Example sheet 4
 Random processes
 Network Performance - DJW—2010/11

Question 1. Consider the matrix of transition rates

$$
R_{i j}= \begin{cases}v & \text { if } j=i+1 \\ i \mu & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

for i, j in $\{0,1,2, \ldots, C\}$.
(i) Draw a state space diagram for the Markov process with these transition rates.
(ii) Find the equilibrium distribution ρ of this Markov process, for $\mu=1, \nu=12$ and $C=20$.
(iii) The jump chain that corresponds to this Markov process is a Markov chain with transition probabilities

$$
P_{i j}=\frac{R_{i j}}{\sum_{k=0}^{C} R_{i k}} .
$$

Draw the state space diagram for the jump chain.
(iv) Find the invariant distribution π for the jump chain, with the same values of μ, ν and C as above.
(v) Comment on the difference between ρ and π.

Question 2. On the next page there are six different generators for sequences of random variables, intended to be used as flow interarrival times for a simulator of a bandwidthsharing link. The first, $\operatorname{rexp}(\lambda)$, generates a sequence of independent $\operatorname{Exp}(\lambda)$ random variables; the others were submitted by students. Suppose the interarrival times are X_{1}, X_{2}, \ldots. Then we can calculate the mean arrival rate by finding

$$
\frac{n}{\mathbb{E}\left(X_{1}+X_{2}+\cdots+X_{n}\right)}
$$

and taking the limit as $n \rightarrow \infty$. For each of the generators listed below, find a formula for the mean arrival rate. You should validate your formula by using a computer to generate a reasonably long sequence X_{1}, \ldots, X_{n} and computing $n /\left(X_{1}+\cdots+X_{n}\right)$; repeat the computation for large enough values of n to make you confident you have computed an accurate answer. This validation is for your benefit, and you do not have to include it in your submitted answer.

Example. For generator bursty1($\lambda, \mathrm{w})$, the code generates the sequence $X_{1}=Y_{1}, X_{2}=$ $Y_{2}+\cdots+Y_{w}, X_{3}=Y_{w+1}, X_{4}=Y_{w+2}+\cdots+Y_{2 w}$ and so on, where each Y_{i} is $\operatorname{Exp}(\lambda)$. Therefore $\mathbb{E} X_{1}=1 / \lambda, \mathbb{E} X_{2}=(w-1) / \lambda$, and so on. Thus

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)= \begin{cases}\frac{n}{2}(w / \lambda) & \text { if } n \text { even } \\ \frac{n-1}{2}(w / \lambda)+1 / \lambda & \text { if } n \text { odd }\end{cases}
$$

When n is large, $\mathbb{E}\left(X_{1}+\cdots+X_{n}\right) / n=w /(2 \lambda)$. Hence the mean arrival rate is $2 \lambda / w$. I found close agreement when I validated this formula by running

```
for n in [1000, 10000,100000]:
    g = bursty1(1,5)
    x = [g.next() for i in range(n)]
    print 'n={n}, avg.rate={r}, theory={t}'.format(n=n,r=len(x)/sum(x),t=2.0/5)
```

```
import math, random
def \(\operatorname{rexp}(\lambda)\) :
    while True: yield \(-1.0 / \lambda *\) math. \(\log (\) random.random () )
def bursty1 ( \(\lambda\), waittime) :
    count \(=0\)
    \(\mathrm{x}=0\)
    while True:
        \(\mathrm{x}=\mathrm{x}+(-1.0 / \lambda *\) math. \(\log (\) random. random()\())\)
        if (count \% waittime) in [0, waittime - 1 ]:
            yield x
            \(\mathrm{x}=0\)
        count \(=\) count +1
def bursty2 \((\lambda)\) :
    burst, add, curr \(=0,0,0\)
    while True:
        burst \(+=1\)
        if burst==3:
            add, burst \(=\operatorname{curr} * \lambda, 0\)
        else :
            add \(=0\)
        curr \(=(-1.0 / \lambda *\) math. \(\log (\) random.random ( \()\) ) \()\)
        yield curr+add
def bursty \(3(\lambda, p=2)\) :
    \(r 1=\lambda *(p+1) / 2.0\)
    \(\mathrm{r} 2=\mathrm{r} 1 / \mathrm{p}\)
    while True:
        yield \(-1.0 / \mathrm{r} 1 *\) math. \(\log (\) random.random () \()\)
        yield \(-1.0 / \mathrm{r} 2 *\) math. \(\log (\) random.random () )
def bursty4 \((\lambda)\) :
    \(\mathrm{a}=\mathrm{False}\)
    while True:
        \(\mathrm{a}=\) not a
        \(\mathrm{r}=\lambda * 3 / 2.0\) if a else \(\lambda * 3 / 4.0\)
        yield \(-1.0 / \mathrm{r} *\) math. \(\log\) (random.random())
def bursty \(5(\lambda, f r, b i, b l=2)\) :
    while True:
        if random. \(\operatorname{random}()<=\mathrm{fr}\) :
            for \(i\) in range(bl): yield bi
        else :
            for in range(bl): yield \(-1.0 / \lambda *\) math. \(\log (\) random.random())
```

