
Example sheet 2
Working with distributions

Network Performance—DJW—2011/2012

Question 1. I have taken a sample of n values, X1, . . . ,Xn. For each value in the sample I
know the value of an associated predictor variable w1, . . . ,wn. I believe that Xi ∼ Exp(λwi),
where λ is unknown. Calculate the maximum likelihood estimator for λ.

Question 2. I have taken a series of measurements of file sizes, and plotted their empirical
distribution function. Based on my plot, I propose to fit the distribution

logP(X ≥ x) =

{
−λx if x≤ 1024
−λx−µ(x−1024) if x > 1024.

Show that this distribution has density function

f (x) =

{
λe−λx if x≤ 1024
(λ + µ)e−(λ+µ)x+1024µ if x > 1024.

(i) Find formulae for the maximum likelihood estimators of λ and µ.
(ii) Give pseudocode for a random number generator that generates random samples from

this distribution.

Question 3. Let X be the sum of three throws of a dice. The possible outcomes are Ω =
{3,4, . . . ,18}. Find the mean, median, and standard deviation of X .

Question 4. (i) Let X be an Exponential random variable with parameter λ. Let Y = aX ,
for some constant a > 0. Calculate the distribution function, i.e. find P(Y ≥ y) as a
function of y. What is the common name for the distribution of Y?

(ii) Let X1,X2, . . . ,Xn be independent Exponential random variables with parameters λ1,λ2, . . . ,λn
respectively. Let Z = min(X1,X2, . . . ,Xn). Calculate the distribution function for Z. Show
that Z ∼ Exp(λ1 + · · ·+ λn).

(iii) Let X1, . . . ,Xn be as above, and let Z = max(X1,X2, . . . ,Xn). Calculate the distribution
function for Z. [Hint. First find P(Z < z).]

Question 5. Let X , Y and Z be generated from the following three random number gener-
ators respectively:

def rexp (λ ) : return −1.0/λ * math . l og ( random . random ( ) )
def rpare to (α ) : return math . pow( random . random() ,−1.0/α)
def rpare to2 (α ,m ) : return m*(1−1.0/α)* rpare to (α)

Y is called the Pareto distribution, Y ∼ Pareto(α). Given λ, find α and m such that Z has
the same mean and variance as X .

Question 6. Consider the log file of the www.wischik.com website, available on Moo-
dle.
(i) The Size column contains the size in bytes of the body of each http response. Plot

the empirical distribution function (EDF) of Size.
(ii) It has been suggested that Size+1 has the Pareto(α) distribution for some parameter

α. Fit this distribution.

1



(iii) If Size+1 ∼ Pareto(α) then Size ∼ Pareto(α)−1, i.e. we may generate a random http
response size by generating a Pareto(α) random variable and subtracting 1. Generate
a random sample in this way, using your fitted value for α, and superimpose its EDF
on your plot from part (i).

(iv) It has also been suggested that Size+1 has a lognormal distribution, i.e. that log(Size+
1) ∼ Normal(µ,σ2) for some parameters µ and σ. Fit this distribution. Generate a
random sample of http response sizes based on this fit, and superimpose its EDF on
your plot from part (i).

(v) Which of the two distributions looks to be a better fit?

Question 7. This quesion concerns the arrival process of requests to www.wischik.com. We
wish to know if the arrival process is Poisson, i.e. if interarrival times are independent and
exponentially distributed. Since arrival rates vary according to time of day and day of the
week, restrict attention to records which apply to weekday afternoons, 2pm–4pm.
(i) Plot the EDF of interarrival time. Fit an exponential distribution, and plot its distri-

bution function on the same graph. Do they agree?
(ii) A better method is to transform the scales of your EDF plot, so that if the interarrival

times truly are exponential then the EDF should follow a straight line. Does it?
(iii) Split interarrival times into pairs, and produce a scatter-plot of the first time against

the second time. Does it seem that successive interarrival times are independent?
(iv) Another way to visualize independence is as follows. Split the data set of interarrival

times into three classes, depending on whether the preceding interarrival time was short,
medium or large. (Choose the cutoff points so that the three classes have roughly the
same number of data points.) Plot the EDF for each of the three classes. Are they the
same?

Question 8. On the next page there are six different generators1 for sequences of random
variables, intended to be used as request interarrival times for a simulator of a web server.
The first, rexp(λ), generates a sequence of independent Exp(λ) random variables; the others
were submitted by students, and are intended to represent bursty arrivals. Suppose the
interarrival times are X1,X2, . . . . Then we can calculate the mean arrival rate by finding

lim
n→∞

n
E(X1 + X2 + · · ·+ Xn)

.

For each of the generators listed below, find a formula for the mean arrival rate. You should
validate your formula by using a computer to generate a reasonably long sequence X1, . . . ,Xn
and computing n/(X1 + · · ·+ Xn); repeat the computation for large enough values of n to
make you confident you have computed an accurate answer.

Example. For generator bursty1(λ,w), the code generates the sequence X1 = Y1, X2 =
Y2 + · · ·+Yw, X3 = Yw+1, X4 = Yw+2 + · · ·+Y2w and so on, where each Yi is Exp(λ). Therefore
EX1 = 1/λ, EX2 = (w−1)/λ, and so on. Thus

E(X1 + · · ·+ Xn) =

{
n
2 (w/λ) if n even
n−1

2 (w/λ)+ 1/λ if n odd.

When n is large, E(X1 + · · ·+ Xn)/n→ w/(2λ). Hence the mean arrival rate is 2λ/w. I found
close agreement when I validated this formula by running

for n in [ 1 000 , 10000 , 100000 ] :
g = bursty1 (1 , 5 )
x = [ g . next ( ) for i in range (n ) ]
print 'n={n} , avg . r a t e={r } , theory={t } ' . format (n=n , r=len (x )/sum(x ) , t =2.0/5)

1For an explanation of generators in Python, and why they are useful for generating sequences of random
variables, see http://www.cs.ucl.ac.uk/staff/D.Wischik/Teach/NP/Handouts/pythonic.html.

2



import math , random

def rexp (λ ) :
while True : y i e l d −1.0/λ * math . l og ( random . random ( ) )

def bursty1 (λ , waitt ime ) :
count = 0
x = 0
while True :

x = x + (−1.0/λ * math . l og ( random . random ( ) ) )
i f ( count % waitt ime ) in [ 0 , waittime −1 ] :

y i e l d x
x = 0

count = count+1

def bursty2 (λ ) :
burst , add , curr = 0 ,0 ,0
while True :

burst += 1
i f burst==3:

add , burst = curr *λ ,0
else :

add = 0
curr = (−1.0/λ * math . l og ( random . random ( ) ) )
y i e l d curr+add

def bursty3 (λ , p=2):
r1 = λ*(p+1)/2.0
r2 = r1 /p
while True :

y i e l d −1.0/ r1 * math . l og ( random . random ( ) )
y i e l d −1.0/ r2 * math . l og ( random . random ( ) )

def bursty4 (λ ) :
a = False
while True :

a = not a
r = λ*3/2 .0 i f a else λ*3/4 .0
y i e l d −1.0/ r * math . l og ( random . random ( ) )

def bursty5 (λ , f r , bi , b l =2):
while True :

i f random . random()<= f r :
for i in range ( b l ) : y i e l d b i

else :
for i in range ( b l ) : y i e l d −1.0/λ * math . l og ( random . random ( ) )

3


