
Example sheet 4
Random processes

Network Performance—DJW—2010/11

Question 1. Consider the matrix of transition rates

Ri j =

ν if j = i + 1
iµ if j = i−1
0 otherwise

for i, j in {0,1,2, . . . ,C}.
(i) Draw a state space diagram for the Markov process with these transition rates.
(ii) Find the equilibrium distribution ρ of this Markov process, for µ = 1, ν = 12 and C = 20.
(iii) The jump chain that corresponds to this Markov process is a Markov chain with tran-

sition probabilities

Pi j =
Ri j

∑
C
k=0 Rik

.

Draw the state space diagram for the jump chain.
(iv) Find the invariant distribution π for the jump chain, with the same values of µ, ν and

C as above.
(v) Comment on the difference between ρ and π.

Question 2. On the next page there are six different generators for sequences of random
variables, intended to be used as flow interarrival times for a simulator of a bandwidth-
sharing link. The first, rexp(λ), generates a sequence of independent Exp(λ) random vari-
ables; the others were submitted by students. Suppose the interarrival times are X1,X2,
Then we can calculate the mean arrival rate by finding

n
E(X1 + X2 + · · ·+ Xn)

and taking the limit as n→ ∞. For each of the generators listed below, find a formula for
the mean arrival rate. You should validate your formula by using a computer to generate a
reasonably long sequence X1, . . . ,Xn and computing n/(X1 + · · ·+Xn); repeat the computation
for large enough values of n to make you confident you have computed an accurate answer.
This validation is for your benefit, and you do not have to include it in your submitted
answer.

Example. For generator bursty1(λ,w), the code generates the sequence X1 = Y1, X2 =
Y2 + · · ·+Yw, X3 = Yw+1, X4 = Yw+2 + · · ·+Y2w and so on, where each Yi is Exp(λ). Therefore
EX1 = 1/λ, EX2 = (w−1)/λ, and so on. Thus

E(X1 + · · ·+ Xn) =

{
n
2 (w/λ) if n even
n−1

2 (w/λ)+ 1/λ if n odd.

When n is large, E(X1 + · · ·+ Xn)/n = w/(2λ). Hence the mean arrival rate is 2λ/w. I found
close agreement when I validated this formula by running

for n in [1 000 , 10000 , 100000] :
g = bursty1 (1 , 5)
x = [g . next () for i in range (n)]
print 'n={n} , avg . r a t e={r } , theory={t } ' . format (n=n , r=len (x)/sum(x) , t =2.0/5)

1

import math , random

def rexp (λ) :
while True : y i e l d −1.0/λ * math . l og (random . random ())

def bursty1 (λ , waitt ime) :
count = 0
x = 0
while True :

x = x + (−1.0/λ * math . l og (random . random ()))
i f (count % waitt ime) in [0 , waittime −1] :

y i e l d x
x = 0

count = count+1

def bursty2 (λ) :
burst , add , curr = 0 ,0 ,0
while True :

burst += 1
i f burst==3:

add , burst = curr *λ ,0
else :

add = 0
curr = (−1.0/λ * math . l og (random . random ()))
y i e l d curr+add

def bursty3 (λ , p=2):
r1 = λ*(p+1)/2.0
r2 = r1 /p
while True :

y i e l d −1.0/ r1 * math . l og (random . random ())
y i e l d −1.0/ r2 * math . l og (random . random ())

def bursty4 (λ) :
a = False
while True :

a = not a
r = λ*3/2 .0 i f a else λ*3/4 .0
y i e l d −1.0/ r * math . l og (random . random ())

def bursty5 (λ , f r , bi , b l =2):
while True :

i f random . random()<= f r :
for i in range (b l) : y i e l d b i

else :
for i in range (b l) : y i e l d −1.0/λ * math . l og (random . random ())

2

