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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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■ Applications in hashing [PR01], load balancing [Wie16] and routing [GKK88].
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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Noisy processes

Noisy processes 5



Motivation

1. What if the load information of a bin is outdated?

2. What if an adversary can perturb the load of a bin by some additive
amount?

3. What about random (additive) perturbations?
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The Adversarial Comparison (g-Adv) setting

■ In Two-Choice, we sample two bins i1 and i2 and allocate to the least loaded bin.
■ In a g-Adv process (say for g = 3), again we sample two bins:

▶ If |xt
i1 − xt

i2 | ≤ g, the adversary can allocate to any of the two bins.
▶ Otherwise, allocate to the lesser loaded of the two.

g-Bounded: Adversary
prefers heavier bins.

g-Myopic-Comp: Adversary
allocates randomly.

g-Bounded: Open
in Visualiser.

g-Myopic-Comp: Open
in Visualiser.

Noisy processes 7
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Result for the g-Adv setting (Main result of our work)

■ Alistarh, Brown, Kopinsky, Li and Nadiradze [ABK+18] analyzed the g-Bounded
process.

■ They proved that for any m, w.h.p. Gap(m) = O(g log(ng)).
■ We prove that for any g-Adv process,

▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O( g

log g
· log log n).

■ For both cases, we prove a matching lower bound for g-Myopic-Comp.
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Noise parameter g

Gap(m), m = 1000n, n ∈ [104, 5 · 104, 105]

g-Bounded n = 105

For g = O(1):
Gap(m) = O(log log n).

For g = Ω(polylog(n)):
Gap(m) = O(g).
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Two-Choice with outdated information

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice
where balls are allocated in batches of size b (b-Batch).

■ For b = n, they showed that w.h.p. Gap(m) = O(log n).
■ For b ∈ [n log n, poly(n)], the authors [LS22a] showed that w.h.p. Gap(m) = Θ(b/n).
■ For b = n, we show that w.h.p. Gap(m) = Θ

( log n
log log n

)
, like One-Choice with n balls.

■ More generally, for b ∈
[

n
polylog(n) , n log n

]
it follows One-Choice with b balls.

Open in Visualiser.
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Two-Choice with outdated information: Reduction

■ For b = n, w.h.p. any bin can be selected at most O
( log n

log log n

)
times in a batch.

■ So, w.h.p. we can simulate b-Batch with a g-Adv process with g = Θ
( log n

log log n

)
.

■ Hence, w.h.p.
Gap(m) = O

( g

log g
· log log n

)
.

■ For b ∈
[

n
polylog(n) , n log n

]
, w.h.p. Gap(m) = O(g).
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Two-Choice with outdated information: τ-Delay

■ Same argument applies when the reported bin load x̃t−1
i ∈ [xt−τ

i , xt−1
i ].

■ We call this the τ-Delay process (τ = b).

■ Same upper bounds apply here.
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Two-Choice with random noise (I)

■ Sample two random bins.
■ Obtain load estimates by adding noise to the bin loads.

▶ (e.g., normal noise ⇝ σ-Noisy-Load)

■ Allocate to the bin with smaller load estimate.

i1 i2

Open in Visualiser.
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Two-Choice with random noise (II)

■ We can further generalize this setting.
■ Define the probability that the comparison between bins i1 and i2 is correct as

ρ(|xt
i1

− xt
i2

|).

■ Captures several processes: g-Bounded, g-Myopic-Comp, σ-Noisy-Load ...
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Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For g-Adv, the probability vector qt, is obtained from pTwo-Choice, by possibly moving
2/n2 probability between bins i1, i2 with loads |xt

i1
− xt

i2
| ≤ g.

xt
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Upper Bound: O(g + log n)

■ We use the hyperbolic cosine potential [PTW15] with constant γ > 0:

Γt :=
n∑

i=1

[
exp

(
γ(xt

i − t/n − 730g)+)
+ exp

(
γ(−(xt

i − t/n) − 730g)+) ]
.

■ When Γt = O(n), then Gap(t) = O(g + log n). Goal: Show w.h.p. Γt = O(n).
■ Challenge: For some configurations, Γt may increase in expectation, even when

large. But, we always have the following loose upper bound:

E
[

Γt+1 | Ft, Γt ≥ cn
]

≤ Γt ·
(

1 + 3γ

n

)
.

How can we prove that the potential drops in expectation
over multiple steps when large?
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Upper Bound: O(g + log n)

■ Solution: Use the absolute value potential:

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ When ∆t ≤ Dng (D = 365), then at most n/3 bins i with load ≥ t/n + 3
2 Dg. So,

there is a bias to place away from bins with load ≥ t/n + 2Dg.
■ (Good step): This bias enough to prove that for some constant ϵ > 0,

E
[

Γt+1 | Ft, ∆t ≤ Dng, Γt ≥ cn
]

≤ Γt ·
(

1 − γϵ

n

)
.

■ A properly adjusted potential function drops in expectation in every step, for any
interval with constant fraction of good steps.

How can we prove that there is
a constant fraction of good steps?

≥ 2Dg [ 32Dg, 2Dg) < 3
2Dg

≤ n/3 ≥ 2n/3
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Upper Bound: O(g + log n)
■ Solution: Use the quadratic potential: Υt :=

∑n
i=1

(
xt

i − t
n

)2 =
∑n

i=1 (yt
i)

2
.

■ For Two-Choice,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2pt

iy
t
i + 1 ≤ Υt − ∆t

n
+ 1.

■ For g-Adv,

E
[

Υt+1 | Ft
]

≤ Υt +
n∑

i=1
2qt

iy
t
i + 1 ≤ Υt +

n∑
i=1

2pt
iy

t
i + 1 + 2g ≤ Υt − ∆t

n
+ 1 + 2g,

using the “probability transfer” argument.
■ By induction, we get

E
[

Υt+k+1 | Ft
]

≤ Υt −
t+k∑
r=t

∆t

n
+ (1 + 2g) · (k + 1).

■ When k = Ω(Υt/g), then for a constant fraction of the steps s ∈ [t, t + k] with
E [ ∆s | Ft ] ≤ Dng.

■ This concludes the O(g + log n) bound.
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Summary & Future Work
Summary of results:

■ For any g-Adv process,
▶ If g ≥ log n, then for any m, w.h.p. Gap(m) = O(g).
▶ Otherwise, for any m, w.h.p. Gap(m) = O

(
g

log g
· log log n

)
.

■ Matching lower bound for the g-Myopic-Comp process.
■ Tight bounds for Two-Choice with outdated information.

Future work:
■ Improve the bounds for σ-Noisy-Load (or other distributions ρ).
■ Analyze the noisy and outdated setting for other processes.
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Appendix A: Detailed results for noise models

Model Range Lower Bound Upper Bound

g-Bounded 1 ≤ g – O(g · log(ng))

g-Adv 1 ≤ g – O(g + log n)

g-Adv 1 < g ≤ log n – O
(

g
log g · log log n

)
g-Myopic-Comp log n

log log n ≤ g Ω(g) ––

g-Myopic-Comp 1 < g ≤ log n
log log n

Ω
(

g
log g · log log n

)
–

σ-Noisy-Load 1 ≤ σ – O(σ
√

log n · log(nσ))

σ-Noisy-Load 2 · (log n)−1/3 ≤ σ Ω(min{1, σ} · (log n)1/3) –

σ-Noisy-Load 32 ≤ σ Ω(min{σ4/5, σ2/5 ·
√

log n}) –

Table: Overview of the lower and upper bounds for Two-Choice with noisy information derived
in previous works (rows in Gray ) and in this work (rows in Green ). Upper bounds hold for all
values of m ≥ n, while lower bounds may only hold for a suitable value of m.
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Appendix A: Detailed results for outdated information

Model Range Lower Bound Upper Bound

b-Batch b = Ω(n log n) Ω(b/n) O(b/n)

b-Batch b = n Ω
( log n

log log n

)
O(log n)

τ-Delay τ = n – O( log n
log log n )

τ-Delay τ ∈
[
n · e−(log n)c

, n log n
]

– O
(

log n
log((4n/τ) log n)

)
τ-Delay τ = n1−ϵ – O(log log n)

b-Batch b = n Ω( log n
log log n ) –

b-Batch b ∈
[
n · e−(log n)c

, n log n
]

Ω
(

log n
log((4n/b) log n)

)
–

b-Batch b = n1−ϵ Ω(log log n) –

Table: Overview of the lower and upper bounds for Two-Choice with outdated information,
derived in previous works (rows in Gray ) and in this work (rows in Green ). Upper bounds hold
for all values of m ≥ n, while lower bounds may only hold for a suitable value of m.
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Appendix B: Analysis outline for outdated information

g1-Adv-CompInstance g2-Adv-CompInstance

0 t0 t1 m

Gap(t)

Phase 1 Phase 2 Phase 3

n log2 n

g2 log(ng2)

g2
log g2

· log log n

t

Γ drops in expectation Tight analysis

. . .

Figure: τ -Delay (and b-Batch) can be exactly simulated using a g1-Adv-Comp process with
g1 = τ ≤ n log n. This gives the O(n log2 n) gap (since τ ≤ n log n). Then w.h.p. for n3 steps it
can be simulated using a g2-Adv-Comp process where g2 is the One-Choice gap for 2τ balls.
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Appendix C: Upper bound of O(g log(ng)) (I)

■ [PTW15] used the hyperbolic cosine potential (with no offset)

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] showed that for Two-Choice, for small enough γ,

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
≤ Γt ·

(
1 − γ

48n

)
+ c.

■ Implies that E [ Γm ] ≤ 48c
γ · n.

■ By Markov’s inequality, we get Pr
[

Γm ≤ n3

γ

]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 3 · log(n/γ)
γ

]
≥ 1 − n−2.

■ This gives that Gap(m) = O( log(n/γ)
γ ).
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Appendix C: Upper bound of O(g log(ng)) (II)
■ For g-Adv, the adversary can “transfer” 2/n2 probability from i1 to i2 if

|xt
i1

− xt
i2

| ≤ g.

■ Each transfer increases the bound by at most
2
n2 · γ ·

(
eγ(xt

i−t/n+g) − eγ(xt
i−t/n)

)
= 2

n2 · γ · eγ(xt
i−t/n) · (eγg − 1) ≤ 2

n2 · γ2 · eγ(xt
i−t/n),

by choosing γ = Θ(1/g). Similarly for the underloaded component.
■ Hence, on aggregate

E
[

Γt+1 ∣∣ yt
]

≤ Γt +
n∑

i=1
pi · (γ + γ2) · eγyt

i + pi · (−γ + γ2) · e−γyt
i + O

(γ

n
Γt

)
+ O

(
γ2

n
Γt

)
≤ Γt ·

(
1 − γ

96n

)
+ c.

■ This implies that Gap(m) = O(g log(ng)).
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Appendix D: Upper bound of O( g
log g log log n) for g ≤ log n

■ We define the super-exponential potentials, for 1 ≤ j ≤ log log n
log g := k:

Φt
j :=

n∑
i=1

exp
(

γ · (log n) · gj−k ·
(
xt

i − t

n
− zj

)+
)

,

where zj := Θ(j · g).
■ When Φt

j−1 = O(n), then the number of bins i with xt
i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.
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i ≥ t

n + zj is at most

n · e−(log n)·gj−k

:= n · δj .

■ Hence, qt
i ≤ 2δj

n .
■ Similarly to [LS22b]

E
[

Φt+1
j

∣∣ Ft, Φt
j−1 = O(n)

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ And so, after s = n · polylog(n) steps, we get
E

[
Φt+s

j | Ft, ∩r∈[t,t+s)Φr
j−1 = O(n)

]
= O(n).

■ Finally, when Φt
k−1 = O(n), we obtain that

Gap(t) = O(k · g) = O
(

g

log g
log log n

)
.
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Appendix E: Proving Gap(m) = O(k · g), for g = (log n)1/3
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0 =

∑
exp(γ · (. . .))

Φt
1 =

∑
exp(γ · (log n)1/3 · (. . .))

Φt
2 =

∑
exp(γ · (log n)2/3 · (. . .))
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