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Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.
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ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
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Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.
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Two-CHOICE Process: '
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. /
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ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = 9(102)532”) [Gon81].
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
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Two-CHOICE Process: Y
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. .

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].
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(1 + B)-Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

[Mit99] interpreted (1 — 8)/2 as the probability of making an erroneous comparison.

In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = ©(logn/j3) for
1/n < 8 < 1— ¢ for any constant € > 0.
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Adaptive 1-THRESHOLD

Adaptive THRESHOLD( f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt is
z;, " =uw;, +1 otherwise.
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Adaptive THRESHOLD( f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

I’iz

=x{ 41 otherwise.

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving

w.h.p. Gap(n) = (’)(,/ logign).

For the heavily-loaded case, [LSS22] proved for f(z') = ¢/n that w.h.p.
Gap(m) = O(logn).

Ia1 THRESHOLD: Open

in Visualiser.
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Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.
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Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
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[IK05, FL20] analyse d-THINNING in the lightly-loaded case.
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Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:

xfj‘l = xﬁl +1 if Rank®(iy) > n - d(a?),
it
2

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).
Also, adaptive THRESHOLD( f) process can simulate any adaptive QQUANTILE(J).
Both are special cases of Two-THINNING [FGG21].

[IK05, FL20] analyse d-THINNING in the lightly-loaded case.

Ial QUANTILE Open
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1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.
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1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.
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1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.
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k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.
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k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.
We can only distinguish two bins if they are in different regions.
[TK05] analysed the lightly-loaded case for equidistant thresholds.
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k-QUANTILE process

Similarly, we can extend 1-QUANTILE to obtain the k-QUANTILE process.

k-THRESHOLD and k-QUANTILE
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Our results
Any adaptivel-QUANTILE/1-THRESHOLD process has

w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n| (disproves [FGG21,
Problem 1.3]).

k-THRESHOLD and k-QUANTILE

13



Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
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w.h.p. Gap(m) = O(k - (logn)'/*).
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Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
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Lower bound proof (II)
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Lower bound proof (II)
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1 logn _9
P Gap(t) > - - —— - .
t |:t€[0r,2?§(g2 n] ap(t) = 8 loglogn | — o)

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with §* > S

log® n
Split m into intervals of n allocations:

\ " I " |
t

log2 n

3|3

One interval [t,t +n) must have > n/log®n balls allocated with §° > 0g1 —
____________ In this interval, w.h.p. Q(n/log*n) balls allocated using ONE-CHOICE
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k-QUANTILE process

Consider the QUANTILE(d1, 02, . . ., 0 ) process with
if j <k

0, :=
/ { if i = k.

For any step m > 0, Pr [Gap(m) = O(k - (logn)/*)] > 1 —n=3

—1(log n)(k=9)/k

®

N[

o Op—28k—1 Sk

Upper bound: Proof outline
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The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n) )
i=1 i=1

Overload potential: ®)  Underload potential
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This implies E[I'] < ¢n for any ¢ > 0.

By Markov’s inequality, we get Pr [I"™ < cn®] > 1 — n=2 which implies

1
Pr | Gap(m) <

S (3logn +loge) | >1—n"2.

In [PTW15], v = O(1) so the tightest gaps proved were O(logn).

[TW14] used this as a base case for TwO-CHOICE in the heavily-loaded case.
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Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:
Zexp (7 oy (1 = £ = Zjttogn) ) 7).
We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
Bloj|g] <o) (1-1)+2
So, after s = n - polylog(n) steps we get E [¢;+s|<1>6 = 0O(n), m're[t,t—&-s)g;'—] = O(n).

Observe that when ®f = O(n) then at most (9( - e~7%) bins have load > z.
Similarly, when ®% = O(n), then ys,_, ,.n < (] + 1)(logn)'/*.
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Proving Gap(m) = O(k - (logn)'/*)

yt A

df=0(mn) = yf <logn
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Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [CDJT] = O(n) and G7 for all T € [t,t + n - polylog(n)).
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Assume that E [<I>JT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Using Markov’s inequality we get that w.h.p. ®7 = poly(n).

We define ¥ as @} with sufficiently smaller .

When ®7 = poly(n), then |\I/JT-+l -7 < nl/3.

Hence, we apply a bounded difference inequality to get that w.h.p. U7 = O(n).
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Conclusion

Summary of results:
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Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).
Future work:

Prove lower bounds for adaptive k-QQUANTILE for k > 2.
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Questions?

Upper bound: Proof outline

More visualisations: dimitrioslos.com/itcs22
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Appendix A: Detailed experimental results

Appendix

(1 + B)-process,

k-QUANTILE

Two-CHOICE

for g =1/2 k=1 k=2 k=3 k=4
21: ™%
22: 9% 8 : 28%
23 : 26% 9 : 42%
24 : 27% 10 : 18% 4. 72%
: o 3: 46% 3: 7%
. 0; . 70 . .
iz 1(%‘6) 11: 7% 5: 26% 4: 54% 4:21% 3 : 100%

Table: Empirical distribution of the Gap for n = 10°

bins and m = 1000 - n balls.
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Appendix B: Random d-regular graphs

Appendix

102

10t

Gap at m = 1000 - n

101
Degree d of graph

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for

n € {10%,10*,5 - 10} bins and m = 1000 - n balls.

102

—e—n = 50.000
—e—n = 10.000
——n = 1.000

28



Bibliography I

Appendix

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, STAM J.
Comput. 29 (1999), no. 1, 180-200.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385.

O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation,
Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.

O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab.
25 (2020), Paper No. 1, 13.

G. H. Gonnet, Fxpected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.

K. Iwama and A. Kawachi, Approzimated two choices in randomized load balancing,
Algorithms and Computation, Springer Berlin Heidelberg, 2005, pp. 545-557.

29



Bibliography 11

Appendix

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.

D. Los, T. Sauerwald, and J. Sylvester, Balanced allocations: Caching and packing,
twinning and thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), STAM, 2022, pp. 1847-1874.

M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory
Comput. Syst. 32 (1999), no. 3, 361-386.

Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(14 B)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775.

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159-170.

A. Steger and N. C. Wormald, Generating random regular graphs quickly,
Combinatorics, Probability and Computing 8 (1999), no. 4, 377-396.

30



Bibliography III
Kunal Talwar and Udi Wieder, Balanced allocations: A simple proof for the heavily

loaded case, 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), vol. 8572, Springer, 2014, pp. 979-990.

Appendix

31



	Balanced allocations: Background
	k-Threshold and k-Quantile
	Lower bound: Proof Outline
	Upper bound: Proof outline
	Appendix

	anm1: 
	1.0: 
	anm0: 
	0.268: 
	0.267: 
	0.266: 
	0.265: 
	0.264: 
	0.263: 
	0.262: 
	0.261: 
	0.260: 
	0.259: 
	0.258: 
	0.257: 
	0.256: 
	0.255: 
	0.254: 
	0.253: 
	0.252: 
	0.251: 
	0.250: 
	0.249: 
	0.248: 
	0.247: 
	0.246: 
	0.245: 
	0.244: 
	0.243: 
	0.242: 
	0.241: 
	0.240: 
	0.239: 
	0.238: 
	0.237: 
	0.236: 
	0.235: 
	0.234: 
	0.233: 
	0.232: 
	0.231: 
	0.230: 
	0.229: 
	0.228: 
	0.227: 
	0.226: 
	0.225: 
	0.224: 
	0.223: 
	0.222: 
	0.221: 
	0.220: 
	0.219: 
	0.218: 
	0.217: 
	0.216: 
	0.215: 
	0.214: 
	0.213: 
	0.212: 
	0.211: 
	0.210: 
	0.209: 
	0.208: 
	0.207: 
	0.206: 
	0.205: 
	0.204: 
	0.203: 
	0.202: 
	0.201: 
	0.200: 
	0.199: 
	0.198: 
	0.197: 
	0.196: 
	0.195: 
	0.194: 
	0.193: 
	0.192: 
	0.191: 
	0.190: 
	0.189: 
	0.188: 
	0.187: 
	0.186: 
	0.185: 
	0.184: 
	0.183: 
	0.182: 
	0.181: 
	0.180: 
	0.179: 
	0.178: 
	0.177: 
	0.176: 
	0.175: 
	0.174: 
	0.173: 
	0.172: 
	0.171: 
	0.170: 
	0.169: 
	0.168: 
	0.167: 
	0.166: 
	0.165: 
	0.164: 
	0.163: 
	0.162: 
	0.161: 
	0.160: 
	0.159: 
	0.158: 
	0.157: 
	0.156: 
	0.155: 
	0.154: 
	0.153: 
	0.152: 
	0.151: 
	0.150: 
	0.149: 
	0.148: 
	0.147: 
	0.146: 
	0.145: 
	0.144: 
	0.143: 
	0.142: 
	0.141: 
	0.140: 
	0.139: 
	0.138: 
	0.137: 
	0.136: 
	0.135: 
	0.134: 
	0.133: 
	0.132: 
	0.131: 
	0.130: 
	0.129: 
	0.128: 
	0.127: 
	0.126: 
	0.125: 
	0.124: 
	0.123: 
	0.122: 
	0.121: 
	0.120: 
	0.119: 
	0.118: 
	0.117: 
	0.116: 
	0.115: 
	0.114: 
	0.113: 
	0.112: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


