Topic 5: autoencoders

Damon Wischik
What is an autoencoder?

A classifier
Input: labelled data \((X_n, Y_n)_{n=1..N}\)
Task: predict the output \(Y\) given input \(X\)

An autoencoder
Input: unlabelled data \((X_n)_{n=1..N}\)
Task: given an input, reconstruct it
Challenge: squeeze the data through a “bottleneck”
What’s the point in learning to recreate the input?

It can help with multitask / transfer / semi-supervised learning.

Train a neural network with two objectives:
(a) output the target label Y
(b) reproduce the input

- This is useful if labels are low entropy
e.g. sentiment classification of text.
 The “reproduce the input” objective (b) gives extra
 feedback, which helps backpropagation learn useful
 features.
- It’s also useful if you have lots of unlabelled data and
 only a little labelled data.
The heart of autoencoding

We hope it will learn a useful / meaningful latent representation.

Surely, if it didn’t learn a good representation, it’d have no chance of reconstructing the input from just a few variables!

A 4-dimensional representation

\{'digit': 6, 'slant': UPRIGHT, 'weight': MEDIUM, 'style': LOOSE\}
What sort of representations does it actually learn?

MNIST image	4-dimensional representation	reconstruction
[6] | [1.4400] | [6]
1.5164 | 0.3757 | [4]
3.2569 | |

Source images

Reconstructions after 0.1 epochs

Reconstructions after 2 epochs

Reconstructions after 3 epochs

PCA plot showing the latent representations

colour = true digit
If we had a good representation, we could ...

- Pick a random Z, and decode.
 This should let us synthesize entirely new images.

- Take two source images X_1 and X_2, encode to get Z_1 and Z_2, let $Z = (1 - \lambda)Z_1 + \lambda Z_2$, and decode Z.
 This should generate a smooth interpolation between the two inputs, where each intermediate looks “nice”.

- Take a source image X, encode it to get Z, then vary the “digit” field of Z and decode.
 This should give a family of digits with the same handwriting.
Autoencoders are a tool for dimension reduction

- It’s **easier to train** a supervised learner from dimension-reduced features than from the raw dataset.
- The reduced dimensions are **meaningful axes** for our dataset; this is useful for interpolation etc.
- We can **synthesize new data**, by sampling randomly in the reduced-dimension space.

None of this works well off-the-shelf (hence the papers we will study).

And in fact the entire premise is dodgy.

We haven’t specified a proper evaluation criterion. Without this we can’t compare models, or tune hyperparameters; we’re just blindly hacking.
How should we validate an autoencoder? A thought experiment...

- In training, the aim is to minimize the reconstruction loss \(\mathbb{E}_{X \sim \text{train}} L(X, \hat{X}) \).
- The obvious way to validate is to run the network on unseen data (the holdout/validation dataset), and measure the reconstruction loss \(\mathbb{E}_{X \sim \text{test}} L(X, \hat{X}) \).
- But consider a super-intelligent autoencoder, which has learnt to encode input pixel \(i \) into bit \(i \) of the latent variable \(Z \in \mathbb{R} \). This autoencoder is surely not what we want — but it will score perfectly.

Input: unlabelled data \((X_n)_{n=1..N} \)
Reconstruction loss metric: \(L(X, \hat{X}) \)
Autoencoders are a tool for dimension reduction

- It’s **easier to train** a supervised learner from dimension-reduced features than from the raw dataset.
- The reduced dimensions are **meaningful axes** for our dataset; this is useful for interpolation etc.
- We can **synthesize new data**, by sampling randomly in the reduced-dimension space.

None of this works well off-the-shelf (hence the papers we will study).

Just like PCA!

Does PCA give us any insight into the problem of validation?
Given a collection of points $X_1, ..., X_N \in \mathbb{R}^d$
PCA looks for a linear subspace of dimension $e < d$ to represent the data.

PCA is an autoencoder.
- It encodes $X \in \mathbb{R}^d$ into $Z \in \mathbb{R}^e$
- The decoder positions the linear subspace \mathbb{R}^e within \mathbb{R}^d
- PCA seeks to minimize mean square error

This picture depicts dimension reduction from \mathbb{R}^2 to \mathbb{R}^1.
- With $e = d$ we’d get perfect reconstruction (but no dimension reduction)
- There are hacks to pick a useful $e < d$...
PCA only looks for linear subspaces. It is incapable of overfitting (as long as $e < d$).

If we allow nonlinear enc and dec, surely we can describe the data better.

Too much capacity \rightarrow overfitting.
In the story of autoencoders, there are three overlapping challenges.

1. Denoising
2. Fair rep.
3. VAE
4. CVAE
5. βVAE

Formulate AE so that we can validate / compare models.
Coerce AE into producing meaningful representations.
Be good at synthesizing new data.
<table>
<thead>
<tr>
<th>Schedule</th>
<th>Assessment</th>
<th>Arrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 January (1 hour)</td>
<td>▪ participation ≈ 5%</td>
<td>There is a Cambridge Gitlab repository for this course, with a toy MNIST example in Pytorch.</td>
</tr>
<tr>
<td></td>
<td>▪ presentation ≈ 15%</td>
<td>Presenters will contribute working code.</td>
</tr>
<tr>
<td></td>
<td>▪ project report 70%</td>
<td>Participants should also contribute issues / pull requests / code. (This gives you participation marks.)</td>
</tr>
<tr>
<td>27 January (1 hour)</td>
<td>Presenters, please chat with me the Friday before your presentation.</td>
<td></td>
</tr>
<tr>
<td>3 February (1 hour)</td>
<td>You should all read the papers, try the code, and participate in the discussion.</td>
<td></td>
</tr>
<tr>
<td>10 February (2 hours)</td>
<td>(Please introduce yourself. I’ll record for marking purposes.)</td>
<td></td>
</tr>
</tbody>
</table>