Balanced Allocations with Incomplete Information:
The Power of Two Queries

Dimitrios Los', Thomas Sauerwald®

LUniversity of Cambridge, UK

Balanced allocations: Background

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

@e)
e ee)
0O

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.
< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% v log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each t > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

Balanced allocations: Background

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and allocate
the ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = 9(102)532”) [Gon81].
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
*

AY

AY

Two-CHOICE Process: Y
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and allocate the ball to
the least loaded of the two. .

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

Balanced allocations: Background

(1 + B)-Process: Definition

(1 + B)-Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

Balanced allocations: Background

(1 + B)-Process: Definition

(1 + B)-Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

[Mit99] interpreted (1 — 8)/2 as the probability of making an erroneous comparison.

Balanced allocations: Background

(1 + B)-Process: Definition

(1 + B)-Process:

Parameter: A mizing factor 8 € (0,1].

Iteration: For each t > 0, with probability 5 allocate one ball via the Two-CHOICE
process, otherwise allocate one ball via the ONE-CHOICE process.

[Mit99] interpreted (1 — 8)/2 as the probability of making an erroneous comparison.

In the heavily-loaded case, [PTW15] proved that w.h.p. Gap(m) = ©(logn/j3) for
1/n < 8 < 1— ¢ for any constant € > 0.

Balanced allocations: Background

k-THRESHOLD and k-QUANTILE

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt is
z;, " =uw;, +1 otherwise.

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt is
z;, " =uw;, +1 otherwise.

OO0
[0l0/0/0e)
OO0

OO0
(@]6)
(@)

(@)

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{CUZH =at +1 ifzl < f(ah),

t+1

— gt s
z;, " =uw;, +1 otherwise.

O

OO0
[0l0/0/0e)
OO0

OO0
(@]6)
(@)

(@)

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function f(zt).

Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:
{CCZH =at +1 ifzl < f(ah),

t+1 _ .t .
iy =T, +1 otherwise.

O

OO0
[0l0/0/0e)
OO0
OO

(@]6)

@)

©
(0]0/0/00/0/00)
0000006
[0l0/0/0e)

OO
(@]6)
(@)

©

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function f(zt).

Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:
{CCZH =at +1 ifzl < f(ah),

t+1 _ .t .
iy =T, +1 otherwise.

@) @)

OO0
[0l0/0/0e)
OO0
OO

(@]6)

@)

©
(0]0/0/00/0/00)
0000006
[0l0/0/0e)

(@/06)
(@)
©

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function f(zt).

Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:
{:rfjl =at +1 ifzl < f(ah),

it =2! +1 otherwise.

@) @)

OO0
[0l0/0/0e)
OO0
OO

(@]6)

@)

©
(0]0/0/00/0/00)
0000006
[0l0/0/0e)
OO0

[0/0/®)

00
©
®
[OO000000
00000

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function f(zt).

Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:
{:rfjl =at +1 ifzl < f(ah),

it =2! +1 otherwise.

@) @) O

OO0
[0l0/0/0e)
OO0
OO

(@]6)

@)

©
(0]0/0/00/0/00)
0000006
[0l0/0/0e)

OO

(@)

©
00/0/00/0/00)
OO0
OO

@@)

©

(@)

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt :
z;, " =uw;, +1 otherwise.

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving

w.h.p. Gap(n) = O(\/@)'

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

— gt :
z;, " =uw;, +1 otherwise.

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving

w.h.p. Gap(n) = O(\/@)'

For the heavily-loaded case, [LSS22] proved for f(z') = ¢/n that w.h.p.
Gap(m) = O(logn).

k-THRESHOLD and k-QUANTILE

Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function f(zt).
Iteration: For ¢ > 0, sample two bins ¢; and iy independently and u.a.r. Then, update:

{xfjl =at +1 ifzl < f(ah),

t+1

I’iz

=x{ 41 otherwise.

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving

w.h.p. Gap(n) = (’)(,/ logign).

For the heavily-loaded case, [LSS22] proved for f(z') = ¢/n that w.h.p.
Gap(m) = O(logn).

Ia1 THRESHOLD: Open

in Visualiser.

k-THRESHOLD and k-QUANTILE 7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

BOCOOOO
[0]66/06)

OO
(@]6)
(@)

©

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

O

BOCOOOO
[0]66/06)

OO

(@]6)
0

©

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

O

OO0
OO

(@]6)

@)

©
(0]0/0/0/0/0/00)
BOCOOOO

BOCOOOO
[0]66/06)

OO
(@]6)
(@)

©

ot i i gt

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

o) 1 o)

OO0
OO

(@]6)

@)

©
(0]0/0/0/0/0/00)
BOCOOOO

BOCOOOO
[0]66/06)

OO
(@]®)
(@)

©

5t i1 i gt iz

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).

Also, adaptive THRESHOLD(f) process can simulate any adaptive QQUANTILE(J).

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:
aitt=a! +1 if Rank'(iy) > n-d(at),
t+1
;)

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).
Also, adaptive THRESHOLD(f) process can simulate any adaptive QQUANTILE(J).
Both are special cases of Two-THINNING [FGG21].

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:

{gjfjl = x§1 +1 if Rankt(il) >n- 6(xt)7
t+1
Iiz

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).
Also, adaptive THRESHOLD(f) process can simulate any adaptive QQUANTILE(J).
Both are special cases of Two-THINNING [FGG21].

[IK05, FL20] analyse d-THINNING in the lightly-loaded case.

k-THRESHOLD and k-QUANTILE

Adaptive 1-QUANTILE

Adaptive QUANTILE(J) Process:
Parameter: A quantile function §(xt).
Iteration: For ¢ > 0, sample two bins ¢; and ¢y independently and u.a.r. Then, update:

xfj‘l = xﬁl +1 if Rank®(iy) > n - d(a?),
it
2

=xf +1 otherwise.

Adaptive QUANTILE(0) processes can simulate any adaptive THRESHOLD(f).
Also, adaptive THRESHOLD(f) process can simulate any adaptive QQUANTILE(J).
Both are special cases of Two-THINNING [FGG21].

[IK05, FL20] analyse d-THINNING in the lightly-loaded case.

Ial QUANTILE Open

k-THRESHOLD and k-QUANTILE

https://dimitrioslos.com/phdthesis/processes/quantile/quantile.html

1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

k-THRESHOLD and k-QUANTILE

1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

oo

k-THRESHOLD and k-QUANTILE

1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and

one is below.

k-THRESHOLD and k-QUANTILE

1-THRESHOLD as TwO-CHOICE with incomplete information

We can interpret 1-THRESHOLD as an instance of the TwoO-CHOICE process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and

one is below.

k-THRESHOLD and k-QUANTILE

1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.

k-THRESHOLD and k-QUANTILE

10

1-QUANTILE as Two-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TwoO-CHOICE but we can compare two bins only if these are
on different sides of the quantile §°.

009
c -

k-THRESHOLD and k-QUANTILE

10

k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.

k-THRESHOLD and k-QUANTILE

11

k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.

We can only distinguish two bins if they are in different regions.

k-THRESHOLD and k-QUANTILE

11

k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.

We can only distinguish two bins if they are in different regions.

k-THRESHOLD and k-QUANTILE

k-THRESHOLD process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.
We can only distinguish two bins if they are in different regions.
[TK05] analysed the lightly-loaded case for equidistant thresholds.

k-THRESHOLD and k-QUANTILE

k-QUANTILE process

Similarly, we can extend 1-QUANTILE to obtain the k-QUANTILE process.

k-THRESHOLD and k-QUANTILE

12

Our results

k-THRESHOLD and k-QUANTILE

13

Our results
Any adaptivel-QUANTILE/1-THRESHOLD process has

w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n| (disproves [FGG21,
Problem 1.3]).

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has

w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n| (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves

w.h.p. Gap(m) = O(k - (logn)'/*).

—e— 1-QUANTILE
Two-CHOICE

Gap at m = 1000 - n.

| |
0.2 0.4 0.6 0.8 1

Number of bins n -10°

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n| (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
10

—e— 1-QUANTILE
—o— 2-QUANTILE
Two-CHOICE

Gap at m = 1000 - n.

| |
0.2 0.4 0.6 0.8 1

Number of bins n -10°

k-THRESHOLD and k-QUANTILE

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
10

—e— 1-QUANTILE
—o— 2-QUANTILE
Two-CHOICE

Gap at m = 1000 - n.

| |
0.2 0.4 0.6 0.8 1

Number of bins n -10°

k-THRESHOLD and k-QUANTILE

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
10

—e— 1-QUANTILE
—o— 2-QUANTILE
—o— 3-QUANTILE

Two-CHOICE

Gap at m = 1000 - n.

| |
0.2 0.4 0.6 0.8 1

Number of bins n -10°

k-THRESHOLD and k-QUANTILE

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has

w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves

w.h.p. Gap(m) = O(k - (logn)'/*).

10 ‘ | —e— 1-QUANTILE
—o— 2-QUANTILE
—o— 3-QUANTILE
4-QUANTILE
Two-CHOICE

Gap at m = 1000 - n.

| |
0.2 0.4 0.6 0.8 1

Number of bins n -10°

k-THRESHOLD and k-QUANTILE

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).

Implications:

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).

k-THRESHOLD and k-QUANTILE 13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).
For (1 + /) with 8 =1 — 2_0‘5(1°g")(k71)/k, w.h.p. Gap(m) = O(k - (logn)*/*).

k-THRESHOLD and k-QUANTILE 13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).
A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).
For (14 () with =1 — 2_0‘5(105")(1971)/’6, w.h.p. Gap(m) = O(k - (logn)*/*).
For d-THINNING, w.h.p. Gap(m) = O(d - (logn)*?).

k-THRESHOLD and k-QUANTILE 13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).
For (1 + B) with § =1—27% 5(log)"~ 1>/k, w.h.p. Gap(m) = O(k - (logn)*/*).
For d-THINNING, w.h.p. Gap(m) = O(d - (logn)*?).
For graphical allocations in dense expanders, w.h.p. Gap(m) = O(loglogn) (progress
in [PTW15, Open Question 2]).

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).
For (14 () with =1 — 2_0‘5(105")(1971)/’6, w.h.p. Gap(m) = O(k - (logn)*/*).
For d-THINNING, w.h.p. Gap(m) = O(d - (logn)*?).
For graphical allocations in dense expanders, w.h.p. Gap(m) = O(loglogn) (progress
in [PTW15, Open Question 2]).

Use layered induction over super-exponential potential functions.

k-THRESHOLD and k-QUANTILE

13

Our results

Any adaptivel-QUANTILE/1-THRESHOLD process has
w.h.p. Gap(m) = Q(logn/loglogn) for some m € [1,nlog?n] (disproves [FGG21,
Problem 1.3]).

A k-QUANTILE process with uniform quantiles that achieves
w.h.p. Gap(m) = O(k - (logn)'/*).
Implications:
For k = ©(loglogn), we recover for Two-CHOICE that Gap(m) = O(loglogn).
For (14 () with =1 — 2_0‘5(105")(1971)/’6, w.h.p. Gap(m) = O(k - (logn)*/*).
For d-THINNING, w.h.p. Gap(m) = O(d - (logn)*?).
For graphical allocations in dense expanders, w.h.p. Gap(m) = O(loglogn) (progress
in [PTW15, Open Question 2]).
Use layered induction over super-exponential potential functions.
~~ Might be helpful in analyzing other processes.

k-THRESHOLD and k-QUANTILE 13

Lower bound: Proof Outline

Lower bound: Proof Outline

14

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 1
Pr [max_ Gap(t) > e >1—o(n"?).

te[0,n log? n] -8 loglogn

Lower bound: Proof Outline

15

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn

Pr [max_ Gap(t) > >1—o(n"?).

te[0,n log? n] -8 loglogn

Proof. We consider two cases:

Lower bound: Proof Outline

15

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn

Pr [max_ Gap(t) > >1—o(n"?).

te[0,n log? n] -8 loglogn

Proof. We consider two cases:

Case A: P uses at most n quantiles with 6 > Fglﬁ_n'

Lower bound: Proof Outline

15

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

P Gap(t) > - - —=—
’ [te[or,g?fgz n] ap(t) 2 8 loglogn

Proof. We consider two cases:

Case A: P uses at most n quantiles with 6 > Fglﬁ_n'

A small quantile means that the first sample is used often.

Lower bound: Proof Outline

15

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

Pr max Gap(t) > - —=—
|:t€[0,n log? n] p() 8 log].Og n
Proof. We consider two cases:
Case A: P uses at most n quantiles with 6 > Fglﬁ_n'

A small quantile means that the first sample is used often.

P disagrees with ONE-CHOICE w.h.p. in at most n + O(m/log? n) = O(n) allocations.

Lower bound: Proof Outline 15

Lower bound: Proof Outline

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

Pr max Gap(t) > - —=—
|:t€[0,n log? n] p() 8 log logn
Proof. We consider two cases:
Case A: P uses at most n quantiles with 6 > Fglﬁ_n'

A small quantile means that the first sample is used often.

P disagrees with ONE-CHOICE w.h.p. in at most n + O(m/log? n) = O(n) allocations.

Using Poissonisation w.h.p. there are (n) balls above * 4 Q(logn).

xt

m+Ql
~+ 0(logn)

15

Lower bound: Proof Outline

Lower bound proof (I)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

P Gap(t) > = —=—
’ |:t€[0r,2?§(g2 n] ap(?) 8 loglogn
Proof. We consider two cases:

Case A: P uses at most n quantiles with 6 > Fglﬁ_n'

A small quantile means that the first sample is used often.
P disagrees with ONE-CHOICE w.h.p. in at most n + O(m/log? n) = O(n) allocations.

Using Poissonisation w.h.p. there are (n) balls above * 4 Q(logn).

xt

Hence, the Gap(m) = Q(logn) remains.

m+Ql
~+ 0(logn)

15

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn

Pr [max_ Gap(t) > >1—o(n"?).

te[0,n log? n] -8 loglogn

Proof (continued). We consider two cases:

Lower bound: Proof Outline

16

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn

Pr [max_ Gap(t) > >1—o(n"?).

te[0,n log? n] -8 loglogn

Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with §* > Fglg—n.

Lower bound: Proof Outline

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

P Gap(t) > - - —=—
’ |:t€[0r,2?§(g2 n] ap(t) 2 8 loglogn

Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with §* > Fglg—n.

Split m into intervals of n allocations:

\ " I " | \ " I "

log2 n

Lower bound: Proof Outline 16

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 I
ogn — o(nfz).

P Gap(t) > = - —=>—
’ |:t€[0r,2?§(g2 n] ap(?) 8 loglogn
Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with §* > Fglg—n.

Split m into intervals of n allocations:

| Er R SR | E—

log2 n

One interval [t,t +n) must have > n/log®n balls allocated with §° > Fglg—n.

Lower bound: Proof Outline 16

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn _9
P Gap(t) > - - —— - .
t |:t€[0r,2?§(g2 n] ap(t) = 8 loglogn | — o)

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with §* > S

log® n
Split m into intervals of n allocations:

\ " I " |
xt

log2 n

3|3

One interval [t,t +n) must have > n/log®n balls allocated with §° >

1
logZn "

=
Lower bound: lggglof Outline

16

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn _9
P Gap(t) > - - —— - .
t |:t€[0r,2?§(g2 n] ap(t) = 8 loglogn | — o)

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with §* > S

log® n
Split m into intervals of n allocations:

\ " I " |
xt

log2 n

3|3

One interval [t,t + n) must have > n/log®n balls allocated with §° > 0g1 —
____________ In this interval, w.h.p. Q(n/log* n) balls allocated using ONE-CHOICE

oaZn"

=
Lower bound: lggglof Outline

O

16

Lower bound proof (II)

For any adaptive QUANTILE(S) (or THRESHOLD(f)) process P,

1 logn _9
P Gap(t) > - - —— - .
t |:t€[0r,2?§(g2 n] ap(t) = 8 loglogn | — o)

Proof (continued). We consider two cases:
Case B: P uses at least n quantiles with §* > S

log® n
Split m into intervals of n allocations:

\ " I " |
t

log2 n

3|3

One interval [t,t +n) must have > n/log®n balls allocated with §° > 0g1 —
____________ In this interval, w.h.p. Q(n/log*n) balls allocated using ONE-CHOICE
Implies w.h.p. Gap(t + n) = Q(log n/loglogn).
7

oaZn"

=
Lower bound: lggglof Outline

O

16

Upper bound: Proof outline

Upper bound: Proof outline

17

k-QUANTILE process

Consider the QUANTILE(d1, 02, . . ., 0) process with
if j <k

0, :=
/ { if i = k.

For any step m > 0, Pr [Gap(m) = O(k - (logn)/*)] > 1 —n=3

—1(log n)(k=9)/k

®

N[

o Op—28k—1 Sk

Upper bound: Proof outline

18

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®) Underload potential

Upper bound: Proof outline

19

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).

Upper bound: Proof outline

19

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).
[PTW15] showed that E [T*F! [§] <T*- (1— <) +co.

Upper bound: Proof outline

19

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).
[PTW15] showed that E [T [§'] <T*. (1— <) +co.
This implies E[I'] < ¢n for any ¢ > 0.

Upper bound: Proof outline

19

The hyperbolic cosine potential function

PTW15| used the hyperbolic cosine potential,
[
Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).

[PTW15] showed that E [T [§'] <T*. (1— <) +co.

This implies E[I'] < ¢n for any ¢ > 0.

By Markov’s inequality, we get Pr [I"™ < cn®] > 1 — n=2 which implies

1
Pr | Gap(m) <

S (3logn +loge) | >1—n"2.

Upper bound: Proof outline

19

The hyperbolic cosine potential function

PTW15| used the hyperbolic cosine potential,
[
Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).

[PTW15] showed that E [T [§'] <T*. (1— <) +co.

This implies E[I'] < ¢n for any ¢ > 0.

By Markov’s inequality, we get Pr [I"™ < cn®] > 1 — n=2 which implies

1
Pr | Gap(m) < — - (3logn +logc) | > 1 —n"2.

;

In [PTW15], v = O(1) so the tightest gaps proved were O(logn).

Upper bound: Proof outline

19

The hyperbolic cosine potential function

[PTW15] used the hyperbolic cosine potential,

Ft(xt) = Ze"/(wﬁ*t/”) + Ze*’Y(Ifft/n))
i=1 i=1

Overload potential: ®f Underload potential

For the (1 + f)-process, v = ©(8).

[PTW15] showed that E [T [§'] <T*. (1— <) +co.

This implies E[I'] < ¢n for any ¢ > 0.

By Markov’s inequality, we get Pr [I"™ < cn®] > 1 — n=2 which implies

1
Pr | Gap(m) <

S (3logn +loge) | >1—n"2.

In [PTW15], v = O(1) so the tightest gaps proved were O(logn).

[TW14] used this as a base case for TwO-CHOICE in the heavily-loaded case.

Upper bound: Proof outline

19

Technique 1: Super-exponential potential functions

Upper bound: Proof outline

20

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:

Zexp ((logn)i/* . (xf - % - %j(log”)l/k>+)a

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:

Zexp ((logn)i/* . (xf - % - %j(log”)l/k>+)a

We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
1
Bloj|g] <o) (1-1)+2

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:

Zexp ((logn)i/* . (xf - % - %j(log”)l/k>+)a

We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
1
Bloj|g] <o) (1-1)+2

So, after s = n - polylog(n) steps we get E [¢;+s|<1>6 = 0O(n), m‘re[t,t—&-s)g}'—] = O(n).

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:

Zexp ((logn)i/* . (xf - % - %j(log”)l/k>+)a

We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
1
Bloj|g] <o) (1-1)+2

So, after s = n - polylog(n) steps we get E [¢;+s|<1>6 = 0O(n), m‘re[t,t—&-s)g}'—] = O(n).
Observe that when @ = O(n) then at most O(n - e~7%) bins have load > z.

Upper bound: Proof outline 20

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for 0 < j < k and
t>0:
Zexp (7 oy (1 = £ = Zjttogn)) 7).
We prove that when yfsk_ij,n < %j(log n)Yk (good step G?), then
Bloj|g] <o) (1-1)+2
So, after s = n - polylog(n) steps we get E [¢;+s|<1>6 = 0O(n), m're[t,t—&-s)g;'—] = O(n).

Observe that when ®f = O(n) then at most (9(- e~7%) bins have load > z.
Similarly, when ®% = O(n), then ys,_, ,.n < (] + 1)(logn)'/*.

Upper bound: Proof outline 20

Proving Gap(m) = O(k - (logn)'/*)

yt A

df=0(mn) = yf <logn

Upper bound: Proof outline

21

Proving Gap(m) = O(k - (logn)'/*)

yt A

(logn) /3 |-=--=-==--------

Upper bound: Proof outline

21

Proving Gap(m) = O(k - (logn)'/*)

yt A

(logn)/3 |----- il kb e R kb
0 e i A T T T

f=0(n) = th1~62 < (logn)/3

8,

Upper bound: Proof outline 21

Proving Gap(m) = O(k - (logn)'/*)

t
y 4
P . » logn
T B
o |----- - - - —— e ———————— -
[P

Upper bound: Proof outline 21

Proving Gap(m) = O(k - (logn)'/*)

2(logn) /3 |-k o e e e oo

(logn)/3 I mmmmmmmm—m—m—m——m——— -
0 e R Gt E L LTt

ot =0(n)

5, 0,

Upper bound: Proof outline

21

Proving Gap(m) = O(k - (logn)'/*)

2(logn)/3 |-
(logn)*/3 |- ;
0 e R Gt E L LTt

®f = 0(n) = yp.5, < 2(logn)*/?

5 5

Upper bound: Proof outline 21

Proving Gap(m) = O(k - (logn)'/*)

2(logn)/3
(logn)*/3 |- ;
0 e R Gt E L LTt

5 5

Upper bound: Proof outline 21

Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [CDJT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Upper bound: Proof outline

22

Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [CDJT] = O(n) and G7 for all T € [t,t + n - polylog(n)).
Using Markov’s inequality we get that w.h.p. ®7 = poly(n).

Upper bound: Proof outline

22

Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [CDJT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Using Markov’s inequality we get that w.h.p. ®7 = poly(n).
We define ¥ as @} with sufficiently smaller .

Upper bound: Proof outline

22

Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [<I>JT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Using Markov’s inequality we get that w.h.p. ®7 = poly(n).
We define ¥ as @} with sufficiently smaller .
When ®7 = poly(n), then |\I/JT-+l -7 < nl/3.

Upper bound: Proof outline

22

Technique 2: Proving <I>§ is linear w.h.p.

Assume that E [<I>JT] = O(n) and G7 for all T € [t,t + n - polylog(n)).

Using Markov’s inequality we get that w.h.p. ®7 = poly(n).

We define ¥ as @} with sufficiently smaller .

When ®7 = poly(n), then |\I/JT-+l -7 < nl/3.

Hence, we apply a bounded difference inequality to get that w.h.p. U7 = O(n).

Upper bound: Proof outline

Conclusion

Summary of results:

Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).

Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).

Upper bound: Proof outline

23

Conclusion
Summary of results:

Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).

Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).
Implications:

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).

Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).
Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).
Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of

two choices).
Tighter upper bounds for d-THINNING

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Gap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).
Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of

two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Cap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).
Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).

Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).

Upper bound: Proof outline 23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Cap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).

Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).

Future work:

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Cap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).

Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).
Future work:

Prove lower bounds for adaptive k-QQUANTILE for k > 2.

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Cap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).

Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).
Future work:
Prove lower bounds for adaptive k-QQUANTILE for k > 2.

Prove similar upper bounds for k-THRESHOLD.

Upper bound: Proof outline

23

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. Cap(m) = O(k - (logn)'/*).
Proved a lower bound of Q(logn/loglogn) for any adaptive 1-THRESHOLD and
1-QQUANTILE process (power of two queries).

Implications:
For k = ©(loglogn), we recover the Gap(m) = O(loglogn) for Two-CHOICE (power of
two choices).
Tighter upper bounds for d-THINNING and (1 + 3) for g close to 1.
Graphical allocations on dense expander graphs achieves w.h.p. Gap(m) = O(loglogn).

Future work:
Prove lower bounds for adaptive k-QQUANTILE for k > 2.
Prove similar upper bounds for k-THRESHOLD.
Analyse Two-CHOICE with noise.

Upper bound: Proof outline

23

Questions?

Upper bound: Proof outline

More visualisations: dimitrioslos.com/itcs22

24

https://dimitrioslos.com/itcs22

Questions?

(0]0/0]0/0/0]0/0]0.0)

=
<=

000
_ 000000000
0000000000
OO0000000000
QX
[0[00]
[0/0]
50
[0l00100l¢ vmmw

000000000

DOOC

0000000000

Q
QA

25

More visualisations: dimitrioslos.com/itcs22

Upper bound: Proof outline

https://dimitrioslos.com/itcs22

Appendix

Appendix

26

Appendix A: Detailed experimental results

Appendix

(1 + B)-process,

k-QUANTILE

Two-CHOICE

for g =1/2 k=1 k=2 k=3 k=4
21: ™%
22: 9% 8 : 28%
23 : 26% 9 : 42%
24 : 27% 10 : 18% 4. 72%
: o 3: 46% 3: 7%
. 0; . 70 . .
iz 1(%‘6) 11: 7% 5: 26% 4: 54% 4:21% 3 : 100%

Table: Empirical distribution of the Gap for n = 10°

bins and m = 1000 - n balls.

27

Appendix B: Random d-regular graphs

Appendix

102

10t

Gap at m = 1000 - n

101
Degree d of graph

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for

n € {10%,10*,5 - 10} bins and m = 1000 - n balls.

102

—e—n = 50.000
—e—n = 10.000
——n = 1.000

28

Bibliography I

Appendix

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, STAM J.
Comput. 29 (1999), no. 1, 180-200.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385.

O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation,
Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.

O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab.
25 (2020), Paper No. 1, 13.

G. H. Gonnet, Fxpected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.

K. Iwama and A. Kawachi, Approzimated two choices in randomized load balancing,
Algorithms and Computation, Springer Berlin Heidelberg, 2005, pp. 545-557.

29

Bibliography 11

Appendix

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.

D. Los, T. Sauerwald, and J. Sylvester, Balanced allocations: Caching and packing,
twinning and thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’22), STAM, 2022, pp. 1847-1874.

M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory
Comput. Syst. 32 (1999), no. 3, 361-386.

Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(14 B)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775.

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159-170.

A. Steger and N. C. Wormald, Generating random regular graphs quickly,
Combinatorics, Probability and Computing 8 (1999), no. 4, 377-396.

30

Bibliography III
Kunal Talwar and Udi Wieder, Balanced allocations: A simple proof for the heavily

loaded case, 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), vol. 8572, Springer, 2014, pp. 979-990.

Appendix

31

	Balanced allocations: Background
	k-Threshold and k-Quantile
	Lower bound: Proof Outline
	Upper bound: Proof outline
	Appendix

	anm1:
	1.0:
	anm0:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

