Sample path LDP for traffic (in the long-timescale limit)

Large Deviations and Queues—Damon Wischik

1 Model

Let \mathcal{X} be the set of discrete-time traffic processes

$$\mathcal{X} = \{ x : \mathbb{Z}_+ \to \mathbb{R}, \ x(0) = 0 \}.$$

Let ${\mathcal C}$ be the set of continuous-time traffic processes

$$\mathcal{C} = \{ x : \mathbb{R}_+ \to \mathbb{R}, \ x(0) = 0 \}.$$

Let \mathcal{A} be the subset of \mathcal{C} consisting of absolutely continuous traffic processes. Let \mathcal{X}^T be and \mathcal{C}^T be

$$\mathcal{X}^{T} = \{ x : \{0, \dots, T\} \to \mathbb{R}, \ x(0) = 0 \}$$
$$\mathcal{C}^{T} = \{ x : [0, T] \to \mathbb{R}, \ x(0) = 0 \},$$

and define \mathcal{A}^T similarly. Interpret x(t) as the amount of work arriving in the interval (-t, 0]. Say that a traffic process x has mean rate μ if $\lim_{t\to\infty} x(t)/t = \mu$. Write \mathcal{X}_{μ} , \mathcal{C}_{μ} and \mathcal{A}_{μ} for the restrictions of \mathcal{X} , \mathcal{C} and \mathcal{A} to traffic processes with mean rate μ .

Define the scaled uniform norm $\|\cdot\|$ on these spaces by

$$||x|| = \sup_{t \ge 0} \left| \frac{x(t)}{t+1} \right|$$

Also define π , the topology of uniform convergence on compact intervals.

Given $x \in \mathcal{X}$, define the *polygonalized version* $\tilde{x} \in \mathcal{A}$ to be

$$\tilde{x}(t) = (\lfloor t+1 \rfloor - t)x(\lfloor t \rfloor) + (t - \lfloor t \rfloor)x(\lfloor t+1 \rfloor).$$

Given $x \in \mathcal{C}$, define the speeded-up version $x^{\circ L} \in \mathcal{C}$ to be

$$x^{\circlearrowright L}(t) = x(Lt).$$

Use the following extended notation: write

 $\begin{array}{lll} x(-t,0] & \text{for} & x(t) \\ x|_{(-t,0]} & \text{for} & \text{the restriction of } x \text{ to } [0,t] \\ \dot{x}_{-t} & \text{for} & dx(t)/dt, \text{ where it is defined, for } x \in \mathcal{C} \\ \dot{x}_{-t} & \text{for} & x(t+1) - x(t), \text{ for } x \in \mathcal{X} \end{array}$

2 Probabilistic setup

Let A be a random discrete-time traffic process, taking values in \mathcal{X} . Suppose that the \dot{A}_{-t} are independent and identically distributed. Let

 $\Lambda(\theta) = \log \mathbb{E} \exp(\theta \dot{A}_0),$

and assume that $\Lambda(\cdot)$ is finite in a neighbourhood of the origin.

3 Cramér's theorem

By Cramér's theorem, $L^{-1}A^{\odot L}(1)$ satisfies an LDP in $\mathbb R$ with good convex rate function

$$\Lambda^*(x) = \sup_{\theta \in \mathbb{R}} \theta x - \Lambda(\theta).$$

4 Finite horizon SP-LDP

By Mogulskii's theorem, $L^{-1}\tilde{A}^{\circ L}|_{(-1,0]}$ satisfies a sample path LDP in (\mathcal{C}^1, π) with rate function

$$I_1(x) = \begin{cases} \int_{-1}^0 \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in \mathcal{A}^1\\ \infty & \text{otherwise.} \end{cases}$$

This can easily be extended to a sample path LDP for $L^{-1}\tilde{A}^{\circ L}|_{(-T,0]}$ with rate function

$$I_T(x) = \begin{cases} \int_{-T}^0 \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in \mathcal{A}^T \\ \infty & \text{otherwise.} \end{cases}$$

5 Infinite horizon SP-LDP

Write $\Pi_t : \mathcal{C} \to \mathcal{C}^T$ for the projection $x \mapsto x|_{(-t,0]}$. With these projections, (\mathcal{C}, π) is the projective limit of the collection of spaces (\mathcal{C}^T, π) . By the Dawson-Gärtner theorem, $L^{-1}\tilde{A}^{\circ L}$ satisfies a sample path LDP in (\mathcal{C}, π) with good rate function

$$I(x) = \sup_{T \ge 0} I_T(\Pi_t x)$$

By the non-negativity of Λ^* , the supremum is

$$I(x) = \begin{cases} \int_{-\infty}^{0} \Lambda^*(\dot{x}_s) \, ds & \text{if } x \in \mathcal{A} \\ \infty & \text{otherwise.} \end{cases}$$

6 Strengthening the topology

It can be shown that $L^{-1}\tilde{A}^{\circ L}$ is exponentially tight in $(\mathcal{C}, \|\cdot\|)$. Therefore, using the inverse contraction principle, the sample path LDP for $L^{-1}\tilde{A}^{\circ L}$ holds in $(\mathcal{C}, \|\cdot\|)$.

7 Restricting the space

Since $\Lambda(\cdot)$ is finite in a neighbourhood of the origin, it is differentiable at the origin. Let $\mu = \Lambda'(0)$. It can be shown that $\mathbb{P}(L^{-1}\tilde{A}^{\circ L} \in \mathcal{C}_{\mu}) = 1$, and that this space is closed. Therefore the sample path LDP for $L^{-1}\tilde{A}^{\circ L}$ holds in $(\mathcal{C}_{\mu}, \|\cdot\|)$.