
Balanced Allocations with Incomplete Information:
The Power of Two Queries

Dimitrios Los1, Thomas Sauerwald1

1University of Cambridge, UK

1

Balanced allocations: Background

Balanced allocations: Background 2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

Balanced allocations: Background 3

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 4

(1 + β)-Process: Definition

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = Θ(log n/β) for
1/n ≤ β < 1 − ϵ for any constant ϵ > 0.

Balanced allocations: Background 5

(1 + β)-Process: Definition

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = Θ(log n/β) for
1/n ≤ β < 1 − ϵ for any constant ϵ > 0.

Balanced allocations: Background 5

(1 + β)-Process: Definition

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = Θ(log n/β) for
1/n ≤ β < 1 − ϵ for any constant ϵ > 0.

Balanced allocations: Background 5

k-Threshold and k-Quantile

k-Threshold and k-Quantile 6

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1

f(xt)

i1 i1 i1 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 i1

f(xt)

i1 i1 i1 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 i1

f(xt)

i1 i1 i1 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 i1

f(xt)

i1 i1 i2 i1 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 i1

f(xt)

i1 i1 i2 i1 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 i1

f(xt)

i1 i1 i2 i1 i2 i1

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving
w.h.p. Gap(n) = O

(√
log n

log log n

)
.

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving
w.h.p. Gap(n) = O

(√
log n

log log n

)
.

■ For the heavily-loaded case, [LSS22] proved for f(xt) = t/n that w.h.p.
Gap(m) = O(log n).

k-Threshold and k-Quantile 7

Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving
w.h.p. Gap(n) = O

(√
log n

log log n

)
.

■ For the heavily-loaded case, [LSS22] proved for f(xt) = t/n that w.h.p.
Gap(m) = O(log n).

Threshold: Open
in Visualiser.

k-Threshold and k-Quantile 7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt i1

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt

W t/n
i1 δt i1

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 δt i1

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt i2

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ Adaptive Quantile(δ) processes can simulate any adaptive Threshold(f).

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ Adaptive Quantile(δ) processes can simulate any adaptive Threshold(f).
■ Also, adaptive Threshold(f) process can simulate any adaptive Quantile(δ).

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ Adaptive Quantile(δ) processes can simulate any adaptive Threshold(f).
■ Also, adaptive Threshold(f) process can simulate any adaptive Quantile(δ).
■ Both are special cases of Two-Thinning [FGG21].

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ Adaptive Quantile(δ) processes can simulate any adaptive Threshold(f).
■ Also, adaptive Threshold(f) process can simulate any adaptive Quantile(δ).
■ Both are special cases of Two-Thinning [FGG21].
■ [IK05, FL20] analyse d-Thinning in the lightly-loaded case.

k-Threshold and k-Quantile 8

Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ Adaptive Quantile(δ) processes can simulate any adaptive Threshold(f).
■ Also, adaptive Threshold(f) process can simulate any adaptive Quantile(δ).
■ Both are special cases of Two-Thinning [FGG21].
■ [IK05, FL20] analyse d-Thinning in the lightly-loaded case.

Quantile: Open
in Visualiser.

k-Threshold and k-Quantile 8

https://dimitrioslos.com/phdthesis/processes/quantile/quantile.html

1-Threshold as Two-Choice with incomplete information
We can interpret 1-Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

k-Threshold and k-Quantile 9

1-Threshold as Two-Choice with incomplete information
We can interpret 1-Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

i1

✓

i2

✗

k-Threshold and k-Quantile 9

1-Threshold as Two-Choice with incomplete information
We can interpret 1-Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

i1

✗

i2

✗

k-Threshold and k-Quantile 9

1-Threshold as Two-Choice with incomplete information
We can interpret 1-Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

i1

✓

i2

✓

k-Threshold and k-Quantile 9

1-Quantile as Two-Choice with incomplete information
Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are
on different sides of the quantile δt.

i1

✗

i2

✓

δt

k-Threshold and k-Quantile 10

1-Quantile as Two-Choice with incomplete information
Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are
on different sides of the quantile δt.

✓ ✓

δt

k-Threshold and k-Quantile 10

k-Threshold process
■ Under this interpretation, we can extend the 1-Threshold process to k thresholds.

■ We can only distinguish two bins if they are in different regions.

■ [IK05] analysed the lightly-loaded case for equidistant thresholds.

k-Threshold and k-Quantile 11

k-Threshold process
■ Under this interpretation, we can extend the 1-Threshold process to k thresholds.
■ We can only distinguish two bins if they are in different regions.

■ [IK05] analysed the lightly-loaded case for equidistant thresholds.

i1

✗

✓

i2

✗

✗

k-Threshold and k-Quantile 11

k-Threshold process
■ Under this interpretation, we can extend the 1-Threshold process to k thresholds.
■ We can only distinguish two bins if they are in different regions.

■ [IK05] analysed the lightly-loaded case for equidistant thresholds.

i1

✓

✓

i2

✓

✓

k-Threshold and k-Quantile 11

k-Threshold process
■ Under this interpretation, we can extend the 1-Threshold process to k thresholds.
■ We can only distinguish two bins if they are in different regions.
■ [IK05] analysed the lightly-loaded case for equidistant thresholds.

i1

✓

✓

i2

✓

✓

k-Threshold and k-Quantile 11

k-Quantile process
Similarly, we can extend 1-Quantile to obtain the k-Quantile process.

δt1 δt2

k-Threshold and k-Quantile 12

Our results

■ Any adaptive1-Quantile/1-Threshold process has
w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
1
00
0
·n

1-Quantile
Two-Choice

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
1
00
0
·n

1-Quantile
2-Quantile
Two-Choice

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
1
00
0
·n

1-Quantile
2-Quantile
Two-Choice

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
1
00
0
·n

1-Quantile
2-Quantile
3-Quantile
Two-Choice

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
1
00
0
·n

1-Quantile
2-Quantile
3-Quantile
4-Quantile
Two-Choice

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).
▶ For d-Thinning, w.h.p. Gap(m) = O(d · (log n)2/d).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).
▶ For d-Thinning, w.h.p. Gap(m) = O(d · (log n)2/d).
▶ For graphical allocations in dense expanders, w.h.p. Gap(m) = O(log log n) (progress

in [PTW15, Open Question 2]).

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).
▶ For d-Thinning, w.h.p. Gap(m) = O(d · (log n)2/d).
▶ For graphical allocations in dense expanders, w.h.p. Gap(m) = O(log log n) (progress

in [PTW15, Open Question 2]).
■ Use layered induction over super-exponential potential functions.

k-Threshold and k-Quantile 13

Our results
■ Any adaptive1-Quantile/1-Threshold process has

w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).

■ Implications:
▶ For k = Θ(log log n), we recover for Two-Choice that Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).
▶ For d-Thinning, w.h.p. Gap(m) = O(d · (log n)2/d).
▶ For graphical allocations in dense expanders, w.h.p. Gap(m) = O(log log n) (progress

in [PTW15, Open Question 2]).
■ Use layered induction over super-exponential potential functions.

⇝ Might be helpful in analyzing other processes.

k-Threshold and k-Quantile 13

Lower bound: Proof Outline

Lower bound: Proof Outline 14

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:

Case A: P uses at most n quantiles with δt ≥ 1
log2 n

.
■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.

■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.

■ Using Poissonisation w.h.p. there are Ω(n) balls above m
n + Ω(log n).

■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).

■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.

Lower bound: Proof Outline 15

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with δt ≥ 1
log2 n

.
■ Split m into intervals of n allocations:

n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□

Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□

Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.

■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
Lower bound: Proof Outline 16

Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with δt ≥ 1

log2 n
.

■ Split m into intervals of n allocations:
n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
Lower bound: Proof Outline 16

Upper bound: Proof outline

Upper bound: Proof outline 17

k-Quantile process
Theorem
Consider the Quantile(δ1, δ2, . . . , δk) process with

δj :=
{

e− 1
4 (log n)(k−j)/k if j < k

1
2 if i = k.

For any step m ≥ 0, Pr
[

Gap(m) = O(k · (log n)1/k)
]

≥ 1 − n−3.

𝑥𝑡

𝛿𝑘𝛿𝑘−1𝛿𝑘−2…

Upper bound: Proof outline 18

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] showed that E
[

Γt+1 | Ft
]

≤ Γt ·
(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ cn3]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).

■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Upper bound: Proof outline 19

Technique 1: Super-exponential potential functions

■ We define the following super-exponential potential functions for 0 ≤ j < k and
t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions
■ We define the following super-exponential potential functions for 0 ≤ j < k and

t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions
■ We define the following super-exponential potential functions for 0 ≤ j < k and

t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions
■ We define the following super-exponential potential functions for 0 ≤ j < k and

t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions
■ We define the following super-exponential potential functions for 0 ≤ j < k and

t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions
■ We define the following super-exponential potential functions for 0 ≤ j < k and

t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.

Upper bound: Proof outline 20

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦1

𝑡 < log𝑛

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝑛⋅𝛿2

𝑡 < log𝑛 1/3

𝛿2

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

𝛿2

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛

𝛿2𝛿1

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝑛⋅𝛿1

𝑡 < 2 log𝑛 1/3

𝛿2𝛿1

Upper bound: Proof outline 21

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

2 ⋅ log 𝑛 1/3 + log𝑛 1/3

𝛿2𝛿1

Upper bound: Proof outline 21

Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).

■ Using Markov’s inequality we get that w.h.p. Φτ
j = poly(n).

■ We define Ψt
j as Φt

j with sufficiently smaller γ.
■ When Φτ

j = poly(n), then |Ψτ+1
j − Ψτ

j | < n1/3.
■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ

j = O(n).

Upper bound: Proof outline 22

Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).
■ Using Markov’s inequality we get that w.h.p. Φτ

j = poly(n).

■ We define Ψt
j as Φt

j with sufficiently smaller γ.
■ When Φτ

j = poly(n), then |Ψτ+1
j − Ψτ

j | < n1/3.
■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ

j = O(n).

Upper bound: Proof outline 22

Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).
■ Using Markov’s inequality we get that w.h.p. Φτ

j = poly(n).
■ We define Ψt

j as Φt
j with sufficiently smaller γ.

■ When Φτ
j = poly(n), then |Ψτ+1

j − Ψτ
j | < n1/3.

■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ
j = O(n).

Upper bound: Proof outline 22

Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).
■ Using Markov’s inequality we get that w.h.p. Φτ

j = poly(n).
■ We define Ψt

j as Φt
j with sufficiently smaller γ.

■ When Φτ
j = poly(n), then |Ψτ+1

j − Ψτ
j | < n1/3.

■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ
j = O(n).

Upper bound: Proof outline 22

Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).
■ Using Markov’s inequality we get that w.h.p. Φτ

j = poly(n).
■ We define Ψt

j as Φt
j with sufficiently smaller γ.

■ When Φτ
j = poly(n), then |Ψτ+1

j − Ψτ
j | < n1/3.

■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ
j = O(n).

Upper bound: Proof outline 22

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).

■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and
1-Quantile process (power of two queries).

■ Implications:
▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of

two choices).
▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).

■ Implications:
▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of

two choices).
▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning

and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.

▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).
Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:

■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.

■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.

■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).
■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and

1-Quantile process (power of two queries).
■ Implications:

▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of
two choices).

▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.

Upper bound: Proof outline 23

Questions?

More visualisations: dimitrioslos.com/itcs22
Upper bound: Proof outline 24

https://dimitrioslos.com/itcs22

Questions?

More visualisations: dimitrioslos.com/itcs22
Upper bound: Proof outline 25

https://dimitrioslos.com/itcs22

Appendix

Appendix 26

Appendix A: Detailed experimental results

(1 + β)-process,
for β = 1/2

k-Quantile Two-Choice
k = 1 k = 2 k = 3 k = 4

20 : 2%
21 : 7%
22 : 9%
23 : 26%
24 : 27%
25 : 14%
26 : 6%
27 : 3%
28 : 4%
29 : 1%
34 : 1%

8 : 28%
9 : 42%

10 : 18%
11 : 7%
12 : 3%
14 : 1%
15 : 1%

4 : 72%
5 : 26%
6 : 2%

3 : 46%
4 : 54%

3 : 79%
4 : 21% 3 : 100%

Table: Empirical distribution of the Gap for n = 105 bins and m = 1000 · n balls.

Appendix 27

Appendix B: Random d-regular graphs

101 102

101

102

Degree d of graph

G
ap

at
m

=
10
00

·n

n = 50.000
n = 10.000
n = 1.000

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for
n ∈ {103, 104, 5 · 104} bins and m = 1000 · n balls.

Appendix 28

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385.

▶ O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation,
Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.

▶ O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab.
25 (2020), Paper No. 1, 13.

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304.

▶ K. Iwama and A. Kawachi, Approximated two choices in randomized load balancing,
Algorithms and Computation, Springer Berlin Heidelberg, 2005, pp. 545–557.

Appendix 29

Bibliography II
▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a

distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542.

▶ D. Los, T. Sauerwald, and J. Sylvester, Balanced allocations: Caching and packing,
twinning and thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), SIAM, 2022, pp. 1847–1874.

▶ M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory
Comput. Syst. 32 (1999), no. 3, 361–386.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775.

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170.

▶ A. Steger and N. C. Wormald, Generating random regular graphs quickly,
Combinatorics, Probability and Computing 8 (1999), no. 4, 377–396.

Appendix 30

Bibliography III
▶ Kunal Talwar and Udi Wieder, Balanced allocations: A simple proof for the heavily

loaded case, 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), vol. 8572, Springer, 2014, pp. 979–990.

Appendix 31

	Balanced allocations: Background
	k-Threshold and k-Quantile
	Lower bound: Proof Outline
	Upper bound: Proof outline
	Appendix

	anm1:
	1.0:
	anm0:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

