
Coursework 2
Simulation, Job models

Network Performance—DJW—2010/11

This coursework is worth 3.5% of your final grade. You should hand it in to Computer
Science reception by noon on the due date.

Here is an assignment, and a solution submitted by a student. The solution is incomplete,
and it contains several errors. Your task is to explain the student’s errors, correct
the student’s code, and complete the assignment. Bear in mind the following points:

• The existing code has no simple compilation errors, and no simple problems like ex-
ceptions or memory-access errors. Its errors are all conceptual, i.e. they are errors in
translating the assignment into code.

• The student has failed to debug his code. There are two main ways to debug simulators:
(1) work out by hand what answer it should give when fed with specific inputs, and
then test it, and (2) compare its outputs to known results, and investigate the reasons
for any discrepancies. The assignment directs you to do both of these.

• You should explain your code and your simulation results; the level of detail given by
the student is appropriate, even though his reasoning is faulty. You should also explain
carefully the errors you have identified in the student’s code.

• While some of the student’s reasoning is faulty, other parts are good. It is up to you to
evaluate which is which.

• Question 6 asks you to choose which simulations to run, and how to present your results.
You should not simply pick some arbitrary parameters and give a listing of your results.
Instead you should invent some interesting questions to ask, run simulations to find the
answers, and present your findings as a train of reasoning. For example, you might think
to yourself “What general conclusions did I draw from my answers to earlier questions?
Are those conclusions still valid in this new setting?”

• I do not expect you to run simulations for hours on end. On my very old very slow
computer, I ran all the simulations for the entire assignment in 20 minutes.

• Although the student’s code is written in Python with data analysis in R, you may use
any language you wish for your corrected version, and you may use any system you like
for plotting graphs.
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Assignment

Here is a simple model for a single bottleneck link shared by several TCP flows. New flows arrive
at random times, and each flow has a random amount of data to send, measured in Mb. The flows
share the link fairly: when there are n flows, they each get throughput C/n where C is the link
speed, measured in Mb/s. Once a flow’s data has all been sent, the flow departs. For example,
over a period in which five flows arrive, we might see the following:

time

through-
put

flow 1

flow 2

flow 3

flow 4
flow 5

Question 1. Program a simulator of this system. Your written report should include the source
code. It should also include a brief description of how your simulator works—imagine you are giving
instructions to a colleague who knows how to program but who knows nothing about simulation
or about networks.

Question 2. Feed your simulator with the following data: arrival times [1,3,4,7,10] seconds, flow
sizes [5,3,2,5,8] Mb, service rate 2Mb/s. Work out with pen and paper what should happen.
Verify that your simulator produces the correct output.

The obvious performance measure that matters to users is the average flow completion time,
i.e. the average length of time that each flow is active. To investigate this, we will use a random
number generator for interarrival times and for flow sizes. The following Python code generates a
random number called Exp(λ):

import math , random
def rexp (λ ) : return −1.0/λ * math . l og ( random . random ( ) )

If the times between flow arrivals are Exp(λ) seconds, then the average arrival rate is λ arrivals per
second. If the flow sizes are Exp(1/m) Mb, then the average flow size is m Mb.

Question 3. Run simulations with link speed 10Mb/s, flow sizes Exp(1)Mb, and interarrival times
Exp(λ) seconds for a range of values of λ in the range 0 to 20. Measure the average flow completion
time, and plot it as a function of arrival rate. Repeat each simulation a number of times, and add
error bars to your plot to indicate how reliable your findings are.

Theory says that if the interarrival times are Exp(λ), the flow sizes are Exp(1/m) and the link
speed is C, then the average flow completion time should be m/(C−λm).

Question 4. On your graph, superimpose the results predicted by theory. Comment on any
differences.

Internet measurements suggest that a better distribution to use for flow sizes is given by the
following type of random number, called Pareto(α,m):

def rpare to (α ,m ) : return m*(1−1.0/α)*math . pow( random . random() ,−1.0/α)

If the flow sizes are Pareto(α,m) Mb and α > 1 then the mean flow size is m Mb.

Question 5. Repeat the experiment, but with Pareto(α,1) flow sizes, for a selection of values of
α > 1. Plot a graph with average flow duration on the vertical axis, arrival rate on the horizontal
axis, and several lines, one for each value of α. Add a line for the theoretical result from earlier,
m/(C−λm).

Question 6. Repeat the experiment, but with burstier arrivals—modify your simulator so that
pairs of flows arrive close together, and then there is a longer wait until the next pair. It is up to
you to choose suitable parameters and to decide how to plot your results.
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Solution, by A. Student

Simulator

The simulator code is given below. The main sim function takes four arguments: a generator for interar-
rival times (arrivals) in seconds, a generator for flow sizes (flowsizes) in Mb, the link speed in Mb/s
(linkspeed), and a logging function logfunc that takes one argument, a pair (departuretime,starttime),
and is called whenever a flow terminates. I made the interface to sim generic in this way, to make it easy
to modify the simulator to use different interarrival times and flow sizes, and also so that the logging
code is kept separate from the simulator logic.

The simulator keeps track of the currently active flows in a list activeflows. For each active flow
there is an entry in this list, consisting of a pair (sizeleft,starttime) where sizeleft is the amount of
data left to transmit and starttime is when the flow started. As the simulator runs sizeleft decreases
(line 12), but starttime is left unchanged and is only there for logging purposes. The activeflows list
is kept sorted using the heapq Python package: this ensures that the first entry in the list is always the
flow with the least left to transmit, i.e. the flow that will finish first.

The operation of the simulator is as follows. It maintains a variable simtime, the current (simulated)
time. It also keeps track of the next scheduled flow arrival, and it calculates the time of the next departure.
It works out which of these two is scheduled to happen next, and advances simtime correspondingly (lines
11,15). It works out the throughput given to each of the currently active flows in the meantime, and
subtracts the appropriate amount from their sizeleft record (lines 11–13). If the next scheduled event
is a departure then (because we are using heapq) the flow to depart is the one at the head of the
activeflows list, so it is removed (lines 16–18). Otherwise the next scheduled event is an arrival, so we
generate a new flow and add it to activeflows, and work out the next scheduled arrival (lines 19–22).
It does this for a fixed length of simulated time (line 6). I chose the simulation time so that my program
runs at a reasonable speed.

1 import heapq
2 def sim ( a r r i v a l s , f l ow s i z e s , l inkspeed , l og func ) :
3 simtime = 0
4 a c t i v e f l ow s = [ ]
5 nextar r = a r r i v a l s . next ( )
6 while simtime <100:
7 throughput = l ink speed / l en ( a c t i v e f l ow s ) i f a c t i v e f l ow s else 0
8 i f throughput >0:
9 sma l l e s t f l ow s i z e = a c t i v e f l ow s [ 0 ] [ 0 ]

10 nextdep = simtime + sma l l e s t f l ow s i z e / throughput
11 e lapsed , simtime = min( nextdep , nextar r )−simtime , min ( nextdep , nextar r )
12 a c t i v e f l ow s = [ ( s i z e l e f t −throughput* e lapsed , s t a r t t ime )
13 for s i z e l e f t , s t a r t t ime in a c t i v e f l ow s ]
14 else :
15 nextdep , simtime = f l o a t ( ' i n f ' ) , nextar r
16 i f nextdep<=nextar r :
17 depart ing f low , a c t i v e f l ow s = ac t i v e f l ow s [ 0 ] [ 1 ] , a c t i v e f l ow s [ 1 : ]
18 l og func ( ( simtime , depar t ing f l ow ) )
19 else :
20 newf lows i ze = f l ow s i z e s . next ( )
21 heapq . heappush ( a c t i v e f l ows , ( newf lows ize , simtime ) )
22 nextar r = simtime+a r r i v a l s . next ( )

The simulator harness uses the utility functions below. The rexp(λ) function is a generator which
generates Exp(λ) random numbers, as specified in the assignment. I have specified the random seed to
be used for random numbers in order to make my simulation results reproducible (line 25); without this
it is very hard to track down bugs in a simulator based on random numbers. The LogDuration class
provides a function logdeparture (line 31), which can be passed to sim; sim will then call logdepar-
ture((departuretime,starttime)) for each flow when it departs, and the logging class will keep a
running total.

23 import math , random
24 def rexp ( ra t e ) :
25 random . seed ( ' geranium ' )
26 while True :
27 y i e l d −1.0/ ra t e * math . l og ( random . random ( ) )
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28

29 class LogDuration :
30 def i n i t ( s e l f ) : s e l f . tot , s e l f . n = 0 ,0
31 def l ogdepar ture ( s e l f , r ecord ) :
32 deptime , s t a r t t ime = record
33 s e l f . t o t = s e l f . t o t+(deptime−s t a r t t ime )
34 s e l f . n = s e l f . n+1

Finally, the actual simulator is run as follows. This runs simulations for a range of arrival rates, and at
each arrival rate it runs 40 trials. It stores a list consisting of records which are 3-tuples, (arrivalrate,
trial number, average flow completion time) (line 40). When it has finished, it writes all the
results to a plain text file (lines 41–44), which can be loaded into a graphing package.

35 r e s u l t s = [ ]
36 for t r i a l in range ( 4 0 ) :
37 for a r r i v a l r a t e in [ 2 , 4 , 6 , 8 , 1 0 , 1 2 , 1 4 , 1 6 , 1 8 ] :
38 l o gg e r = LogDuration ( )
39 sim ( rexp ( a r r i v a l r a t e ) , rexp (1 ) , 10 , l o gg e r . l ogdepar ture )
40 r e s u l t s . append ( ( a r r i v a l r a t e , t r i a l , l o gg e r . to t / l o gg e r . n ) )
41 with open ( ' r e s u l t s . csv ' , 'wt ' ) as f :
42 f . wr i t e ( ' a r r i v a l r a t e , t r i a l , durat ion \n ' )
43 for r e s in r e s u l t s :
44 f . wr i t e ( ' , ' . j o i n ( [ s t r ( s ) for s in r e s ] ) + ' \n ' )

Results

I used R to analyse the simulator output. Here are some sample values from the output.

> res <- read.csv("results.csv")

> res[1:5, ]

arrivalrate trial duration

1 2 0 0.1284702

2 4 0 0.1755269

3 6 0 0.1981898

4 8 0 0.2779455

5 10 0 0.3506806

I first grouped the data by arrival rate (recall that I ran 40 trials for every value of arrival rate), and in
each group I calculated the average across the 40 trials. To indicate how consistent my simulations were
I also found upper and lower bounds by discarding the lowest 5% and the highest 5% of the readings; I
know that 90% of the time the simulator output should lie between these values. (This is better than
just plotting the minimum and maximum across trials, since minimum and maximum will be sensitive to
the number of trials I run, whereas these percentile values will not.) The grouping function, xxtabs, is
contained in a package djwutils provided on the Network Performance web pages. I have also plotted
in grey the theoretical prediction for the average flow completion time, m/(C−λm) where the mean flow
size is m = 1 Mb and the link speed is C = 10 Mb/s.

> library(djwutils)

> res2 <- xxtabs(duration ~ arrivalrate, data = res, FUN = list(low = function(x) quantile(x,

+ 0.05), high = function(x) quantile(x, 0.95), mean = mean))

> res2 <- as.data.frame(res2)

> res2$arrivalrate <- as.numeric(as.character(res2$arrivalrate))

> print(xyplot(mean ~ arrivalrate, data = res2, xlab = "arrival rate", ylab = "mean duration",

+ ylim = c(0, 1), type = "b", panel = function(...) {

+ lambda <- seq(0, 20, by = 1)

+ panel.xyplot(lambda, 1/(10 - lambda), lwd = 3, col = "grey80", type = "l")

+ panel.xyplot(res2$arrivalrate, res2$mean, type = "b", col = "black")

+ larrows(res2$arrivalrate, res2$low, res2$arrivalrate, res2$high, end = "both",

+ angle = 90, length = 0.1)

+ }))
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The error bars are small, indicating that my simulated results are highly reliable. The simulator output
agrees with the theoretical prediction for small arrival rates. For larger arrival rates, the agreement is
not so good. It must be that the theoretical formula relies on approximations which are only accurate
when the arrival rate is small.
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