

Example sheet 3

Markov chains
Network Performance—DJW—2010/11

Question 1. Draw the state space diagrams for the following transition matrices. Is the corresponding Markov chain irreducible? aperiodic? If both irreducible and aperiodic, calculate the equilibrium distribution.

$$(i). P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$(ii). P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & \epsilon & 1-\epsilon \\ 1 & 0 & 0 \end{pmatrix} \text{ where } 0 < \epsilon < 1$$

$$(iii). P = \begin{pmatrix} 0 & 1/3 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Question 2. Explain carefully why the following Markov chain transition matrix is aperiodic.

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Question 3. I have a biased coin, which has probability p of heads. I toss it repeatedly. I stop when I first get three heads in a row. Let X_n be the result of the n th toss. Draw a state space diagram for the triple (X_n, X_{n-1}, X_{n-2}) . Hence or otherwise, calculate the expected time until I stop.

Question 4. My website consists of 5 pages, 1–5. The link matrix

$$L = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

shows which pages link to which other pages: $L_{ij} = 1$ if i links to j , and 0 otherwise. There are two outside nodes A and B which link to my website: A links to my page 1, and B links

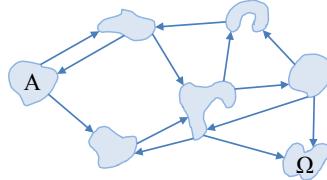
to my page 3. A has PageRank= 2 and 3 other outgoing links; B has PageRank= 5 and 2 other outgoing links.

Add a fictitious node X which represents the ‘rest of the web’. Consider a random surfer who follows the Google PageRank Markov chain, and suppose that the random teleports all go to X , and that the extra outgoing links from A and B also go to X . Suppose that, from X , the random surfer goes to A with probability $2/7$ and to B with probability $5/7$.

- (i) Draw the state space diagram for this Markov chain.
- (ii) Calculate the equilibrium distribution π . What is the total fraction of time that this Markov chain spends in my website, i.e. in states 1–5?
- (iii) Calculate the expected length of a visit to my website, assuming the first page is 1. Calculate the expected length of a visit to my website, assuming the first page is 3. Hence calculate the expected length of a visit to my website, assuming that the first page is 1 with probability $\pi_1/(\pi_1 + \pi_3)$ and 3 otherwise.
- (iv) Consider adding a navigation bar, i.e. links from $2 \rightarrow 1$, $4 \rightarrow 2$ and $4 \rightarrow 1$ and so on. What is π now? What is the expected length of a visit to my website now? How much has this modification improved my PageRank?

Question 5. Mario starts on island A , trying to reach Princess Peach, who he knows is on island Ω , but he is continually being thwarted by Bowser. Each day Mario tries to get closer to Ω . With probability $1/5$ he follows the shortest-route next hop to Ω (breaking ties randomly). With probability $3/5$ he is deflected by Bowser, and his next hop is chosen uniformly at random from the arrows from his current island. With probability $1/5$, he is killed by Bowser. What is the probability he finds the Princess before he is killed? How long on average until one of these events occurs?

There is a packet forwarding algorithm called Deflection Routing, which is closely related to this question.



Question 6. I am in a casino, gambling on successive tosses of a fair coin. The rules of the game are that if I stake x and the coin comes up heads then I win $2x$ i.e. my profit is x , whereas if it comes up tails then I lose my stake.

I start with £10, and each turn I gamble £1. I stop when either I run out of money, or I reach £20. What is the probability of each outcome? How long on average until I stop playing?

This calculation is known as the Gambler’s Ruin problem, and it turns out to be equivalent to calculating the packet drop probability for a queue.

Question 7. Consider the following model for a virus epidemic. Each node is either Susceptible to infection, or Infected, or Recovered from infection (the SIR model). At time 0 a single node is infected. At each timestep,

- (i) Infected nodes may pass on the virus to susceptible nodes. The probability that an infected node infects a susceptible node is p , thus the probability that a susceptible node is not infected is $(1 - p)^I$ where I is the number of infected nodes.
- (ii) Infected nodes may recover. The probability that an infected node recovers is q .

Draw the state space diagram, for an epidemic in a system with N nodes. [Hint. The size of the state space is much smaller than 3^N .]

Let $N = 20$, $p = 1/3$, $q = 1/2$. Compute the probability that all nodes eventually become infected. Compute the expected time until the epidemic dies away. Investigate how these quantities depend on p and q . Repeat with $N = 200$.

Question 8. This question concerns the Gilbert model, which has been proposed as a model for noise in a wireless channel. The model specifies a Markov chain $X_n, n \geq 0$ where $X_n \in \{\text{good}, \text{bad}\}$ is the state of nature when the n th bit is sent. The transition probabilities are $P_{\text{goodbad}} = p$, $P_{\text{goodgood}} = 1 - p$, $P_{\text{badgood}} = q$, and $P_{\text{badbad}} = 1 - q$. In the good state, there are no errors. In the bad state, the bit may be corrupted with probability h .

- (i) Let $E_n = 1$ if bit n is corrupted and 0 otherwise. Draw a state space diagram for the pair (X_n, E_n) .
- (ii) Calculate the equilibrium distribution of the Markov chain (X_n, E_n) . What is the bit error rate, i.e. the long run fraction of bits that are corrupted?
- (iii) The sequence $(E_n, n \geq 0)$ may be divided into runs of 0s and runs of 1s. For example, the sequence 00000111000110000 has two runs of 1s, of length 3 and 2. Calculate the distribution of the length of a run of 1s. What is the mean length of a run of errors?

You have derived two equations which relate the three unknown parameters (p , q and h) to two measurable statistics (bit error rate, mean length of a run of errors). One can also calculate the distribution of the length of a run of 0s, and this gives an extra equation; with three equations one can calculate all three unknown parameters.