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Problem Formulation Power of Two Choices
In the balanced allocations setting, One-Choice: each ball is allocated in a bin sam- Two-Choice: each ball is allocated in the lesser
e Task: Allocate m tasks (balls) sequentially into n machines (bins). pled uniformly at random. loaded of two bins sampled uniformly at random.
e Goal: Minimize the maximum load max;c, 2", where 2" is the load e For any m > nlogn (e.g., [9]): e For any m > n ([1, 2, 3)]):
vector after ball ¢. Gap(m (\/m log n) Gap(m) = log, logn + O(1).
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centralized setting — use round-robin
decentralized setting — use randomized approaches

Can we use fewer than 2 samples?
Can we relax synchronization?

Can load values be outdated?

Processes
Mean-Thinning (El, H) Twinning (E, H) Quantile (A)
For each ball: For each ball: For each ball:
e Sample one bin; if load at most t/n, then allocate. e Sample one bin; if load at most W*/n, then allo- e Sample two bins 27 and s.
e Otherwise, sample a second bin and allocate there. cate 2 balls. e Send k queries of the form: is load at median?
o Otherwise, allocate 1 ball. e Based on responses, allocate to smaller one, or randomly.
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Gap(m) = O(logn) [7] #Samples = 2 — ¢ Gap(m) = O(logn) #Samples = 1 — ¢ Gap(m) = O(k - (logn)"/*) #Samples = 2

Packing: Extends this to add more
than 2 balls to underloaded bins.

Outline of the Analysis for Mean-Thinning

Our analysis is based on an interaction between the following functions: Rough idea (cf. [7]):
e The Exponential potential [§]: T := Z polai=t/n) | Z o—alal=t/n) o Observe %) < T Want: T'* € Poly(n) w.h.p., Easy to get: I'" < e"'2" w.h.p..
o i=1 e As long as A" = Q)(n), then T* drops in expectation.
o The Absolute potential: A" .= |z; — t/n‘ o If A" = O(n), then 0" € (¢,1 — €) w.h.p., for a constant fraction of the next ©(n) steps.
i=1
n , oIf ' € (g,1 — ¢) then, in expectation, I decreases in the next step.
e The Quadratic potential: T!:=>" (z} —t/n)". , , .
P e Once I < cn then, w.h.p., for the next n* steps, it must be < cn once every nlogn steps.
o The Quantile position: ¢’ = |{i € [n]: y; > 0}] /n. e Between these events, w.h.p., the gap cannot rise by more than O(logn).
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