Large Deviations and Queues—Damon Wischik

1 A trivial LDP

Let $X \sim \text{Exp}(\lambda)$. Then $(X/l, l \in \mathbb{R}_+)$ satisfies an LDP in \mathbb{R}_+ with good rate function

$$I(x) = \lambda x.$$

2 Cramér's Theorem

Let X^L be the average of L independent copies of a real-valued random variable X. Then X^L satisfies an LDP in \mathbb{R} with convex rate function

$$\Lambda^*(x) = \sup_{\theta \in \mathbb{R}} \theta x - \Lambda(\theta)$$

where the log moment generating function $\Lambda(\cdot)$ is

$$\Lambda(\theta) = \log \mathbb{E} \exp(\theta X).$$

If $\Lambda(\cdot)$ is finite in a neighbourhood of the origin then Λ^* is a good rate function.

3 Gärtner-Ellis Theorem

The effective domain of a function $\Lambda(\cdot)$ taking values in $\mathbb{R} \cup \{\infty\}$ is $\mathcal{D}\Lambda = \{\theta : \Lambda(\theta) \in \mathbb{R}\}.$

A convex function $\Lambda : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is essentially smooth if

- i. $(\mathcal{D}\Lambda)^{\circ}$ is non-empty
- ii. $\Lambda(\cdot)$ is differentiable throughout $(\mathcal{D}\Lambda)^{\circ}$
- iii. $\Lambda(\cdot)$ is steep, namely, $|\nabla \Lambda(\theta_n)| \to \infty$ whenever (θ_n) is a sequence in $(\mathcal{D}\Lambda)^\circ$ converging to a point on the boundary of $\mathcal{D}\Lambda$.

Let $(X^L, L \in \mathbb{N})$ be a sequence of random vectors in \mathbb{R}^d , and let

$$\Lambda^{L}(\theta) = \frac{1}{L} \log \mathbb{E} \exp(L\theta \cdot X^{L})$$

for $\theta \in \mathbb{R}^d$. Assume that for each θ the limit

$$\Lambda(\theta) = \lim_{L \to \infty} \Lambda^L(\theta)$$

exists in $\mathbb{R} \cup \{\infty\}$.

Assume further that $0 \in (\mathcal{D}\Lambda)^{\circ}$ and that Λ is essentially smooth and lowersemicontinuous. Then $(X^L, L \in \mathbb{N})$ satisfies an LDP in \mathbb{R}^d with good rate function

$$\Lambda^*(x) = \sup_{\theta \in \mathbb{R}^t} \theta \cdot x - \Lambda(\theta).$$

Note that $\Lambda(\cdot)$, being the pointwise limit of convex functions, is itself convex. Note that $\Lambda^*(\cdot)$, being a convex conjugate, is convex and lower-semicontinuous. Since $\Lambda(\cdot)$ is convex, it satisfies the following: if $\Lambda(\cdot)$ is differentiable at θ and $\nabla \Lambda(\theta) = x$ then $\Lambda^*(x) = \theta \cdot x - \Lambda(\theta)$.

4 Schilder's Theorem

Let $\mathcal{C}[0,1]$ be the space of continuous functions $f:[0,1] \to \mathbb{R}$, equipped with the supremum norm

$$||f|| = \sup_{0 \le t \le 1} |f(t)|.$$

Say that a function $f : [0,1] \to \mathbb{R}$ is absolutely continuous (AC) if for all $\varepsilon > 0$ there exists a $\delta > 0$ such for every finite collection of non-overlapping intervals $\{[s_i, t_i], 1 \le i \le N\},\$

$$\sum_{1 \leq i \leq N} (t_i - s_i) < \delta \implies \sum_{1 \leq i \leq N} |f(t_i) - f(s_i)| < \varepsilon.$$

Absolutely continuous functions are dense in the space of continuous functions. An absolutely continuous function is differentiable almost everywhere.

Let $(B(t), t \in [0, 1])$ be a standard Brownian motion, taking values in $\mathcal{C}[0, 1]$. Let

$$B^{l}(t) = \frac{1}{\sqrt{l}}B(t).$$

Then $(B^l(\cdot), l \in \mathbb{R}_+)$ satisfies an LDP in $\mathcal{C}[0, 1]$ with good rate function

$$I(f) = \begin{cases} \int_{t=0}^{1} \frac{1}{2} \dot{f}(t)^2 dt & \text{if } f \text{ is AC and } f(0) = 0\\ \infty & \text{otherwise.} \end{cases}$$

5 Mogulskii's theorem

Let X_1, X_2, \ldots be independent copies of a real-valued random variable X with log moment generating function $\Lambda(\cdot)$. Define the partial sums process

$$S_n = X_1 + \dots + X_n, \text{ for } n \in \mathbb{N};$$

and the polygonalized partial sums process

$$\tilde{S}_t = (\lceil t \rceil - t)S_{\lfloor t \rfloor} + (t - \lfloor t \rfloor)S_{\lceil t \rceil}, \quad \text{for } t \in \mathbb{R}_+;$$

and the scaled polygonalized partial sums process

$$Y^{L}(t) = \frac{1}{L}\tilde{S}_{Lt}, \quad \text{for } 0 \le t \le 1.$$

Then $(Y^{L}(\cdot), L \in \mathbb{N})$ satisfies an LDP in $\mathcal{C}[0,1]$ with good rate function

$$I(f) = \begin{cases} \int_{t=0}^{1} \Lambda^*(\dot{f}(t)) dt & \text{if } f \text{ is AC and } f(0) = 0\\ \infty & \text{otherwise.} \end{cases}$$

This has been extended, along the lines of the Gärtner-Ellis theorem, by Dembo and Zajic (1995), From empirical mean and measure to partial sums processes, Stochastic Processes and their Applications.