
III Large Deviations and Queues
2003 exam questions. Damon Wischik.

Attempt THREE questions. All questions carry equal weight. You may find helpful the refer-
ence material at the end of the paper.

Question 1. Let A1, A2, . . . be normal random variables with mean µ and variance σ2. Let B be
an exponential random variable with mean 1/λ. Let C be a normal random variable with mean ν
and variance ρ2. Let all of these random variables be independent.

(a). State, without proof, a large deviations principle for L−1B.
(b). Find a large deviations principle for L−1(A1 + · · · + AL).
(c). Find a large deviations principle for L−1(B + A1 + · · · + AL).
(d). Find a large deviations principle for L−1(C + A1 + · · · + AL).
(e). Comment on your results.

State clearly any general results to which you appeal.

Question 2.

(a). Define these terms: rate function, good rate function, large deviations principle.

Recall that a sequence of random variables (XL, L ∈
�
) is said to be exponentially tight if for all

α ≥ 0 there exists a compact set Kα such that

lim sup
L→∞

1

L
log P (XL 6∈ Kα) < −α.

The sequence (XL, L ∈
�
) is said to satisfy a weak large deviations principle if the large deviations

upper bound is required to hold only for compact sets.

Suppose that the sequence (XL, L ∈
�
) is exponentially tight, and satisfies a weak large deviations

principle with rate function I .

(b). Show that I is a good rate function.
(c). Show that the large deviations upper bound holds for closed sets.

Conclude that (XL, L ∈
�
) satisfies a large deviations principle with good rate function I .

Question 3.

(a). Consider a queue operating in slotted time, with infinite buffer and fixed service rate c, and
receiving an amount of work at in timeslot (t− 1, t). What is the Lindley recursion for queue
size? Writing a for (at, t ∈ � ), define the queue size function Q0(a, c).

(b). Fix λ > 0 and consider the space of input process

X =
{

a : lim
t→∞

a−t + · · · + a−1

t
= λ

}

equipped with the norm

‖a‖ = sup
t∈ �

∣

∣

∣

a−t + · · · + a−1

t + 1

∣

∣

∣

Show that, if λ < c, the queue size function Q0(·, c) is continuous on (X , ‖ · ‖).
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(c). Suppose that work from this queue is fed into another queue downstream: any work served
by the first queue in timeslot (t − 1, t) reaches the downstream queue in the same timeslot,
and may be served in the same timeslot. Let the downstream queue have service rate d < c.
Write down a recursion for the downstream queue size Rt(a, c, d), and show that Rt(a, c, d)
satisfies

Qt(a, c) + Rt(a, c, d) =
[

Qt−1(a, c) + Rt−1(a, c, d) + at − d
]+

.

(d). Define the downstream queuesize function R0(a, c, d).
(e). Suppose that λ < d < c. Show that R0(·, c, d) is continuous on (X , ‖ · ‖). Explain how one

might use this in finding a large deviations principle for the downstream queuesize.

Question 4. Define the effective bandwidth of an arrival process. Write an essay on effective
bandwidths and large deviations. In your essay you should describe a queueing model, explain the
use of large deviations theory in analysing it, interpret the results in terms of effective bandwidth,
and give examples, including an example of a queue fed by several independent arrival processes.

(You should prove a large deviations upper bound for the queue length distribution, but you need
not prove a large deviations lower bound.)

Reference: Gärtner-Ellis theorem

A convex function Λ : � d → � ∪ {∞} is essentially smooth if
(a). the interior of its effective domain is non-empty
(b). Λ(·) is differentiable throughout the interior of its effective domain
(c). Λ(·) is steep, namely, |∇Λ(θn)| → ∞ whenever (θn) is a sequence in the interior of the

effective domain converging to a point on the boundary of the effective domain.

Let (XL, L ∈
�
) be a sequence of random vectors in � d , and let

ΛL(θ) =
1

L
log E exp(Lθ · XL)

for θ ∈ � d . Assume that for each θ the limit

Λ(θ) = lim
L→∞

ΛL(θ)

exists in � ∪ {∞}. Assume further that 0 is in the interior of the effective domain of Λ, and that
Λ is essentially smooth and lower-semicontinuous. Then (XL, L ∈

�
) satisfies an LDP in � d with

good rate function
Λ∗(x) = sup

θ∈ � t

θ · x − Λ(θ).
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