Balanced Allocations: Relaxing Two-Choice

Dimitrios Los (Cambridge), Thomas Sauerwald (Cambridge), John Sylvester (Glasgow)

Problem Formulation

- vector after ball t.

Power of Two Choices

Outline of the Analysis for Mean-Thinning

Packing: Extends this to add more than 2 balls to underloaded bins.

Our analysis is based on an interaction between the following functions:

• The Exponential potential [8]: $\Gamma^t := \sum_{i=1}^n e^{\alpha(x_i^t - t/n)} + \sum_{i=1}^n e^{-\alpha(x_i^t - t/n)}$. • The Absolute potential: $\Delta^t := \sum_{i=1}^n |x_i^t - t/n|$. • The Quadratic potential: $\Upsilon^t := \sum_{i=1}^n (x_i^t - t/n)^2$. • The Quantile position: $\delta^t = |\{i \in [n] : y_i^t \ge 0\}| / n$.

Rough idea (cf. [7]):

• Observe $e^{\operatorname{Gap}(t)} \leq \Gamma^t$. Want: $\Gamma^t \in \operatorname{Poly}(n)$ w.h.p., Easy to get: $\Gamma^t \leq e^{n \log n}$ w.h.p.

• As long as $\Delta^t = \Omega(n)$, then Υ^t drops in expectation.

• If $\Delta^t = \mathcal{O}(n)$, then $\delta^t \in (\varepsilon, 1 - \varepsilon)$ w.h.p., for a constant fraction of the next $\Theta(n)$ steps.

• If $\delta^t \in (\varepsilon, 1 - \varepsilon)$ then, in expectation, Γ^t decreases in the next step.

• Once $\Gamma^{t'} \leq cn$ then, w.h.p., for the next n^4 steps, it must be $\leq cn$ once every $n \log n$ steps.

• Between these events, w.h.p., the gap cannot rise by more than $\mathcal{O}(\log n)$.

Graphical Allocations

Two-Choice on graphs: Sample an edge and allocate in the lesser loaded of the two bins.

On expanders, we show $\operatorname{Gap}(m) = O(\log n)$ with weighted balls and batching [4]. On dense expanders, $Gap(m) = O(\log \log n)$ [5].

References

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. *SIAM J. Comput.*, 1999. [2] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: the heavily loaded case. SIAM J. Comput., 2006.

[3] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a distributed memory machine. Algorithmica, 1996.

[4] D. Los and T. Sauerwald. Balanced Allocations in Batches: Simplified and Generalized. SPAA 2022.

[5] D. Los and T. Sauerwald. Balanced Allocations with Incomplete Information: The Power of Two Queries. ITCS 2022.

[6] D. Los and T. Sauerwald. Balanced Allocations with the Choice of Noise. PODC 2022.

[7] D. Los, T. Sauerwald, and J. Sylvester. Balanced Allocations: Caching and Packing, Twinning and Thinning. SODA 2022.

[8] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the $(1 + \beta)$ -choice process. Random Structures Algorithms, 2015.

[9] M. Raab and A. Steger. "Balls into bins" - a simple and tight analysis. RANDOM 1998.