LDP for queue size

Large Deviations and Queues—Damon Wischik

Consider a queue with constant service rate C', with buffer size B = oo,
and with arrival process A = (..., A_1, Ap) where the A; are independent and
identically distributed. Recall that the queue size @ is given by @ = ¢(A) where
q(a) = sup;>qa(—t,0] — Ct and a(—t,0] = a_¢y1 + - - - + ao.

B = C

e

Let A(f) = logEef40 and A*(z) = suppeg 0z — A(f). Assume that A(6) is
finite for all 6 (and thus that EAg is finite, and A(#) is infinitely differentiable
for all 6).

Theorem 1 IfEAy < C then, for ¢ > 0,

llim %log]P’(% > q) = —gsup{6 > 0: A(F) < 0C} (1)
=— %I>1f0 tA*(C + q/t) (2)
= —infsup (g + Ct) — tA(6) (3)

t>0 >0

(The limit, infimum and supremum are taken over l € R, t € R and § € R.)
We will split the proof into three parts: the large deviations upper bound
limsup !~ log P(Q > lq) < (1), (4)
the large deviations lower bound
liminf I~ log P(Q > lq) > (2), (5)
and finally (1) = (2) = (3).

Proof of LD upper bound. Write out the probability we wish to estimate, and
then use the Chernoff bound. For any 6 > 0 such that A(6) < 6C,

P(Q > lg) = ]P’(sup A(=t,0] — Ct > lq)
>0

=P(A(—t,0] — Ct > lq for some t > 0)
<Y P(A(=t,0] = Ct > Ig)

t>0

< Ze‘elqet{/\(e)_ec} by Chernoff’s bound, since 6 > 0
t>0

oAO)—0C
= e*mqm the series is summable, since A(6) < 6C



and so limsupl~!logP(Q > lq) < —fg. Take the infimum over all such 6 to
prove the result (4).

Note that if no such 6 existed then the supremum would be —oo, by conven-
tion, and so the bound would be trivial. But such a 0 does exist, because A(0)
is finite in a neighbourhood of @6 = 0, hence differentiable at § = 0, and we’ve
assumed that A'(0) = EAg < C; therefore A(8) < 0C for 0 sufficiently small. O

Proof of LD lower bound. Pick any u > 0, u € R. We will find a lower bound
for P(Q > lq) by estimating the probability that the queue reaches level lg in
time lu using Cramér’s theorem:

1
1ilm inf 7 logP(Q > lq) (6)
el
= hlm inf 7 log]P(sup A(=v,0] = Cv > lq)
= lilm inf % log P(A(—v,0] — Cv > lq for some v)

1
> lim inf T log]P’(A(—[lu],O] > g+ C[Zu]) by choosing v = [lu]

s U [lu] 1
> - _
> hlnjg)lf Ta] =1 log]P(A( [lu],0] > " q+ C[lu]) by bounds” for [lu]
o 1 1 q B
= “%‘El@ﬂf — logP(ﬁA(—n, 0]>C+ E) where n = [lu]
1 1
> uwliminf re log]P’(EA(—n, 0]>C+ %) for any € > 0

1 1
(6) > —uliminf — logP(—A(—n, 0]>C+ 2) since € > 0 arbitrary
n—oo N n u

> —u inf A*(z) by Cramér’s theorem
z>C+q/u

—ulA*(C + q/u+) since A*(x) is increasing for x > EAg
where by f(z+) we mean lifn fly)
ylx

(6) > — 11;% ulA*(C + q/u+) since u > 0 arbitrary

> —(t+6)A(C+q/(t+6)+) choosingu==t+d,8>0

> —(t+ A" (C +¢q/t) since ¢/(t+ )+ < ¢/t and A™ is increasing
(6) > —tA*(C + q/t) since 6 > 0 arbitrary

(6) > — %gg tA*(C + q/t) since t > 0 arbitrary

This completes the proof. O

Equality of rate functions. First, (2)=(3): Expand A*, and use the fact that
the supremum over § in A*(z) = supgeg 0 — A(f) can be taken over § > 0 for
x > EAp, as we saw in the proof of Cramér’s theorem.

Second, (3)>(1): For any 6 > 0 with A(6) < 6C,

6(q+ Ct) — tA(0) = 6g +t(6C — A()). > g

IRecall that [2] — 1 < 2 < [z], so I < [lu]/u and 1/l < u/([lu] — 1).



Taking the supremum over such 6,

sup  6(q¢+ Ct) —tA(9) > sup  fq

0>0:A(0)<6C 0>0:A(0)<6C
= sup 0(q+ Ct) —tA(0) > gsup{f > 0: A(f) < OC}.
0>0

Now take the infimum over ¢ > 0.

Finally, (3)<(1): Let § = sup{# > 0 : A(8) < 6C}. (The set is non-empty,
by our remark in the proof of the LD upper bound.) If = oo, we are done.
Otherwise, using the fact that A is convex and differentiable, it must be that
A(f) = 6C and A'(0) > C.

A(0)
" oc

0

~ Now consider the supporting tangent to A(f) at 6: by convexity, A(O) >
0C + A'(6)(0 — 0), and so
(3) = inf sup8(¢ + Ct) — tA(9)

t>0 6>0

<'infsupf(q+ Ct) — t(éC + A (0)(6 — é)) from supporting tangent at 6
t>0 0>0

= inf sup@(q —t(N(0) - C)) +60t(A'(A) — C) gathering 0 terms
t>0 0>0

e if t < q/(A' () - 0O)
~ 0 | 0t(A'(0) — C) else
= éq performing the ¢t-optimization

= (1).

This completes the proof. O

performing the #-optimization



