R250 Advanced topics in machine learning Topic 5: autoencoders

Variational autoencoder: the foundations

Damon Wischik, Cambridge University

- Kingma and Welling, Autoencoding variational Bayes, ICLR 2014
- Burda, Grosse, Salakhutdinov, Importance weighted autoencoders, ICLR 2016

A Bayesian's favourite model, of a biased coin

 $Z \sim \text{Beta}(\alpha, \beta)$ for fixed parameters α, β

 $X \sim \text{Bin}(1, Z)$

The Bayesian likes to ask:

given observations $x_1, x_2, ..., x_N$ drawn from distribution X, what is the posterior distribution of Z?

A latent-random-variable generative model

 $Z\sim Normal(0,1)$

 $X \sim \text{Normal}(f_{\theta}(Z), \sigma^2)$

Z measures distance along the line $f_{\theta}(Z) \text{ specifies the shape of the line}$ σ is noise around the line

The machine-learning modeller might ask: given observations x_1, x_2, \dots, x_N drawn from distribution X, how can I tune θ so that the model fits the data?

What does "train a generative model" mean?

It means "Pick θ so that the distribution $\Pr_X(x|\theta)$ is a good fit for the dataset x_1, \dots, x_N ".

maximize
$$\log \operatorname{lik}(\theta)$$
 over θ where $\log \operatorname{lik}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log \operatorname{Pr}_X(x_i | \theta)$

This also provides the evaluation metric,

 $\frac{1}{M}\sum_{i=1}^{M}\log P_X(x_i|\hat{\theta})$ summed over the holdout dataset x_1,\ldots,x_M , using the fitted $\hat{\theta}$

How to train a generative model using Monte Carlo

In toy examples, we can write down a formula for the log likelihood $\log \Pr_X(x|\theta)$. For interesting neural networks, this expression is intractable, so we approximate.

$$\log \operatorname{lik}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log \operatorname{Pr}_{X}(x_{i} | \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \log \operatorname{E}_{Z} \operatorname{Pr}_{X}(x_{i} | Z = z) \operatorname{Pr}_{Z}(z) dz = \operatorname{\mathbb{E}}_{Z} \operatorname{Pr}_{X}(x_{i} | Z)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \log \operatorname{\mathbb{E}}_{Z} \operatorname{Pr}_{X}(x_{i} | Z, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{\mathbb{E}}_{Z} \log \operatorname{Pr}_{X}(x_{i} | Z, \theta)$$

$$\geq \frac{1}{N} \sum_{i=1}^{N} \operatorname{\mathbb{E}}_{Z} \log \operatorname{Pr}_{X}(x_{i} | Z, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{\mathbb{E}}_{Z} \log \operatorname{Pr}_{X}(x_{i} | Z, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{\mathbb{E}}_{Z} \log \operatorname{Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{Dor Pr}_{X}(x_{i} | Z = z_{j}, \theta$$

How to train a generative model using Monte Carlo

Our training objective: find θ to maximize the lower bound $\log \operatorname{lik} \operatorname{lb}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{Z} \{ \log \operatorname{Pr}_{X}(x|Z,\theta) \}$

For each datapoint x_i (or each batch): Generate one or more random z samples from \Pr_Z Compute the loss function, $L(\theta) = -\log \Pr_X(x_i|Z=z,\theta)$ as well as its gradient $dL/d\theta$ Update θ to reduce the loss function

PROBLEM: the Monte Carlo approximation is pretty terrible, for this problem, since most values of z give $\Pr_{\mathbf{X}(x_i|Z} = z, \theta) \approx \operatorname{zero}$ This makes the lower bound very weak.

Digression on Importance Sampling

Given a random distribution Z and a function h, how can we approximate $\mathbb{E}_Z h(Z)$?

In our generative model, we picked $Z \sim N(0,1)$ and want to compute $\mathbb{E}_Z \underbrace{\log \Pr_X(x|Z,\theta)}_{h(Z)}$

MONTE CARLO APPROXIMATION

Sample z_1, \dots, z_J from Z. Then $\mathbb{E}_Z h(Z) \approx \frac{1}{I} \sum_1^J h(z_j)$

Let's sample instead from some other distribution \tilde{Z} (our choice). We just have to throw in a correction factor.

IMPORTANCE SAMPLING APPROXIMATION

Choose a distribution \tilde{Z} . Sample z_1,\dots,z_J from \tilde{Z} . Then $\mathbb{E}_Z h(Z) pprox rac{1}{J} \sum_1^J h(z_j) rac{\Pr_Z(z_j)}{\Pr_Z(z_j)}$

This approximation is valid for any distribution \tilde{Z} .

It works best (i.e. is good for small I) if \tilde{Z} is biased in favour of values where h(z) is large.

How to train a generative model using importance sampling

For each datapoint x_l (or each batch): Generate one or more random z samples from \Pr_Z and compute the loss, $L = -\log\left\{\Pr_X(x_l|Z=z,\theta)\frac{\Pr_Z(z|x,\phi)}{\Pr_Z(z|x,\phi)}\right\}$ as well as the gradients $\partial/\partial\theta$ and $\partial/\partial\phi$ Update (θ,ϕ) to reduce the loss

Our loss function can be thought of in terms of reconstruction error

Backpropagation needs derivatives, and there's a trick needed ...

Generate one or more random z samples from \Pr_Z and compute the loss, $L=\cdots$ $But \Pr_Z \ depends \ on \ \phi.$ as well as the gradients $\partial/\partial\theta$ and $\partial/\partial\phi$ \longleftarrow $How \ do \ we \ differentiate "sample from <math>\Pr_Z$ "?

Some neat maths ("variational inference")

$$\log \Pr_X(x|\theta) = \log \mathbb{E}_Z \Pr_X(x|Z,\theta)$$

$$= \log \mathbb{E}_{Z \sim \Pr_Z} \left\{ \Pr_X(x|Z,\theta) \frac{\Pr_Z(Z)}{\Pr_Z(Z)} \right\}$$
 With a little bit of algebra, the error in this approximation is
$$KL(\Pr_Z \parallel \Pr_{Z|X=x}) \right\} \geq \mathbb{E}_{Z \sim \Pr_Z} \log \left\{ \Pr_X(x|Z,\theta) \frac{\Pr_Z(Z)}{\Pr_Z(Z)} \right\}$$
 So, if our encoder is a perfect match for the Bayesian posterior of Z given
$$X = x$$
, the error is zero. (And also importance sampling is very efficient.)
$$\log \Pr_X(x|Z,\theta) - \mathbb{E}_{Z \sim \Pr_Z} \log \Pr_Z(Z)$$
 The Kullback-Leibler divergence,
$$K(\Pr_Z \parallel \Pr_Z) \subset 0,$$
 which is behaving here