gamma^{t}=\mathcal{O}(n)$.
\square Challenge: For some configurations, Γ^{t} may increase in expectation, even when large. But, we always have the following loose upper bound:

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1+\frac{3 \gamma}{n}\right)
$$

Upper Bound: $\mathcal{O}(g+\log n)$

- We use the hyperbolic cosine potential [PTW15] with constant $\gamma>0$:

$$
\Gamma^{t}:=\sum_{i=1}^{n}\left[\exp \left(\gamma\left(x_{i}^{t}-t / n-730 g\right)^{+}\right)+\exp \left(\gamma\left(-\left(x_{i}^{t}-t / n\right)-730 g\right)^{+}\right)\right] .
$$

When $\Gamma^{t}=\mathcal{O}(n)$, then $\operatorname{Gap}(t)=\mathcal{O}(g+\log n)$. Goal: Show w.h.p. $\Gamma^{t}=\mathcal{O}(n)$.
\square Challenge: For some configurations, Γ^{t} may increase in expectation, even when large. But, we always have the following loose upper bound:

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1+\frac{3 \gamma}{n}\right) .
$$

How can we prove that the potential drops in expectation over multiple steps when large?

Upper Bound: $\mathcal{O}(g+\log n)$

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

Upper Bound: $\mathcal{O}(g+\log n)$

- Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

When $\Delta^{t} \leq \operatorname{Dng}(D=365)$, then at most $n / 3$ bins i with load $\geq t / n+\frac{3}{2} D g$.

Upper Bound: $\mathcal{O}(g+\log n)$

\square Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

When $\Delta^{t} \leq \operatorname{Dng}(D=365)$, then at most $n / 3$ bins i with load $\geq t / n+\frac{3}{2} D g$. So, there is a bias to place away from bins with load $\geq t / n+2 D g$.

Upper Bound: $\mathcal{O}(g+\log n)$

- Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

When $\Delta^{t} \leq \operatorname{Dng}(D=365)$, then at most $n / 3$ bins i with load $\geq t / n+\frac{3}{2} D g$. So, there is a bias to place away from bins with load $\geq t / n+2 D g$.

- (Good step): This bias enough to prove that for some constant $\epsilon>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Delta^{t} \leq D n g, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\frac{\gamma \epsilon}{n}\right)
$$

Upper Bound: $\mathcal{O}(g+\log n)$

- Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

\square When $\Delta^{t} \leq \operatorname{Dng}(D=365)$, then at most $n / 3$ bins i with load $\geq t / n+\frac{3}{2} D g$. So, there is a bias to place away from bins with load $\geq t / n+2 D g$.

- (Good step): This bias enough to prove that for some constant $\epsilon>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Delta^{t} \leq D n g, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\frac{\gamma \epsilon}{n}\right)
$$

- A properly adjusted potential function drops in expectation in every step, for any interval with constant fraction of good steps.

Upper Bound: $\mathcal{O}(g+\log n)$

\square Solution: Use the absolute value potential:

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

When $\Delta^{t} \leq \operatorname{Dng}(D=365)$, then at most $n / 3$ bins i with load $\geq t / n+\frac{3}{2} D g$. So, there is a bias to place away from bins with load $\geq t / n+2 D g$.

- (Good step): This bias enough to prove that for some constant $\epsilon>0$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Delta^{t} \leq D n g, \Gamma^{t} \geq c n\right] \leq \Gamma^{t} \cdot\left(1-\frac{\gamma \epsilon}{n}\right)
$$

- A properly adjusted potential function drops in expectation in every step, for any interval with constant fraction of good steps.

How can we prove that there is a constant fraction of good steps?

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

Upper Bound: $\mathcal{O}(g+\log n)$

\square Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1
$$

Upper Bound: $\mathcal{O}(g+\log n)$

\square Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1 .
$$

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1
$$

- For g-ADV,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1
$$

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.
For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1
$$

- For g-ADV,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1+2 g
$$

using the "probability transfer" argument.

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1
$$

- For g-ADv,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1+2 g \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1+2 g
$$

using the "probability transfer" argument.

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1 .
$$

- For g-ADV,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1+2 g \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1+2 g,
$$

using the "probability transfer" argument.

- By induction, we get

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\sum_{r=t}^{t+k} \frac{\Delta^{t}}{n}+(1+2 g) \cdot(k+1)
$$

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1 .
$$

- For g-ADV,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1+2 g \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1+2 g,
$$

using the "probability transfer" argument.

- By induction, we get

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\sum_{r=t}^{t+k} \frac{\Delta^{t}}{n}+(1+2 g) \cdot(k+1)
$$

- When $k=\Omega\left(\Upsilon^{t} / g\right)$, then for a constant fraction of the steps $s \in[t, t+k]$ with $\mathbf{E}\left[\Delta^{s} \mid \mathfrak{F}^{t}\right] \leq D n g$.

Upper Bound: $\mathcal{O}(g+\log n)$

Solution: Use the quadratic potential: $\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{t}\right)^{2}$.

- For Two-Choice,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1 .
$$

- For g-ADV,

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 q_{i}^{t} y_{i}^{t}+1 \leq \Upsilon^{t}+\sum_{i=1}^{n} 2 p_{i}^{t} y_{i}^{t}+1+2 g \leq \Upsilon^{t}-\frac{\Delta^{t}}{n}+1+2 g,
$$

using the "probability transfer" argument.

- By induction, we get

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\sum_{r=t}^{t+k} \frac{\Delta^{t}}{n}+(1+2 g) \cdot(k+1)
$$

- When $k=\Omega\left(\Upsilon^{t} / g\right)$, then for a constant fraction of the steps $s \in[t, t+k]$ with $\mathbf{E}\left[\Delta^{s} \mid \mathfrak{F}^{t}\right] \leq D n g$.
- This concludes the $\mathcal{O}(g+\log n)$ bound.

Summary \& Future Work

Summary of results:

Summary \& Future Work

Summary of results:
For any g-ADV process,

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
$>$ Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
$>$ Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-Myopic-Comp process.

Summary \& Future Work

Summary of results:
1 For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
- Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-Myopic-Comp process.
- Tight bounds for Two-Choice with outdated information.

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
$>$ Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.Matching lower bound for the g-Myopic-Comp process.Tight bounds for Two-Choice with outdated information.
Future work:

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
\downarrow Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-Myopic-Comp process.
- Tight bounds for Two-Choice with outdated information.

Future work:
Improve the bounds for σ-NOISY-LOAD (or other distributions ρ).

Summary \& Future Work

Summary of results:
For any g-ADV process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
\downarrow Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-Myopic-Comp process.
- Tight bounds for Two-Choice with outdated information.

Future work:
\square Improve the bounds for σ-NoISY-LOAD (or other distributions ρ).

- Analyze the noisy and outdated setting for other processes.

Summary \& Future Work

Summary of results:
For any g-Adv process,

- If $g \geq \log n$, then for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(g)$.
\downarrow Otherwise, for any m, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$.
- Matching lower bound for the g-Myopic-Comp process.
- Tight bounds for Two-Choice with outdated information.

Future work:
Improve the bounds for σ-NoISY-LOAD (or other distributions ρ).

- Analyze the noisy and outdated setting for other processes.

Questions?

Visualisations: dimitrioslos.com/podc22

Questions?

Visualisations: dimitrioslos.com/podc22

Appendix A: Detailed results for noise models

Model	Range	Lower Bound	Upper Bound
g-BoUnded	$1 \leq g$	-	$\mathcal{O}(g \cdot \log (n g))$
g-ADV	$1 \leq g$	-	$\mathcal{O}(g+\log n)$
g-ADV	$1<g \leq \log n$	-	$\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$
g-MYOPIC-COMP	$\frac{\log n}{\log \log n} \leq g$	$\Omega(g)$	-
g-MYOPIC-COMP	$1<g \leq \frac{\log n}{\log \log n}$	$\Omega\left(\frac{g}{\log g} \cdot \log \log n\right)$	-
σ-NOISY-LOAD	$1 \leq \sigma$	-	$\mathcal{O}(\sigma \sqrt{\log n} \cdot \log (n \sigma))$
σ-NOISY-LOAD	$2 \cdot(\log n)^{-1 / 3} \leq \sigma$	$\Omega\left(\min \{1, \sigma\} \cdot(\log n)^{1 / 3}\right)$	-
σ-NOISY-LOAD	$32 \leq \sigma$	$\Omega\left(\min \left\{\sigma^{4 / 5}, \sigma^{2 / 5} \cdot \sqrt{\log n}\right\}\right)$	-

Table: Overview of the lower and upper bounds for Two-Choice with noisy information derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold for all values of $m \geq n$, while lower bounds may only hold for a suitable value of m.

Appendix A: Detailed results for outdated information

Model	Range	Lower Bound	Upper Bound
b-BATCH	$b=\Omega(n \log n)$	$\Omega(b / n)$	$\mathcal{O}(b / n)$
b-BATCH	$b=n$	$\Omega\left(\frac{\log n}{\log \log n}\right)$	$\mathcal{O}(\log n)$
τ-DELAY	$\tau=n$	-	$\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$
τ-DELAY	$\tau \in\left[n \cdot e^{-(\log n)^{c}}, n \log n\right]$	-	$\mathcal{O}\left(\frac{\log n}{\log ((4 n / \tau) \log n)}\right)$
τ-DELAY	$\tau=n^{1-\epsilon}$	-	$\mathcal{O}(\log \log n)$
b-BATCH	$b=n$	$\Omega\left(\frac{\log n}{\log \log n}\right)$	-
b-BATCH	$b \in\left[n \cdot e^{-(\log n)^{c}}, n \log n\right]$	$\Omega\left(\frac{\log n}{\log ((4 n / b) \log n)}\right)$	-
b-BATCH	$b=n^{1-\epsilon}$	$\Omega(\log \log n)$	-

Table: Overview of the lower and upper bounds for Two-Choice with outdated information, derived in previous works (rows in Gray) and in this work (rows in Green). Upper bounds hold for all values of $m \geq n$, while lower bounds may only hold for a suitable value of m.

Appendix B: Analysis outline for outdated information

Figure: τ-DELAY (and b-BATCH) can be exactly simulated using a g_{1}-ADV-Comp process with $g_{1}=\tau \leq n \log n$. This gives the $\mathcal{O}\left(n \log ^{2} n\right)$ gap (since $\left.\tau \leq n \log n\right)$. Then w.h.p. for n^{3} steps it can be simulated using a g_{2}-Adv-Comp process where g_{2} is the One-Choice gap for 2τ balls.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))(\mathbf{I})$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

- [PTW15] showed that for Two-Choice, for small enough γ,

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{48 n}\right)+c .
\end{aligned}
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

- [PTW15] showed that for Two-Choice, for small enough γ,

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{48 n}\right)+c .
\end{aligned}
$$

Implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{48 c}{\gamma} \cdot n$.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

- [PTW15] showed that for Two-Choice, for small enough γ,

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{48 n}\right)+c .
\end{aligned}
$$

\square Implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{48 c}{\gamma} \cdot n$.

- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{n^{3}}{\gamma}\right] \geq 1-n^{-2}$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

- [PTW15] showed that for Two-Choice, for small enough γ,

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{48 n}\right)+c .
\end{aligned}
$$

\square Implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{48 c}{\gamma} \cdot n$.

- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{n^{3}}{\gamma}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq 3 \cdot \frac{\log (n / \gamma)}{\gamma}\right] \geq 1-n^{-2}
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (I)

- [PTW15] used the hyperbolic cosine potential (with no offset)

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

- [PTW15] showed that for Two-Choice, for small enough γ,

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{48 n}\right)+c .
\end{aligned}
$$

Implies that $\mathbf{E}\left[\Gamma^{m}\right] \leq \frac{48 c}{\gamma} \cdot n$.

- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{n^{3}}{\gamma}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq 3 \cdot \frac{\log (n / \gamma)}{\gamma}\right] \geq 1-n^{-2}
$$

- This gives that $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log (n / \gamma)}{\gamma}\right)$.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.
\square Each transfer increases the bound by at most

$$
\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

- For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.
\square Each transfer increases the bound by at most

$$
\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)=\frac{2}{n^{2}} \cdot \gamma \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)} \cdot\left(e^{\gamma g}-1\right)
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

- For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.
\square Each transfer increases the bound by at most

$$
\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)=\frac{2}{n^{2}} \cdot \gamma \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)} \cdot\left(e^{\gamma g}-1\right) \leq \frac{2}{n^{2}} \cdot \gamma^{2} \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)},
$$ by choosing $\gamma=\Theta(1 / g)$.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.
\square Each transfer increases the bound by at most
$\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)=\frac{2}{n^{2}} \cdot \gamma \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)} \cdot\left(e^{\gamma g}-1\right) \leq \frac{2}{n^{2}} \cdot \gamma^{2} \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)}$,
by choosing $\gamma=\Theta(1 / g)$. Similarly for the underloaded component.

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.

- Each transfer increases the bound by at most
$\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)=\frac{2}{n^{2}} \cdot \gamma \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)} \cdot\left(e^{\gamma g}-1\right) \leq \frac{2}{n^{2}} \cdot \gamma^{2} \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)}$,
by choosing $\gamma=\Theta(1 / g)$. Similarly for the underloaded component.
- Hence, on aggregate

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right)+\mathcal{O}\left(\frac{\gamma^{2}}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{96 n}\right)+c
\end{aligned}
$$

Appendix C: Upper bound of $\mathcal{O}(g \log (n g))$ (II)

For g-ADV, the adversary can "transfer" $2 / n^{2}$ probability from i_{1} to i_{2} if $\left|x_{i_{1}}^{t}-x_{i_{2}}^{t}\right| \leq g$.

- Each transfer increases the bound by at most
$\frac{2}{n^{2}} \cdot \gamma \cdot\left(e^{\gamma\left(x_{i}^{t}-t / n+g\right)}-e^{\gamma\left(x_{i}^{t}-t / n\right)}\right)=\frac{2}{n^{2}} \cdot \gamma \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)} \cdot\left(e^{\gamma g}-1\right) \leq \frac{2}{n^{2}} \cdot \gamma^{2} \cdot e^{\gamma\left(x_{i}^{t}-t / n\right)}$,
by choosing $\gamma=\Theta(1 / g)$. Similarly for the underloaded component.
- Hence, on aggregate

$$
\begin{aligned}
\mathbf{E}\left[\Gamma^{t+1} \mid y^{t}\right] & \leq \Gamma^{t}+\sum_{i=1}^{n} p_{i} \cdot\left(\gamma+\gamma^{2}\right) \cdot e^{\gamma y_{i}^{t}}+p_{i} \cdot\left(-\gamma+\gamma^{2}\right) \cdot e^{-\gamma y_{i}^{t}}+\mathcal{O}\left(\frac{\gamma}{n} \Gamma^{t}\right)+\mathcal{O}\left(\frac{\gamma^{2}}{n} \Gamma^{t}\right) \\
& \leq \Gamma^{t} \cdot\left(1-\frac{\gamma}{96 n}\right)+c .
\end{aligned}
$$

- This implies that $\operatorname{Gap}(m)=\mathcal{O}(g \log (n g))$.

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

We define the super-exponential potentials, for $1 \leq j \leq \frac{\log \log n}{\log g}:=k$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n) \cdot g^{j-k} \cdot\left(x_{i}^{t}-\frac{t}{n}-z_{j}\right)^{+}\right),
$$

where $z_{j}:=\Theta(j \cdot g)$.

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

- We define the super-exponential potentials, for $1 \leq j \leq \frac{\log \log n}{\log g}:=k$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n) \cdot g^{j-k} \cdot\left(x_{i}^{t}-\frac{t}{n}-z_{j}\right)^{+}\right)
$$

where $z_{j}:=\Theta(j \cdot g)$.

- When $\Phi_{j-1}^{t}=\mathcal{O}(n)$, then the number of bins i with $x_{i}^{t} \geq \frac{t}{n}+z_{j}$ is at most

Hence, $q_{i}^{t} \leq \frac{2 \delta_{j}}{n}$.

$$
n \cdot e^{-(\log n) \cdot g^{j-k}}:=n \cdot \delta_{j}
$$

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

We define the super-exponential potentials, for $1 \leq j \leq \frac{\log \log n}{\log g}:=k$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n) \cdot g^{j-k} \cdot\left(x_{i}^{t}-\frac{t}{n}-z_{j}\right)^{+}\right)
$$

where $z_{j}:=\Theta(j \cdot g)$.

- When $\Phi_{j-1}^{t}=\mathcal{O}(n)$, then the number of bins i with $x_{i}^{t} \geq \frac{t}{n}+z_{j}$ is at most

$$
n \cdot e^{-(\log n) \cdot g^{j-k}}:=n \cdot \delta_{j} .
$$

Hence, $q_{i}^{t} \leq \frac{2 \delta_{j}}{n}$.

- Similarly to [LS22b]

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathfrak{F}^{t}, \Phi_{j-1}^{t}=\mathcal{O}(n)\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2 .
$$

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

We define the super-exponential potentials, for $1 \leq j \leq \frac{\log \log n}{\log g}:=k$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n) \cdot g^{j-k} \cdot\left(x_{i}^{t}-\frac{t}{n}-z_{j}\right)^{+}\right)
$$

where $z_{j}:=\Theta(j \cdot g)$.
When $\Phi_{j-1}^{t}=\mathcal{O}(n)$, then the number of bins i with $x_{i}^{t} \geq \frac{t}{n}+z_{j}$ is at most

$$
n \cdot e^{-(\log n) \cdot g^{j-k}}:=n \cdot \delta_{j} .
$$

Hence, $q_{i}^{t} \leq \frac{2 \delta_{j}}{n}$.

- Similarly to [LS22b]

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathfrak{F}^{t}, \Phi_{j-1}^{t}=\mathcal{O}(n)\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2 .
$$

- And so, after $s=n \cdot \operatorname{polylog}(n)$ steps, we get

$$
\mathbf{E}\left[\Phi_{j}^{t+s} \mid \mathfrak{F}^{t}, \cap_{r \in[t, t+s)} \Phi_{j-1}^{r}=\mathcal{O}(n)\right]=\mathcal{O}(n)
$$

Appendix D: Upper bound of $\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)$ for $g \leq \log n$

- We define the super-exponential potentials, for $1 \leq j \leq \frac{\log \log n}{\log g}:=k$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n) \cdot g^{j-k} \cdot\left(x_{i}^{t}-\frac{t}{n}-z_{j}\right)^{+}\right)
$$

where $z_{j}:=\Theta(j \cdot g)$.

- When $\Phi_{j-1}^{t}=\mathcal{O}(n)$, then the number of bins i with $x_{i}^{t} \geq \frac{t}{n}+z_{j}$ is at most

$$
n \cdot e^{-(\log n) \cdot g^{j-k}}:=n \cdot \delta_{j} .
$$

Hence, $q_{i}^{t} \leq \frac{2 \delta_{j}}{n}$.

- Similarly to [LS22b]

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathfrak{F}^{t}, \Phi_{j-1}^{t}=\mathcal{O}(n)\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2 .
$$

- And so, after $s=n \cdot \operatorname{polylog}(n)$ steps, we get

$$
\mathbf{E}\left[\Phi_{j}^{t+s} \mid \mathfrak{F}^{t}, \cap_{r \in[t, t+s)} \Phi_{j-1}^{r}=\mathcal{O}(n)\right]=\mathcal{O}(n) .
$$

Finally, when $\Phi_{k-1}^{t}=\mathcal{O}(n)$, we obtain that

$$
\operatorname{Gap}(t)=\mathcal{O}(k \cdot g)=\mathcal{O}\left(\frac{g}{\log g} \log \log n\right)
$$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Appendix E: Proving $\operatorname{Gap}(m)=\mathcal{O}(k \cdot g)$, for $g=(\log n)^{1 / 3}$

Bibliography I

- D. Alistarh, T. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'18), ACM, 2018, pp. 133-142.
- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200.
- P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice balanced allocation in (almost) parallel, 16th International Workshop on Randomization and Computation (RANDOM'12) (Berlin Heidelberg), Springer-Verlag, 2012, pp. 411-422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385.
- R.J. Gibbens, F.P. Kelly, and P.B. Key, Dynamic alternative routing - modelling and behavior, Proceedings of the 12 International Teletraffic Congress, Torino, Italy, Elsevier, Amsterdam, 1988.

Bibliography II

- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.
- D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized, 34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'22), ACM, 2022, p. 389-400.
- ___ Balanced Allocations with Incomplete Information: The Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference (ITCS'22) (Dagstuhl, Germany), vol. 215, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 103:1-103:23.
- R. Pagh and F. F. Rodler, Cuckoo hashing, Algorithms-ESA 2001 (Århus), Lecture Notes in Comput. Sci., vol. 2161, Springer, Berlin, 2001, pp. 121-133.

Bibliography III

- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775.
- M. Raab and A. Steger, "Balls into bins"- a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170.
- U. Wieder, Hashing, load balancing and multiple choice, Found. Trends Theor. Comput. Sci. 12 (2016), no. 3-4, front matter, 276-379.

