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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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■ Applications in hashing, load balancing and routing.
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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(1 + β)-Process: Definition

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = Θ(log n/β) for
1/n ≤ β < 1 − ϵ for any constant ϵ > 0.
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k-Threshold and k-Quantile
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Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.
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■ For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving
w.h.p. Gap(n) = O

(√
log n

log log n

)
.
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Adaptive 1-Threshold

Adaptive Threshold(f) Process:
Parameter: A threshold function f(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< f(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

■ For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving
w.h.p. Gap(n) = O

(√
log n

log log n

)
.

■ For the heavily-loaded case, [LSS22] proved for f(xt) = t/n that w.h.p.
Gap(m) = O(log n).

Threshold: Open
in Visualiser.
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Adaptive 1-Quantile

Adaptive Quantile(δ) Process:
Parameter: A quantile function δ(xt).
Iteration: For t ≥ 0, sample two bins i1 and i2 independently and u.a.r. Then, update:{

xt+1
i1

= xt
i1

+ 1 if Rankt(i1) > n · δ(xt),
xt+1

i2
= xt

i2
+ 1 otherwise.

W t/n
i1 δt i1
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1-Threshold as Two-Choice with incomplete information
We can interpret 1-Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.
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1-Quantile as Two-Choice with incomplete information
Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are
on different sides of the quantile δt.

i1

✗

i2

✓

δt
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1-Quantile as Two-Choice with incomplete information
Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are
on different sides of the quantile δt.

✓ ✓

δt
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k-Threshold process
■ Under this interpretation, we can extend the 1-Threshold process to k thresholds.

■ We can only distinguish two bins if they are in different regions.

■ [IK05] analysed the lightly-loaded case for equidistant thresholds.
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k-Quantile process
Similarly, we can extend 1-Quantile to obtain the k-Quantile process.

δt1 δt2

k-Threshold and k-Quantile 12



Our results

■ Any adaptive1-Quantile/1-Threshold process has
w.h.p. Gap(m) = Ω(log n/ log log n) for some m ∈ [1, n log2 n] (disproves [FGG21,
Problem 1.3]).

■ A k-Quantile process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k · (log n)1/k).
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⇝ Might be helpful in analyzing other processes.
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Lower bound proof (I)

𝑥𝑡

𝑚

𝑛
+ Ω(log 𝑛)

Ω(𝑛) balls

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof. We consider two cases:
Case A: P uses at most n quantiles with δt ≥ 1

log2 n
.

■ A small quantile means that the first sample is used often.
■ P disagrees with One-Choice w.h.p. in at most n + O(m/ log2 n) = O(n) allocations.
■ Using Poissonisation w.h.p. there are Ω(n) balls above m

n + Ω(log n).
■ Hence, the Gap(m) = Ω(log n) remains.
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Lower bound proof (II)

𝑥𝑡

𝑚

𝑛

≥
𝑛

log 𝑛

Theorem
For any adaptive Quantile(δ) (or Threshold(f)) process P,

Pr
[

max
t∈[0,n log2 n]

Gap(t) ≥ 1
8 · log n

log log n

]
≥ 1 − o(n−2).

Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with δt ≥ 1
log2 n

.
■ Split m into intervals of n allocations:

n n . . . n n

log2 n

■ One interval [t, t + n) must have ≥ n/ log2 n balls allocated with δs ≥ 1
log2 n

.

■ In this interval, w.h.p. Ω(n/ log4 n) balls allocated using One-Choice.
■ Implies w.h.p. Gap(t + n) = Ω(log n/ log log n).

□
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k-Quantile process
Theorem
Consider the Quantile(δ1, δ2, . . . , δk) process with

δj :=
{

e− 1
4 (log n)(k−j)/k if j < k

1
2 if i = k.

For any step m ≥ 0, Pr
[

Gap(m) = O(k · (log n)1/k)
]

≥ 1 − n−3.

𝑥𝑡

𝛿𝑘𝛿𝑘−1𝛿𝑘−2…
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The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential,

Γt(xt) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential: Φt

0

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).
■ [PTW15] showed that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ This implies E [ Γt ] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3 ]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

· (3 log n + log c)
]

≥ 1 − n−2.

■ In [PTW15], γ = O(1) so the tightest gaps proved were O(log n).
■ [TW14] used this as a base case for Two-Choice in the heavily-loaded case.
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Technique 1: Super-exponential potential functions

■ We define the following super-exponential potential functions for 0 ≤ j < k and
t ≥ 0:

Φt
j :=

n∑
i=1

exp
(

γ · (log n)j/k ·
(

xt
i − t

n
− 2

γ
j(log n)1/k

)+)
,

■ We prove that when yt
δk−j ·n < 2

γ j(log n)1/k (good step Gt
j), then

E
[

Φt+1
j

∣∣ Gt
j

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

■ So, after s = n · polylog(n) steps we get E
[

Φt+s
j

∣∣Φt
0 = O(n), ∩τ∈[t,t+s)Gτ

j

]
= O(n).

■ Observe that when Φt
0 = O(n) then at most O(n · e−γz) bins have load ≥ z.

■ Similarly, when Φt
j = O(n), then yδk−j−1·n < 2

γ (j + 1)(log n)1/k.
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Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦1

𝑡 < log𝑛
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Technique 2: Proving Φt
j is linear w.h.p.

■ Assume that E
[

Φτ
j

]
= O(n) and Gτ

j for all τ ∈ [t, t + n · polylog(n)).

■ Using Markov’s inequality we get that w.h.p. Φτ
j = poly(n).

■ We define Ψt
j as Φt

j with sufficiently smaller γ.
■ When Φτ

j = poly(n), then |Ψτ+1
j − Ψτ

j | < n1/3.
■ Hence, we apply a bounded difference inequality to get that w.h.p. Ψτ

j = O(n).
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Conclusion
Summary of results:
■ Introduced a k-Quantile process which achieves w.h.p. Gap(m) = O(k · (log n)1/k).

■ Proved a lower bound of Ω(log n/ log log n) for any adaptive 1-Threshold and
1-Quantile process (power of two queries).

■ Implications:
▶ For k = Θ(log log n), we recover the Gap(m) = O(log log n) for Two-Choice (power of

two choices).
▶ Tighter upper bounds for d-Thinning and (1 + β) for β close to 1.
▶ Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(log log n).

Future work:
■ Prove lower bounds for adaptive k-Quantile for k ≥ 2.
■ Prove similar upper bounds for k-Threshold.
■ Analyse Two-Choice with noise.
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Appendix A: Detailed experimental results

(1 + β)-process,
for β = 1/2

k-Quantile Two-Choice
k = 1 k = 2 k = 3 k = 4

20 : 2%
21 : 7%
22 : 9%
23 : 26%
24 : 27%
25 : 14%
26 : 6%
27 : 3%
28 : 4%
29 : 1%
34 : 1%

8 : 28%
9 : 42%

10 : 18%
11 : 7%
12 : 3%
14 : 1%
15 : 1%

4 : 72%
5 : 26%
6 : 2%

3 : 46%
4 : 54%

3 : 79%
4 : 21% 3 : 100%

Table: Empirical distribution of the Gap for n = 105 bins and m = 1000 · n balls.
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Appendix B: Random d-regular graphs

101 102

101

102

Degree d of graph

G
ap

at
m

=
10
00

·n

n = 50.000
n = 10.000
n = 1.000

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for
n ∈ {103, 104, 5 · 104} bins and m = 1000 · n balls.
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