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Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.
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Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
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Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.
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Two-CHOICE Process: '
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. /
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ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = 9(102)532”) [Gon81].
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
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Two-CHOICE Process: Y
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. .

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].
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(1 + B)-Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

[Mit99] interpreted (1 — 8)/2 as the probability of making an erroneous comparison.

In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = ©(logn/j3) for
1/n < 8 < 1— ¢ for any constant € > 0.
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Adaptive 1-THRESHOLD

Adaptive THRESHOLD( f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt is
z;, " =uw;, +1 otherwise.
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Adaptive THRESHOLD( f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1
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=x{ 41 otherwise.

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving

w.h.p. Gap(n) = (’)(,/ logign).

For the heavily-loaded case, [LSS22] proved for f(z') = ¢/n that w.h.p.
Gap(m) = O(logn).

Ia1 THRESHOLD: Open

in Visualiser.
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Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.
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Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
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[IK05, FL20] analyse d-THINNING in the lightly-loaded case.
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Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:

xfj‘l = xﬁl +1 if Rank®(iy) > n - d(a?),
it
2

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).
Also, adaptive THRESHOLD( f) process can simulate any adaptive QQUANTILE(J).
Both are special cases of Two-THINNING [FGG21].

[IK05, FL20] analyse d-THINNING in the lightly-loaded case.

Ial QUANTILE Open
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1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.
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1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.
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1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.
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k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.
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k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.
We can only distinguish two bins if they are in different regions.
[TK05] analysed the lightly-loaded case for equidistant thresholds.
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k-QUANTILE process

Similarly, we can extend 1-QUANTILE to obtain the k-QUANTILE process.

k-THRESHOLD and k-QUANTILE
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Our results
Any adaptivel-QUANTILE/1-THRESHOLD process has

w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n| (disproves [FGG21,
Problem 1.3]).

k-THRESHOLD and k-QUANTILE

13



Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
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w.h.p. Gap(m) = O(k - (logn)'/*).
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Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
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Lower bound proof (II)
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Lower bound proof (II)
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1 logn _9
P Gap(t) > - - —— - .
t |:t€[0r,2?§(g2 n] ap(t) = 8 loglogn | — o)

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with §* > S

log® n
Split m into intervals of n allocations:

\ " I " |
t

log2 n

3|3

One interval [t,t +n) must have > n/log®n balls allocated with §° > 0g1 —
____________ In this interval, w.h.p. Q(n/log*n) balls allocated using ONE-CHOICE
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k-QUANTILE process

Consider the QUANTILE(d1, 02, . . ., 0 ) process with
if j <k

0, :=
/ { if i = k.

For any step m > 0, Pr [Gap(m) = O(k - (logn)/*)] > 1 —n=3

—1(log n)(k=9)/k

®

N[

o Op—28k—1 Sk

Upper bound: Proof outline
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The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n) )
i=1 i=1

Overload potential: ®)  Underload potential
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This implies E[I'] < ¢n for any ¢ > 0.

By Markov’s inequality, we get Pr [I"™ < cn®] > 1 — n=2 which implies

1
Pr | Gap(m) <

S (3logn +loge) | >1—n"2.

In [PTW15], v = O(1) so the tightest gaps proved were O(logn).

[TW14] used this as a base case for TwO-CHOICE in the heavily-loaded case.
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Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:
Zexp (7 oy (1 = £ = Zjttogn) ) 7).
We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
Bloj|g] <o) (1-1)+2
So, after s = n - polylog(n) steps we get E [¢;+s|<1>6 = 0O(n), m're[t,t—&-s)g;'—] = O(n).

Observe that when ®f = O(n) then at most (9( - e~7%) bins have load > z.
Similarly, when ®% = O(n), then ys,_, ,.n < (] + 1)(logn)'/*.
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Proving Gap(m) = O(k - (logn)'/*)

yt A

df=0(mn) = yf <logn
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Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [CDJT] = O(n) and G7 for all T € [t,t + n - polylog(n)).
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Assume that E [<I>JT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Using Markov’s inequality we get that w.h.p. ®7 = poly(n).

We define ¥ as @} with sufficiently smaller .

When ®7 = poly(n), then |\I/JT-+l -7 < nl/3.

Hence, we apply a bounded difference inequality to get that w.h.p. U7 = O(n).
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Conclusion

Summary of results:

Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).
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Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).
Future work:

Prove lower bounds for adaptive k-QQUANTILE for k > 2.
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Questions?

Upper bound: Proof outline

More visualisations: dimitrioslos.com/itcs22
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Appendix A: Detailed experimental results

Appendix

(1 + B)-process,

k-QUANTILE

Two-CHOICE

for g =1/2 k=1 k=2 k=3 k=4
21: ™%
22: 9% 8 : 28%
23 : 26% 9 : 42%
24 : 27% 10 : 18% 4. 72%
: o 3: 46% 3: 7%
. 0; . 70 . .
iz 1(%‘6) 11: 7% 5: 26% 4: 54% 4:21% 3 : 100%

Table: Empirical distribution of the Gap for n = 10°

bins and m = 1000 - n balls.
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Appendix B: Random d-regular graphs

Appendix

102

10t

Gap at m = 1000 - n

101
Degree d of graph

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for

n € {10%,10*,5 - 10} bins and m = 1000 - n balls.

102

—e—n = 50.000
—e—n = 10.000
——n = 1.000
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