R250 Advanced topics in machine learning **Topic 5: autoencoders** Damon Wischik

What is an autoencoder?

A classifier Input: labelled data $(X_n, Y_n)_{n=1..N}$ Task: predict the output Y given input X

An autoencoder Input: unlabelled data $(X_n)_{n=1..N}$ Task: given an input, reconstruct it Challenge: squeeze the data through a "bottleneck"

What's the point in learning to recreate the input?

It can help with multitask / transfer / semi-supervised learning.

Train a neural network with two objectives:(a) output the target label *Y*(b) reproduce the input

- This is useful if labels are low entropy
 e.g. sentiment classification of text.
 The "reproduce the input" objective (b) gives extra
 feedback, which helps backpropagation learn useful
 features.
- It's also useful if you have lots of unlabelled data and only a little labelled data.

The heart of autoencoding

We hope it will learn a useful / meaningful latent representation.

Surely, if it didn't learn a good representation, it'd have no chance of reconstructing the input from just a few variables! MNIST image

A 4-dimensional representation

{'digit': 6,
 'slant': UPRIGHT,
 'weight': MEDIUM,
 'style': LOOSE}

What sort of representations does it actually learn?

MNIST image

4-dimensional representation

presentati [1.4400] 1.5164 0.3757]

3.2569

recon-

struction

Source images

Reconstructions after 0.1 epochs

Reconstructions after 2 epochs

Reconstructions after 3 epochs

PCA plot showing the latent representations

colour = true digit

If we had a good representation, we could ...

- Pick a random Z, and decode. This should let us synthesize entirely new images.
- Take two source images X_1 and X_2 , encode to get Z_1 and Z_2 , let $Z = (1 - \lambda)Z_1 + \lambda Z_2$, and decode Z. This should generate a smooth interpolation between the two inputs, where each intermediate looks "nice".
- Take a source image X, encode it to get Z, then vary the "digit" field of Z and decode.

This should give a family of digits with the same handwriting.

Autoencoders are a tool for dimension reduction

- It's easier to train a supervised learner from dimension-reduced features than from the raw dataset
- The reduced dimensions are meaningful axes for our dataset; this is useful for interpolation etc.
- We can synthesize new data, by sampling randomly in the reduceddimension space.

None of this works well off-the-shelf (hence the papers we will study).

And in fact the entire premise is dodgy.

We haven't specified a proper evaluation criterion. Without this we can't compare models, or tune hyperparameters; we're just blindly hacking.

How should we validate an autoencoder? A thought experiment...

Input: unlabelled data $(X_n)_{n=1..N}$ Reconstruction loss metric: $L(X, \tilde{X})$

- In training, the aim is to minimize the reconstruction loss $\mathbb{E}_{X \sim \text{train}} L(X, \tilde{X})$
- The obvious way to validate is to run the network on unseen data (the holdout / validation dataset), and measure the reconstruction loss $\mathbb{E}_{X \sim \text{test}} L(X, \tilde{X})$
- But consider a super-intelligent autoencoder, which has learnt to encode input pixel i into bit i of the latent variable $Z \in \mathbb{R}$. This autoencoder is surely not what we want but it will score perfectly.

Autoencoders are a tool for dimension reduction

- It's easier to train a supervised learner from dimension-reduced features than from the raw dataset
- The reduced dimensions are meaningful axes for our dataset; this is useful for interpolation etc.
- We can synthesize new data, by sampling randomly in the reduceddimension space.

None of this works well off-the-shelf (hence the papers we will study).

Just like PCA!

Does PCA give us any insight into the problem of validation?

Principle Components Analysis

Given a collection of points $X_1, ..., X_N \in \mathbb{R}^d$ PCA looks for a linear subspace of dimension e < d to represent the data.

PCA is an autoencoder.

- It encodes $X \in \mathbb{R}^d$ into $Z \in \mathbb{R}^e$
- The decoder positions the linear subspace \mathbb{R}^e within \mathbb{R}^d
- PCA seeks to minimize mean square error

This picture depicts dimension reduction from \mathbb{R}^2 to \mathbb{R}^1 .

- With e = d we'd get perfect reconstruction (but no dimension reduction)
- There are hacks to pick a useful e < d ...

The Goldilocks problem

PCA only looks for linear subspaces. It is incapable of overfitting (as long as e < d).

If we allow nonlinear enc and dec, surely we can describe the data better.

Too much capacity \rightarrow overfitting.

In the story of autoencoders, there are three overlapping challenges.

Schedule

20 January Introduction (1 hour)

27 January1. Denoising AEs(1 hour)3a. VAE

3 February2. Fair representations(1 hour)3b. VAE

10 February4. Conditional VAE(2 hours)5. β-VAE6. VAE+RNN ?Project report ideas

Assessment

- participation $\approx 5\%$
- presentation $\approx 15\%$
- project report 70%

Presenters, please chat with me the Friday before your presentation.

You should *all* read the papers, try the code, and participate in the discussion.

(Please introduce yourself. I'll record for marking purposes.)

Arrangements There is a Cambridge Gitlab repository for this course, with a toy MNIST example in Pytorch.

Presenters will contribute working code.

Participants should also contribute issues / pull requests / code. (This gives you participation marks.)