R250 Advanced topics in machine
learning Topic 5: autoencoders

Variational autoencoder:

the foundations
Damon Wischik, Cambridge University

= Kingma and Welling, Autoencoding variational Bayes, ICLR 2014
= Burda, Grosse, Salakhutdinov, Importance weighted autoencoders, ICLR 2016

A Bayesian’s favourite model, of a biased coin

Z~Beta(a, p) for fixed parameters a, 8
X~Bin(1,Z)

The Bayesian likes to ask:

given observations x;, x5, ..., Xy drawn from distribution X,
what is the posterior distribution of Z?

A latent-random-variable generative model

Z measures distance

| Z~Normal(0,1) along the line
neura y

fo(Z) specifies the
nEt.WOI'k, shape of the line
weights 6

0 is noise around the
line

X~Normal(fy(2), 0%)

The machine-learning modeller might ask:

given observations x;, x5, ..., Xy drawn from distribution X,
how can | tune 8 so that the model fits the data?

What does “train a generative model” mean?

It means “Pick 6 so that the distribution Pry(x|0) is a good fit for the dataset x4, ..., xy”.

maximize loglik(8) over 6

where loglik(0) = %Zf':l log Pry(x;16)

This also provides the evaluation metric,

éZfﬁl log Py (x;|0) summed over the holdout dataset xy, ..., Xy, using the fitted

How to train a generative model using Monte Carlo

In toy examples, we can write down a formula for the log likelihood log Pry(x|6).
For interesting neural networks, this expression is intractable, so we approximate.

N
1
loglik (6) = 3) l0gPry (x1/6) ZNo.D

i=1 Law of total probability:

N Pry(x) = fz Pry(x|Z = z) Prz(z) dz = E;Pry(x|Z) neural network,

weights 6

1
=5 D108 EzPry(x1Z,0) KNG
=1 Jensen'’s inequality, for concave functions: observations
N F(EX) = Ef(X) Xy,)Xy

1
> NZ E; log Pry(x;|Z,0)
=1 Monte Carlo approximation,
N where z; are sampled from Z

J
1
Z —Z log PrX(xi|Z =z, 9)
J &

i=1 Our model gives us the explicit formula.
Gradient descent does the rest.

=

=]

How to train a generative model using Monte Carlo

Our training objective: find 6 to maximize the lower bound Z~N(0,1)
loglikIb(6) = + TIL, E{log Pry (x|Z, 0)}

neural network,
weights 6
X~N(fp(2),0%)
For each datapoint x; (or each batch): observations
Generate one or more random z samples from Pry KXy
Compute the loss function, L(6) = —logPryx(x;|Z =2z26)
as well as its gradient dL/d6
Update 6 to reduce the loss function

PROBLEM: the Monte Carlo approximation is pretty

terrible, for this problem, since most values of z give
Pry(x;|Z = z,0) = zero

This makes the lower bound very weak.

Digression on Importance Sampling

Given a random distribution Z and a function h, how can we approximate E,h(Z) ?

In our generative model, we picked
Z~N(0,1) and want to compute
Ez log Prx(x|Z,6)
MONTE CARLO APPROXIMATION —
Sample zy, ..., z; from Z. Then Ezh(Z) = %Z{ h(z;) h(z)
Let’s sample instead from some other
distribution Z (our choice). We just

have to throw in a correction factor.
IMPORTANCE SAMPLING APPROXIMATION

Prz(z))
Prz(zj)

Choose a distribution Z. Sample z;, ..., z; from Z. Then E;h(Z) ~ %Z{ h(z))

This approximation is valid for any distribution 7.
It works best (i.e. is good for small /) if Z is biased in favour of values where h(z) is large.

How to train a generative model using importance sampling

Z~N(01) X~N(decy(z),0?%)

the generative model

the sampling method

Z~N(encg (x),p%)

For each datapoint x; (or each batch):
Generate one or more random z samples from Pr;

Prz(z) }

and compute the loss, L= —log{Prx(xilZ =2z0) Pratlnd)
2(zlx,

as well as the gradients 9/06 and d/d¢
Update (0,¢) to reduce the loss

Our loss function can be thought of in terms of reconstruction error

Z~N(0,1) X~N(decy(z),0?)

Z @ the ive model

the sampling method

Z~N(encg(x),p?) i 1 . 2
;log(Znaz) + F(xi — dec(enc(x;) + noise))

“Denoising reconstruction loss”

Generate one or more random z samples from Prz

Pry(2)]

and compute the loss, L:—log{Prx(xilZ:z,G)m
2(alx,

Backpropagation needs derivatives, and there’s a trick needed ...

Z~N(O,1) X~N(decy(2),62)

Z @ the g ive model

the sampling method

Z~N(ency(x),p%)

Generate one or more random z samples from Prz

and compute the loss, L =--
Py s But Pr; depends on ¢.

as well as the gradients 8/06 and 8/0¢ <«————— How do we differentiate
“sample from Prz"?

Some neat maths (“variational inference”)

log Pry(x]6) = log E;Pry(x|Z,6)

Pry(Z)
=1logE; pr {Prx(xIZ,E’)
With a little bit of algebra, z Prz(2)
the error in this Pry 2)
approximation is - =]EZNPFZ log {PI‘X (x1Z,6) Pr;)
KL(Prz Il Przjx=x) Pr;(Z)
=E; p;, logPry(x|Z,6) — E;_p;, log——<
So, if our encoder is a "z 'z Pr;(Z)
perfect match for the
Bayesian posterior of Z given re::i::rizicr:igon The Kullback-Leibler
(s mportance. s KL 1Py 2.0,
sampling is very efficient.) which is behaving here

as a regularizer

