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What is an autoencoder?

A classifier
Input: labelled data 𝑋𝑛, 𝑌𝑛 𝑛=1..𝑁

Task: predict the output 𝑌 given input 𝑋
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An autoencoder
Input: unlabelled data 𝑋𝑛 𝑛=1..𝑁

Task: given an input, reconstruct it
Challenge: squeeze the data through a “bottleneck”



What’s the point in learning to recreate the input?
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Train a neural network with two objectives:
(a) output the target label 𝑌
(b) reproduce the input

▪ This is useful if labels are low entropy
e.g. sentiment classification of text.
The “reproduce the input” objective (b) gives extra 
feedback, which helps backpropagation learn useful 
features.

▪ It’s also useful if you have lots of unlabelled data and 
only a little labelled data.

enc dec

It can help with multitask / transfer / semi-supervised learning.



The heart of autoencoding
We hope it will learn a useful / meaningful latent 
representation.

Surely, if it didn’t learn a good representation, it’d 
have no chance of reconstructing the input from just 
a few variables!
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{‘digit’: 6,
‘slant’: UPRIGHT,
‘weight’: MEDIUM,
‘style’: LOOSE}

A 4-dimensional 
representation



What sort of representations does it actually learn?
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Reconstructions after 0.1 epochs
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PCA plot showing the 
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If we had a good representation, we could ...

▪ Pick a random 𝑍, and decode.
This should let us synthesize entirely new 
images.

▪ Take two source images 𝑋1 and 𝑋2, 
encode to get 𝑍1 and 𝑍2, let 𝑍 =
1 − 𝜆 𝑍1 + 𝜆𝑍2, and decode 𝑍.

This should generate a smooth 
interpolation between the two inputs, 
where each intermediate looks “nice”.

▪ Take a source image 𝑋, encode it to 
get 𝑍, then vary the “digit” field of 
𝑍 and decode.
This should give a family of digits with the 
same handwriting.

varying dimension 0

varying dimension 1

varying dimension 2

varying dimension 3

source image 𝑋

𝑋1 𝑋2



Autoencoders are a tool for 
dimension reduction

▪ It’s easier to train a supervised learner 
from dimension-reduced features than 
from the raw dataset

▪ The reduced dimensions are meaningful 
axes for our dataset; this is useful for 
interpolation etc.

▪ We can synthesize new data, by 
sampling randomly in the reduced-
dimension space.

None of this works well off-the-shelf
(hence the papers we will study).

And in fact the entire premise is dodgy.

We haven’t specified a proper 
evaluation criterion. Without this we 
can’t compare models, or tune 
hyperparameters; we’re just blindly 
hacking.



How should we validate an autoencoder? A thought experiment...

▪ In training, the aim is to minimize the reconstruction loss 𝔼𝑋~train 𝐿 𝑋, ෨𝑋

▪ The obvious way to validate is to run the network on unseen data (the holdout / 

validation dataset), and measure the reconstruction loss  𝔼𝑋~test 𝐿 𝑋, ෨𝑋

▪ But consider a super-intelligent autoencoder, which has learnt to encode input 
pixel 𝑖 into bit 𝑖 of the latent variable 𝑍 ∈ ℝ. This autoencoder is surely not what 
we want — but it will score perfectly.
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enc dec
Input: unlabelled data 𝑋𝑛 𝑛=1..𝑁

Reconstruction loss metric: 𝐿 𝑋, ෨𝑋



Autoencoders are a tool for 
dimension reduction

▪ It’s easier to train a supervised learner 
from dimension-reduced features than 
from the raw dataset

▪ The reduced dimensions are meaningful 
axes for our dataset; this is useful for 
interpolation etc.

▪ We can synthesize new data, by 
sampling randomly in the reduced-
dimension space.

None of this works well off-the-shelf
(hence the papers we will study).

Just like PCA!

Does PCA give us any insight into 
the problem of validation?



Principle Components Analysis

Given a collection of points 𝑋1, … , 𝑋𝑁 ∈ ℝ𝑑

PCA looks for a linear subspace of dimension 𝑒 < 𝑑 to 
represent the data.

PCA is an autoencoder.
▪ It encodes 𝑋 ∈ ℝ𝑑 into 𝑍 ∈ ℝ𝑒

▪ The decoder positions the linear subspace ℝ𝑒 within ℝ𝑑

▪ PCA seeks to minimize mean square error

This picture depicts dimension reduction from ℝ2 to ℝ1.

▪ With 𝑒 = 𝑑 we’d get perfect reconstruction
(but no dimension reduction)

▪ There are hacks to pick a useful 𝑒 < 𝑑 ...



The Goldilocks problem

PCA only looks for linear subspaces. It 
is incapable of overfitting (as long as 
𝑒 < 𝑑). 

If we allow nonlinear enc and dec, 
surely we can describe the data 
better.

Too much capacity → overfitting.



In the story of autoencoders, there are three overlapping challenges.

Formulate AE 
so that we 
can validate / 
compare 
models Coerce AE into 

producing 
meaningful 
representations

Be good at 
synthesizing 
new data

GANs

2. Fair rep.

4. CVAE
5. 𝛽VAE

1. Denoising



Schedule Assessment

▪ participation ≈ 5%

▪ presentation ≈ 15%

▪ project report 70%

Presenters, please chat 
with me the Friday before 
your presentation.

You should all read the 
papers, try the code, and 
participate in the 
discussion.

(Please introduce yourself. I’ll 
record for marking purposes.)

20 January 
(1 hour)

Introduction

27 January 
(1 hour)

1. Denoising AEs
3a. VAE

3 February 
(1 hour)

2. Fair representations
3b. VAE

10 February 
(2 hours)

4. Conditional VAE
5. β-VAE
6. VAE+RNN ?
Project report ideas

Arrangements
There is a Cambridge 
Gitlab repository for this 
course, with a toy MNIST 
example in Pytorch.

Presenters will contribute 
working code.

Participants should also 
contribute issues / pull 
requests / code. (This gives 

you participation marks.)


