Balanced Allocations with Incomplete Information: The Power of Two Queries

Dimitrios Los, Thomas Sauerwald

University of Cambridge, UK
Balanced allocations: Background
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.
Balanced allocations setting

Allocate \(m \) tasks (balls) sequentially into \(n \) machines (bins).

Goal: minimise the maximum load \(\max_{i \in [n]} x_i^m \), where \(x^t \) is the load vector after ball \(t \).

\(\iff \) minimise the gap, where \(\text{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n) \).
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

\Leftrightarrow minimise the gap, where $\text{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.
Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

\iff minimise the gap, where $\text{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Applications in hashing, load balancing and routing.
One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

Two-Choice Process:

Iteration: For each $t \geq 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

- **In the lightly-loaded case ($m = n$), w.h.p.** $\text{Gap}(n) = \Theta(\log n \log \log n)$ [Gon81].

- **In the heavily-loaded case ($m \gg n$), w.h.p.** $\text{Gap}(m) = \Theta(\sqrt{mn} \log n)$ (e.g. [RS98]).
One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta(\sqrt{m \cdot \log n})$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].
One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

Two-Choice Process:
Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].

Meaning with probability at least $1 - n^{-c}$ for constant $c > 0$.
One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

Two-Choice Process:
Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log \frac{n}{2} + \Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \log \frac{n}{2} + \Theta(1)$ [BCSV06].
One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

Two-Choice Process:
Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.
One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

Two-Choice Process:
Iteration: For each $t \geq 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].
One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \log n\right)$ (e.g. [RS98]).

Two-Choice Process:
Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].
One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].
One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case ($m = n$), w.h.p. $\text{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case ($m \gg n$), w.h.p. $\text{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].
(1 + β) process: Definition

(1 + β) Process:
- **Parameter:** A probability $\beta \in (0, 1]$.
- **Iteration:** For each $t \geq 0$, with probability β allocate one ball via the TWO-CORE process, otherwise allocate one ball via the ONE-CORE process.
(1 + \(\beta \)) process: Definition

(1 + \(\beta \)) Process:
Parameter: A probability \(\beta \in (0, 1] \).
Iteration: For each \(t \geq 0 \), with probability \(\beta \) allocate one ball via the TWO-CHOICE process, otherwise allocate one ball via the ONE-CHOICE process.

\[\text{[Mit99]} \] interpreted \((1 - \beta)/2 \) as the probability of making an erroneous comparison.
(1 + β) process: Definition

(1 + β) Process:

Parameter: A probability $\beta \in (0, 1]$.

Iteration: For each $t \geq 0$, with probability β allocate one ball via the TWO-CHOICE process, otherwise allocate one ball via the ONE-CHOICE process.

[Mit99] interpreted $(1 - \beta)/2$ as the probability of making an erroneous comparison.

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\Theta(\log n/\beta)$ for $1/n \leq \beta < 1 - \epsilon$ for constant $\epsilon > 0$.
k-Threshold and k-Quantile
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function $f(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 & \text{otherwise.}
\end{align*}
\]
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function $f(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 & \text{otherwise}.
\end{align*}
\]
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function $f(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

$$
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 & \text{otherwise}.
\end{align*}
$$

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:
Parameter: A threshold function $f(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

$$
\begin{cases}
 x_{i_1}^{t+1} = x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} = x_{i_2}^t + 1 & \text{otherwise}.
\end{cases}
$$
Adaptive 1-Threshold

Adaptive Threshold (f) Process:
Parameter: A threshold function $f(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:
\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise.}
\end{align*}
\]
Adaptive 1-Threshold

Adaptive Threshold\(f\) Process:
Parameter: A threshold function \(f(x^t)\).
Iteration: For \(t \geq 0\), sample two uniform bins \(i_1\) and \(i_2\) independently, and update:
\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise}.
\end{align*}
\]
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function $f(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

$$\begin{cases}
 x_{i_1}^{t+1} = x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} = x_{i_2}^t + 1 & \text{otherwise.}
\end{cases}$$
Adaptive 1-Threshold

Adaptive Threshold(f) Process:

Parameter: A threshold function $f(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

$$\begin{cases}
x_i^{t+1}_1 = x_i^t + 1 & \text{if } x_i^t \leq f(x^t), \\
x_i^{t+1}_2 = x_i^t + 1 & \text{otherwise.}
\end{cases}$$

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving w.h.p. $\text{Gap}(n) = \mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.
Adaptive 1-THRESHOLD

Adaptive THRESHOLD(f) Process:

Parameter: A threshold function $f(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

$$\begin{cases}
 x_{i_1}^{t+1} = x_{i_1}^t + 1 & \text{if } x_{i_1}^t \leq f(x^t), \\
 x_{i_2}^{t+1} = x_{i_2}^t + 1 & \text{otherwise}.
\end{cases}$$

For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving w.h.p. $\text{Gap}(n) = O\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.

In the heavily-loaded case, [LSS21] proved for $f(x^t) = t/n$ that w.h.p. $\text{Gap}(m) = O(\log n)$.
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:

Parameter: A quantile function $\delta(x^t)$.

Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:

\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if} \quad \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise}.
\end{align*}
\]
Adaptive 1-QUANTILE

Adaptive QUANTILE(\(\delta\)) Process:

Parameter: A quantile function \(\delta(x^t)\).

Iteration: For \(t \geq 0\), sample two uniform bins \(i_1\) and \(i_2\) independently, and update:

\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise.}
\end{align*}
\]

\(\delta^t\)
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:

Parameter: A quantile function δ(x^t).

Iteration: For t ≥ 0, sample two uniform bins i_1 and i_2 independently, and update:

\[
\begin{align*}
\text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
& x^t_{i_1} = x^t_{i_1} + 1
\end{align*}
\]

\[
\begin{align*}
\text{otherwise, } \\
& x^t_{i_2} = x^t_{i_2} + 1
\end{align*}
\]
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:

Parameter: A quantile function δ(x^t).

Iteration: For t ≥ 0, sample two uniform bins i_1 and i_2 independently, and update:

\[
\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if} \quad \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise}.
\end{align*}
\]
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:

Parameter: A quantile function δ(x^t).

Iteration: For t ≥ 0, sample two uniform bins i₁ and i₂ independently, and update:

\[\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise.}
\end{align*} \]
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:
Parameter: A quantile function $\delta(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:
\[
\begin{cases}
 x_{i_1}^{t+1} = x_{i_1}^t + 1 & \text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} = x_{i_2}^t + 1 & \text{otherwise}.
\end{cases}
\]

Adaptive QUANTILE(δ) processes can simulate any adaptive THRESHOLD(f).
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:
Parameter: A quantile function $\delta(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:
\[
\begin{align*}
x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise}.
\end{align*}
\]

- Adaptive QUANTILE(δ) processes can simulate any adaptive THRESHOLD(f).
- Also, adaptive THRESHOLD(f) process can simulate any adaptive QUANTILE(δ).
Adaptive 1-QUANTILE

<table>
<thead>
<tr>
<th>Adaptive QUANTILE(δ) Process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter: A quantile function $\delta(x^t)$.</td>
</tr>
<tr>
<td>Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:</td>
</tr>
</tbody>
</table>
| $\begin{align*}
 x_{i_1}^{t+1} &= x_{i_1}^t + 1 \quad \text{if } \text{Rank}(x^t, i_1) > \delta(x^t) \cdot n, \\
 x_{i_2}^{t+1} &= x_{i_2}^t + 1 \quad \text{otherwise}.
\end{align*}$ |

- Adaptive QUANTILE(δ) processes can simulate any adaptive THRESHOLD(f).
- Also, adaptive THRESHOLD(f) process can simulate any adaptive QUANTILE(δ).
- Both are special cases of 2-THINNING [FGG21].
Adaptive 1-QUANTILE

Adaptive QUANTILE(δ) Process:
Parameter: A quantile function $\delta(x^t)$.
Iteration: For $t \geq 0$, sample two uniform bins i_1 and i_2 independently, and update:
\[
\begin{cases}
 x_{i_1}^{t+1} = x_{i_1}^{t} + 1 & \text{if } \text{Rank}(x^t, i_1) > \delta(x^{t}) \cdot n, \\
 x_{i_2}^{t+1} = x_{i_2}^{t} + 1 & \text{otherwise}.
\end{cases}
\]

- Adaptive QUANTILE(δ) processes can simulate any adaptive THRESHOLD(f).
- Also, adaptive THRESHOLD(f) process can simulate any adaptive QUANTILE(δ).
- Both are special cases of 2-THINNING [FGG21].
- [IK05, FL20] analyse d-THINNING in the lightly-loaded case.
1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.
1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.
1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.
1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.
1-QUANTILE as TWO-CHOICE with incomplete information

Similarly, 1-QUANTILE is as TWO-CHOICE but we can compare two bins only if these are on different sides of the quantile δ^t.
1-	extbf{QUANTILE as TWO-CHOICE with incomplete information}

Similarly, 1-QUANTILE is as TWO-CHOICE but we can compare two bins only if these are on different sides of the quantile δ^t.
k-Threshold process

Under this interpretation, we can extend the 1-Threshold process to k thresholds.
Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.

We can only distinguish two bins if they are in different regions.
k-Threshold process

- Under this interpretation, we can extend the 1-Threshold process to k thresholds.
- We can only distinguish two bins if they are in different regions.
\textbf{k-Threshold process}

- Under this interpretation, we can extend the 1-\textsc{Threshold} process to k thresholds.
- We can only distinguish two bins if they are in different regions.

\[\text{Diagram showing the process with different regions and thresholds.}\]
k-Threshold process

- Under this interpretation, we can extend the 1-Threshold process to k thresholds.
- We can only distinguish two bins if they are in different regions.
- [IK05] analysed the lightly-loaded case for equidistant thresholds.
k-QUANTILE process

Similarly, we can extend 1-QUANTILE to obtain the k-QUANTILE process.
Our results

Any adaptive 1-Quantile / 1-Threshold process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

A k-Quantile process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).
- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $\mathcal{O}(k \cdot (\log n)^{1/k})$ gap.

![Graph showing the gap at $m = 1000 \cdot n$]
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $\mathcal{O}(k \cdot (\log n)^{1/k})$ gap.

![Graph showing the gap at $m = 1000 \cdot n$ for different quantile processes.](image-url)
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).
- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).
- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $\mathcal{O}(k \cdot (\log n)^{1/k})$ gap.
- Implications:
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.

- Implications:
 - For $k = \Theta(\log \log n)$, we recover the Two-Choice Gap(m) = $O(\log \log n)$.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $\mathcal{O}(k \cdot (\log n)^{1/k})$ gap.

- Implications:
 - For $k = \Theta(\log \log n)$, we recover the Two-Choice Gap(m) = $\mathcal{O}(\log \log n)$.
 - For $(1 + \beta)$ with $\beta = 1 - 2^{-0.5(\log n)^{(k-1)/k}}$, w.h.p. Gap($m$) = $\mathcal{O}(k \cdot (\log n)^{1/k})$.
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.

- Implications:
 - For $k = \Theta(\log \log n)$, we recover the Two-Choice Gap(m) = $O(\log \log n)$.
 - For $(1 + \beta)$ with $\beta = 1 - 2^{-0.5(\log n)^{(k-1)/k}}$, w.h.p. Gap($m$) = $O(k \cdot (\log n)^{1/k})$.
 - For d-THINNING, w.h.p. Gap(m) = $O(d \cdot (\log n)^{2/d})$.

Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.

Implications:

- For $k = \Theta(\log \log n)$, we recover the Two-Choice Gap(m) = $O(\log \log n)$.
- For $(1 + \beta)$ with $\beta = 1 - 2^{-0.5(\log n)^{(k-1)/k}}$, w.h.p. Gap($m$) = $O(k \cdot (\log n)^{1/k})$.
- For d-THINNING, w.h.p. Gap(m) = $O(d \cdot (\log n)^{2/d})$.
- For graphical allocations in dense expanders, w.h.p. Gap(m) = $O(\log \log n)$ (progress in [PTW15, Open Question 2]).
Our results

- Any adaptive 1-QUANTILE/1-THRESHOLD process has w.h.p. an $\Omega(\log n / \log \log n)$ gap (disproves [FGG21, Problem 1.3]).

- A k-QUANTILE process with uniform quantiles that achieves w.h.p. an $O(k \cdot (\log n)^{1/k})$ gap.

Implications:

- For $k = \Theta(\log \log n)$, we recover the Two-Choice Gap(m) = $O(\log \log n)$.
- For $(1 + \beta)$ with $\beta = 1 - 2^{-0.5(\log n)^{(k-1)/k}}$, w.h.p. Gap($m$) = $O(k \cdot (\log n)^{1/k})$.
- For d-THINNING, w.h.p. Gap(m) = $O(d \cdot (\log n)^{2/d})$.
- For graphical allocations in dense expanders, w.h.p. Gap(m) = $O(\log \log n)$ (progress in [PTW15, Open Question 2]).

- Use layered induction over super-exponential potential functions.
Lower bound: Proof Outline
Lower bound proof (I)

Theorem

For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$ \Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}). $$
Lower bound proof (I)

Theorem

For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
$$

Proof. We consider two cases:

Case A: P uses at most n quantiles with $\delta_t \geq \frac{1}{8 \log \log n}$.

Small quantile means that the first sample is used often.

P disagrees with One-Choice w.h.p. in at most $n + O(m/\log n) = O(n)$ allocations.

Using Poissonisation w.h.p. there are $\Omega(n)$ balls above $\frac{m}{n} + \Omega(\log n)$.

Hence, $\text{Gap}(m) = \Omega(\log n)$.

15
Lower bound proof (I)

Theorem
For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process \(P \),

\[
\Pr \left[\max_{t \in [0,n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof. We consider two cases:

Case A: \(P \) uses at most \(n \) quantiles with \(\delta^t \geq \frac{1}{\log^2 n} \).
Lower bound proof (I)

Theorem

For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$\Pr \left[\max_{t \in [0,n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).$$

Proof. We consider two cases:

- **Case A:** P uses at most n quantiles with $\delta^t \geq \frac{1}{\log^2 n}$.
 - Small quantile means that the first sample is used often.
Lower bound proof (I)

Theorem

For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$\Pr \left[\max_{t \in [0,n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).$$

Proof. We consider two cases:

Case A: P uses at most n quantiles with $\delta^t \geq \frac{1}{\log^2 n}$.

- Small quantile means that the first sample is used often.
- P disagrees with ONE-CHOICE w.h.p. in at most $n + O(m/\log^2 n) = O(n)$ allocations.
Lower bound proof (I)

Theorem

For any adaptive QUANTILE\((\delta)\) (or THRESHOLD\((f)\)) process \(P\),

\[
\Pr \left[\max_{t \in [0, n\log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof. We consider two cases:

Case A: \(P\) uses at most \(n\) quantiles with \(\delta^t \geq \frac{1}{\log^2 n}\).

- Small quantile means that the first sample is used often.
- \(P\) disagrees with ONE-CHOICE w.h.p. in at most \(n + \mathcal{O}(m/\log^2 n) = \mathcal{O}(n)\) allocations.
- Using Poissonisation w.h.p. there are \(\Omega(n)\) balls above \(\frac{m}{n} + \Omega(\log n)\).
Lower bound proof (I)

Theorem

For any adaptive QUANTILE(\(\delta\)) (or THRESHOLD(\(f\))) process \(P\),

\[
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof. We consider two cases:

Case A: \(P\) uses at most \(n\) quantiles with \(\delta^t \geq \frac{1}{\log^2 n}\).

- Small quantile means that the first sample is used often.
- \(P\) disagrees with ONE-CHOICE w.h.p. in at most \(n + \mathcal{O}(m/\log^2 n) = \mathcal{O}(n)\) allocations.
- Using Poissonisation w.h.p. there are \(\Omega(n)\) balls above \(\frac{m}{n} + \Omega(\log n)\).
- Hence, \(\text{Gap}(m) = \Omega(\log n)\).
Lower bound proof (II)

Theorem

For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$\Pr \left[\max_{t \in [0,n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).$$

Proof (continued). We consider two cases:
Lower bound proof (II)

Theorem

For any adaptive \textsc{Quantile}(\delta) (or \textsc{Threshold}(f)) process \(P \),

\[
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof (continued). We consider two cases:

Case B: \(P \) uses at least \(n \) quantiles with \(\delta^t \geq \frac{1}{\log^2 n} \).
Lower bound proof (II)

Theorem
For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,

$$\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).$$

Proof (continued). We consider two cases:

Case B: P uses at least n quantiles with $\delta^t \geq \frac{1}{\log^2 n}$.

- Break m into intervals of n allocations:

 $$\begin{array}{ccccccc}
 n & n & \ldots & n & n & n \\
 \log^2 n & \log^2 n & \ldots & \log^2 n & \log^2 n & \log^2 n
 \end{array}$$

Lower bound proof (II)

Theorem
For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process P,
\[
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof (continued). We consider two cases:

Case B: P uses at least \(n \) quantiles with \(\delta^t \geq \frac{1}{\log^2 n} \).

- Break \(m \) into intervals of \(n \) allocations:

\[
\begin{array}{cccccc}
\text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\text{n} & \text{n} & \dots & \text{n} & \text{n} \\
\text{log}^2 n & \text{log}^2 n & \dots & \text{log}^2 n & \text{log}^2 n \\
\end{array}
\]

- One interval has \(\geq n/\log^2 n \) balls allocated with \(\delta^t \geq \frac{1}{\log^2 n} \).
Lower bound proof (II)

Theorem
For any adaptive QUANTILE(\(\delta\)) (or THRESHOLD(\(f\))) process \(P\),
\[
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof (continued). We consider two cases:
- **Case B:** \(P\) uses at least \(n\) quantiles with \(\delta^t \geq \frac{1}{\log^2 n}\).

 □ Break \(m\) into intervals of \(n\) allocations:

 ![Diagram of intervals](image)

 □ One interval has \(\geq n/\log^2 n\) balls allocated with \(\delta^t \geq \frac{1}{\log^2 n}\).
Lower bound proof (II)

Theorem
For any adaptive QUANTILE(δ) (or THRESHOLD(f)) process \(P \),
\[
\Pr \left[\max_{t \in [0,n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof (continued). We consider two cases:

Case B: \(P \) uses at least \(n \) quantiles with \(\delta^t \geq \frac{1}{\log^2 n} \).

- Break \(m \) into intervals of \(n \) allocations:

- One interval has \(\geq n/\log^2 n \) balls allocated with \(\delta^t \geq \frac{1}{\log^2 n} \).

- In this interval, w.h.p. \(\Omega(n/\log^4 n) \) balls allocated using ONE-CHOICE.
Theorem
For any adaptive QUANTILE(\(\delta \)) (or THRESHOLD(\(f \))) process \(P \),
\[
\Pr \left[\max_{t \in [0, n \log^2 n]} \text{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n} \right] \geq 1 - o(n^{-2}).
\]

Proof (continued). We consider two cases:

Case B: \(P \) uses at least \(n \) quantiles with \(\delta^t \geq \frac{1}{\log^2 n} \).

- Break \(m \) into intervals of \(n \) allocations:

- One interval has \(\geq n/\log^2 n \) balls allocated with \(\delta^t \geq \frac{1}{\log^2 n} \).
- In this interval, w.h.p. \(\Omega(n/\log^4 n) \) balls allocated using ONE-CHOICE.
- Leads w.h.p. to an \(\Omega(\log n/\log \log n) \) gap.
Upper bound: Proof outline
Consider the QUANTILE($\delta_1, \delta_2, \ldots, \delta_k$) process with

$$\delta_j := \begin{cases}
2^{-0.5}(\log n)^{(k-j)/k} & \text{if } j < k \\
\frac{1}{2} & \text{if } i = k.
\end{cases}$$

For any $t \geq 0$, $\Pr \left[\text{Gap}(t) = O(k \cdot (\log n)^{1/k}) \right] \geq 1 - o(n^{-2})$.

\[\delta_{k-2} \delta_{k-1} \delta_k \]
The exponential potential function

[PTW15] used the two-sided **exponential potential**

\[
\Gamma^t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)}.
\]

Overload potential: \(\Phi^t_0 \) Underload potential
The exponential potential function

- [PTW15] used the two-sided **exponential potential**

\[
\Gamma^t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)} .
\]

Overload potential: \(\Phi^t_0\)
Underload potential

- For the \((1 + \beta)\) process, \(\alpha = \Theta(\beta)\).
The exponential potential function

- [PTW15] used the two-sided **exponential potential**

$$
\Gamma_t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)}.
$$

Overload potential: Φ^t_0
Underload potential

- For the $(1 + \beta)$ process, $\alpha = \Theta(\beta)$.
- [PTW15] show that $E[\Gamma^{t+1} | \mathcal{F}^t] \leq \Gamma^t \cdot \left(1 - \frac{c_1}{n}\right) + c_2$.
The exponential potential function

- [PTW15] used the two-sided **exponential potential**

\[\Gamma_t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)} \]

Overload potential: \(\Phi^t_0 \)
Underload potential

- For the \((1 + \beta)\) process, \(\alpha = \Theta(\beta) \).
- [PTW15] show that \(\mathbb{E} [\Gamma^{t+1} | \mathcal{F}^t] \leq \Gamma^t \cdot \left(1 - \frac{c_1}{n}\right) + c_2 \).
- This implies \(\mathbb{E} [\Gamma^t] \leq c \cdot n \) for any \(t \geq 0 \).
The exponential potential function

- [PTW15] used the two-sided **exponential potential**

\[
\Gamma^t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)}.
\]

Overload potential: \(\Phi^t_0\)
Underload potential

- For the \((1 + \beta)\) process, \(\alpha = \Theta(\beta)\).
- [PTW15] show that \(\mathbb{E} [\Gamma^{t+1} | \mathcal{F}^t] \leq \Gamma^t \cdot \left(1 - \frac{c_1}{n}\right) + c_2\).
- This implies \(\mathbb{E} [\Gamma^t] \leq c \cdot n\) for any \(t \geq 0\).
- By Markov’s inequality, we get \(\text{Pr} \left[\Gamma^m \leq cn^3 \right] \geq 1 - n^{-2}\) which implies

\[
\text{Pr} \left[\text{Gap}(m) \leq \frac{1}{\alpha} \left(3 \cdot \log n + \log c\right) \right] \geq 1 - n^{-2}.
\]
The exponential potential function

- [PTW15] used the two-sided \textbf{exponential potential}

\[\Gamma^t(x^t) := \sum_{i=1}^{n} e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^{n} e^{-\alpha(x^t_i - t/n)} . \]

\text{Overload potential: } \Phi^t_0 \quad \text{Underload potential}

- For the \((1 + \beta)\) process, \(\alpha = \Theta(\beta)\).

- [PTW15] show that \(\mathbb{E} [\Gamma^{t+1} \mid \mathcal{F}^t] \leq \Gamma^t \cdot \left(1 - \frac{c_1}{n}\right) + c_2\).

- This implies \(\mathbb{E} [\Gamma^t] \leq c \cdot n\) for any \(t \geq 0\).

- By Markov’s inequality, we get \(\Pr \left[\Gamma^m \leq cn^3 \right] \geq 1 - n^{-2}\) which implies

\[\Pr \left[\text{Gap}(m) \leq \frac{1}{\alpha} (3 \cdot \log n + \log c) \right] \geq 1 - n^{-2}. \]

- In [PTW15], \(a = \mathcal{O}(1)\) so the tightest gaps proved were \(\mathcal{O}(\log n)\).
The exponential potential function

- [PTW15] used the two-sided exponential potential

\[\Gamma_t(x^t) := \sum_{i=1}^n e^{\alpha(x^t_i - t/n)} + \sum_{i=1}^n e^{-\alpha(x^t_i - t/n)} . \]

- Overload potential: \(\Phi^t_0 \)
- Underload potential

- For the \((1 + \beta)\) process, \(\alpha = \Theta(\beta) \).
- [PTW15] show that \(\mathbb{E}[\Gamma^{t+1} | 3^t] \leq \Gamma^t \cdot \left(1 - \frac{c_1}{n}\right) + c_2 \).
- This implies \(\mathbb{E}[\Gamma^t] \leq c \cdot n \) for any \(t \geq 0 \).
- By Markov’s inequality, we get \(\mathbb{Pr}[\Gamma^m \leq cn^3] \geq 1 - n^{-2} \) which implies

\[\mathbb{Pr} \left[\text{Gap}(m) \leq \frac{1}{\alpha} (3 \cdot \log n + \log c) \right] \geq 1 - n^{-2}. \]

- In [PTW15], \(a = \mathcal{O}(1) \) so the tightest gaps proved were \(\mathcal{O}(\log n) \).
- [TW14] used this as a base case for TWO-CHOICE in the heavily-loaded case.
Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for $0 \leq j < k$ and $t \geq 0$:

$$\Phi_t^j := \sum_{i=1}^{n} \exp(\alpha \cdot (\log n)^{j/k} \cdot (x_t^n - t_n^{-2 \alpha j (\log n)^{1/k}})),$$

We prove that when $y_t \delta_k - j \cdot n < 2\alpha j (\log n)^{1/k}$ (good step G_t^j), then

$$E[\Phi_{t+1}^j | G_t^j] \leq \Phi_t^j \cdot (1 - 1/n) + 2.$$

So, after $s = n \cdot \text{polylog}(n)$ steps we get $E[\Phi_{t+s}^j | \Phi_0^j = O(n)$, $\cap \tau \in [t, t + s) G_\tau^j = O(n)$.

Observe that when $\Phi_0^j = O(n)$ then at most $O(n \cdot e^{-\alpha z})$ bins have load $\geq z$.

Similarly, when $\Phi_t^j = O(n)$, then $y_\delta k - j - 1 \cdot n < 2\alpha (j + 1)(\log n)^{1/k}$.
Technique 1: Super-exponential potential functions

- We define the following super-exponential potential functions for $0 \leq j < k$ and $t \geq 0$:

$$\Phi^t_j := \sum_{i=1}^{n} \exp \left(\alpha \cdot (\log n)^{j/k} \cdot \left(x_i^t - \frac{t}{n} - \frac{2}{\alpha j (\log n)^{1/k}} \right)^+ \right),$$
Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for $0 \leq j < k$ and $t \geq 0$:

$$
\Phi^t_j := \sum_{i=1}^{n} \exp \left(\alpha \cdot (\log n)^{j/k} \cdot \left(\frac{x^t_i}{n} - \frac{2}{\alpha} j (\log n)^{1/k} \right)^+ \right),
$$

We prove that when $y^{t}_{\delta_{k-j}n} < \frac{2}{\alpha} j (\log n)^{1/k}$ (good step G^t_j), then

$$
\mathbf{E} \left[\Phi_j^{t+1} \mid G^t_j \right] \leq \Phi_j^t \cdot \left(1 - \frac{1}{n} \right) + 2.
$$
Technique 1: Super-exponential potential functions

- We define the following \textbf{super-exponential potential functions} for $0 \leq j < k$ and $t \geq 0$:

$$
\Phi^j_t := \sum_{i=1}^{n} \exp \left(\alpha \cdot \frac{\log n}{k} \cdot \left(x_{i}^t - \frac{t}{n} - \frac{2}{\alpha} j \left(\log n \right)^{1/k} \right) \right),
$$

- We prove that when $y_{j,k-\cdot \cdot \cdot n} \leq \frac{2}{\alpha} j \left(\log n \right)^{1/k}$ (good step G^t_j), then

$$
\mathbb{E} \left[\Phi^t_{j+1} \mid G^t_j \right] \leq \Phi^t_{j} \cdot \left(1 - \frac{1}{n} \right) + 2.
$$

- So, after $s = n \cdot \text{polylog}(n)$ steps we get $\mathbb{E} \left[\Phi^t_{j+s} \mid \Phi^t_0 = \mathcal{O}(n), \cap_{\tau \in [t,t+s]} G^\tau_j \right] = \mathcal{O}(n)$.
Technique 1: Super-exponential potential functions

We define the following **super-exponential potential functions** for $0 \leq j < k$ and $t \geq 0$:

$$
\Phi^t_j := \sum_{i=1}^{n} \exp \left(\alpha \cdot \left(\log n \right)^{j/k} \cdot \left(x_t^i - \frac{t}{n} - \frac{2}{\alpha} j \left(\log n \right)^{1/k} \right) \right),
$$

We prove that when $y^t_{\delta k-j} \cdot n < \frac{2}{\alpha} j \left(\log n \right)^{1/k}$ (good step G^t_j), then

$$
E \left[\Phi^{t+1}_j \mid G^t_j \right] \leq \Phi^t_j \cdot \left(1 - \frac{1}{n} \right) + 2.
$$

So, after $s = n \cdot \text{polylog}(n)$ steps we get $E \left[\Phi^{t+s}_j \mid \Phi^t_0 = O(n), \cap_{\tau \in [t,t+s]} G^\tau_j \right] = O(n)$.

Observe that when $\Phi^t_0 = O(n)$ then at most $O(n \cdot e^{-\alpha z})$ bins have load $\geq z$.

Technique 1: Super-exponential potential functions

- We define the following super-exponential potential functions for $0 \leq j < k$ and $t \geq 0$:

\[
\Phi^t_j := \sum_{i=1}^{n} \exp \left(\alpha \cdot (\log n)^{j/k} \cdot \left(x^t_i - \frac{t}{n} - \frac{2}{\alpha} j (\log n)^{1/k} \right)^+ \right),
\]

- We prove that when $y^t_{\delta_{k-j} \cdot n} < \frac{2}{\alpha} j (\log n)^{1/k}$ (good step G^t_j), then

\[
\mathbb{E} \left[\Phi^{t+1}_j \mid G^t_j \right] \leq \Phi^t_j \cdot \left(1 - \frac{1}{n} \right) + 2.
\]

- So, after $s = n \cdot \text{polylog}(n)$ steps we get $\mathbb{E} \left[\Phi^{t+s}_j \mid \Phi^t_0 = O(n), \cap_{\tau \in [t,t+s]} G^\tau_j \right] = O(n)$.
- Observe that when $\Phi^t_0 = O(n)$ then at most $O(n \cdot e^{-\alpha z})$ bins have load $\geq z$.
- Similarly, when $\Phi^t_j = O(n)$, then $y^t_{\delta_{k-j-1} \cdot n} < \frac{2}{\alpha} (j + 1) (\log n)^{1/k}$.
Proving \(\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k}) \)
Proving \(\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k}) \)
Proving $\text{Gap}(m) = O(k \cdot (\log n)^{1/k})$
Proving $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$
Proving $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$
Proving $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$
Proving $\text{Gap}(m) = O(k \cdot (\log n)^{1/k})$
Technique 2: Proving Φ^t_j is linear w.h.p.

Assume that $\mathbb{E}[\Phi^\tau_j] = O(n)$ and G^τ_j for all $\tau \in [t, t + n \cdot \text{polylog}(n))$.

Using Markov's inequality we get that w.h.p. $\Phi^\tau_j = \text{poly}(n)$.

We define Ψ^t_j as Φ^t_j with sufficiently smaller α.

When $\Phi^\tau_j = \text{poly}(n)$, then $|\Psi^{\tau + 1}_j - \Psi^\tau_j| < n^{1/3}$.

Hence, we apply a bounded difference inequality to get that w.h.p. $\Psi^\tau_j = O(n)$.

Technique 2: Proving Φ_j^t is linear w.h.p.

- Assume that $E[\Phi_j^\tau] = O(n)$ and G_j^τ for all $\tau \in [t, t + n \cdot \text{polylog}(n))$.
- Using Markov’s inequality we get that w.h.p. $\Phi_j^\tau = \text{poly}(n)$.

We define Ψ_j^t as Φ_j^t with sufficiently smaller α.

When $\Phi_j^\tau = \text{poly}(n)$, then $|\Psi_j^{\tau+1} - \Psi_j^\tau| < n^{1/3}$.

Hence, we apply a bounded difference inequality to get that w.h.p. $\Psi_j^\tau = O(n)$.

22
Technique 2: Proving Φ^t_j is linear w.h.p.

- Assume that $\mathbb{E}[\Phi^\tau_j] = \mathcal{O}(n)$ and \mathcal{G}^τ_j for all $\tau \in [t, t + n \cdot \text{polylog}(n))$.
- Using Markov’s inequality we get that w.h.p. $\Phi^\tau_j = \text{poly}(n)$.
- We define Ψ^t_j as Φ^t_j with sufficiently smaller α.
Technique 2: Proving Φ^t_j is linear w.h.p.

- Assume that $\mathbb{E}[\Phi^\tau_j] = \mathcal{O}(n)$ and G^τ_j for all $\tau \in [t, t + n \cdot \text{polylog}(n))$.
- Using Markov's inequality we get that w.h.p. $\Phi^\tau_j = \text{poly}(n)$.
- We define Ψ^t_j as Φ^t_j with sufficiently smaller α.
- When $\Phi^\tau_j = \text{poly}(n)$, then $|\Psi^{\tau+1}_j - \Psi^\tau_j| < n^{1/3}$.
Technique 2: Proving Φ^t_j is linear w.h.p.

- Assume that $\mathbb{E} \left[\Phi^\tau_j \right] = O(n)$ and G^τ_j for all $\tau \in [t, t + n \cdot \text{polylog}(n))$.
- Using Markov’s inequality we get that w.h.p. $\Phi^\tau_j = \text{poly}(n)$.
- We define Ψ^t_j as Φ^t_j with sufficiently smaller α.
- When $\Phi^\tau_j = \text{poly}(n)$, then $|\Psi^{\tau+1}_j - \Psi^\tau_j| < n^{1/3}$.
- Hence, we apply a bounded difference inequality to get that w.h.p. $\Psi^\tau_j = O(n)$.

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.

Future work:

- Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
- Prove similar upper bounds for k-Threshold.
- Analyse Two-Choice with noise.
Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = O(k \cdot (\log n)^{1/k})$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

Future work:

- Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
- Prove similar upper bounds for k-THRESHOLD.
- Analyse Two-Choice with noise.
Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).
- Implications:
 - For $k = \Theta(\log \log n)$, we get for Two-Choice $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
 - Tighter upper bounds for d-Thinning and $(1 + \beta)$ for β close to 1.
 - Graphical allocations on dense expander graphs achieves $\text{Gap}(m) = \mathcal{O}(\log \log n)$.

Future work:

- Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
- Prove similar upper bounds for k-THRESHOLD.
- Analyse Two-Choice with noise.
Conclusion

Summary of results:

■ Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.

■ Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

■ Implications:

 ▶ For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
Conclusion

Summary of results:

- Introduced a \(k \)-QUANTILE process which achieves w.h.p. \(\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k}) \).
- Proved a lower bound of \(\Omega(\log n / \log \log n) \) for any adaptive 1-THRESHOLD and 1-QUANTILE process (\textit{power of two queries}).
- Implications:
 - For \(k = \Theta(\log \log n) \), we get for TWO-CHOICE \(\text{Gap}(m) = \mathcal{O}(\log \log n) \) (\textit{power of two choices}).
 - Tighter upper bounds for \(d \)-THINNING.

Future work:

- Prove lower bounds for adaptive \(k \)-QUANTILE for \(k \geq 2 \).
- Prove similar upper bounds for \(k \)-THRESHOLD.
- Analyse TWO-CHOICE with noise.
Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

Implications:

- For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
- Tighter upper bounds for d-THINNING and $(1 + \beta)$ for β close to 1.
Conclusion

Summary of results:

■ Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.
■ Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

Implications:

▶ For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
▶ Tighter upper bounds for d-THINNING and $(1 + \beta)$ for β close to 1.
▶ Graphical allocations on dense expander graphs achieves $\text{Gap}(m) = \mathcal{O}(\log \log n)$.

Future work:

■ Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
■ Prove similar upper bounds for k-THRESHOLD.
■ Analyse TWO-CHOICE with noise.
Conclusion

Summary of results:

■ Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.

■ Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

■ Implications:
 ▶ For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
 ▶ Tighter upper bounds for d-THINNING and $(1 + \beta)$ for β close to 1.
 ▶ Graphical allocations on dense expander graphs achieves $\text{Gap}(m) = \mathcal{O}(\log \log n)$.

Future work:
Conclusion

Summary of results:

■ Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.

■ Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

■ Implications:
 ▶ For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
 ▶ Tighter upper bounds for d-THINNING and $(1 + \beta)$ for β close to 1.
 ▶ Graphical allocations on dense expander graphs achieves $\text{Gap}(m) = \mathcal{O}(\log \log n)$.

Future work:

■ Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k})$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

Implications:

- For $k = \Theta(\log \log n)$, we get for TWO-CHOICE $\text{Gap}(m) = \mathcal{O}(\log \log n)$ (power of two choices).
- Tighter upper bounds for d-THINNING and $(1 + \beta)$ for β close to 1.
- Graphical allocations on dense expander graphs achieves $\text{Gap}(m) = \mathcal{O}(\log \log n)$.

Future work:

- Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.
- Prove similar upper bounds for k-THRESHOLD.
Conclusion

Summary of results:

- Introduced a \(k \)-QUANTILE process which achieves w.h.p. \(\text{Gap}(m) = \mathcal{O}(k \cdot (\log n)^{1/k}) \).
- Proved a lower bound of \(\Omega(\log n / \log \log n) \) for any adaptive 1-THRESHOLD and 1-QUANTILE process (power of two queries).

Implications:

- For \(k = \Theta(\log \log n) \), we get for TWO-CHOICE \(\text{Gap}(m) = \mathcal{O}(\log \log n) \) (power of two choices).
- Tighter upper bounds for \(d \)-THINNING and \((1 + \beta)\) for \(\beta \) close to 1.
- Graphical allocations on dense expander graphs achieves \(\text{Gap}(m) = \mathcal{O}(\log \log n) \).

Future work:

- Prove lower bounds for adaptive \(k \)-QUANTILE for \(k \geq 2 \).
- Prove similar upper bounds for \(k \)-THRESHOLD.
- Analyse TWO-CHOICE with noise.
Questions?

More visualisations: tinyurl.com/ls21-visualisations
Questions?

More visualisations: tinyurl.com/ls21-visualisations
Appendix
Appendix A: Detailed experimental results

<table>
<thead>
<tr>
<th>n</th>
<th>$(1 + \beta)$, for $\beta = 0.5$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>Two-Choice</th>
</tr>
</thead>
</table>

Table: Summary of our Experimental Results ($m = 1000 \cdot n$).
Appendix B: Random d-regular graphs

Figure: Average Gap vs. $n \in \{10^3, 10^4, 5 \cdot 10^4\}$ for d-regular graphs generated using [SW99].

Bibliography II

