
Large Deviations and Queueing Theory

Exam questions—Lent 2001—D.J. Wischik

Q 1. (a) State Cramér’s Theorem.
Let W be an exponential random variable with mean λ−1, and let Xn be the

average of n independent copies of W . Prove that Xn satisfies a large deviations
principle with good rate function

I(x) =

{

λx − 1 − log(λx) for x > 0

∞ for x ≤ 0.

(You may use the following fact:
�
eθW is equal to λ/(λ − θ) for θ < λ, and

equal to ∞ otherwise.)
(b) Let Yn(1), . . . , Yn(k) be independent copies of Xn defined above. Let Mn

be the minimum of Yn(1), . . . , Yn(k). Prove that Mn satisfies a large deviations
principle with good rate function

J(m) =

{

kI(m) for m ≥ λ−1

I(m) for m < λ−1.

(c) State Varadhan’s Integral Lemma.
With Mn as defined above, let Zn = min(b, max(a, Mn)) for some 0 < a <

λ−1 < b. Prove that, for sufficiently large k,

lim
n→∞

1

n
log

�
(Zn )n = (k + 1) log

(k + 1

k

)

− log λ − 1.

Q 2. (a) What does it mean to say that a sequence of random variables XL

satisfies a large deviations principle with rate function I?
(b) State and prove the contraction principle.
(c) What does it mean to say that the sequence of random variables XL is

exponentially tight?
(d) Recall that the sequence of random variables XL is said to satisfy a weak

large deviations principle if the large deviations upper bound is required to hold
only for compact sets. Suppose that the sequence XL is exponentially tight,
and satisfies a weak large deviations principle with rate function I . Show that
it satisfies a large deviations principle with good rate function I .

(You may use the following result without proof: Let X be a topological
space, and let f : X → � have compact level sets. Then f attains its infimum
in any closed set.)

Q 3. (a) Let X be a Poisson random variable with mean λ. Let X⊕L be the
sum of L independent copies of X . Prove that for all 0 < β < 1, X⊕L satisfies
the following moderate deviations principle: for all open sets B ⊂ � ,

lim
L→∞

1

Lβ
log �

(

L(1−β)/2(L−1X⊕L − λ) ∈ B
)

= − inf
x∈B

1
2x2/λ.



(You may use the following fact:
�
sX = eλ(s−1).)

(b) Consider a bufferless queue, whose input at each timestep has distri-
bution X⊕L, and whose service rate is Lλ + L(1+β)/2C for some C > 0. We
say that overflow occurs (at any given timestep) if W L > 0, where W L is the
amount of work lost (at that timestep),

W L =
(

X⊕L − (Lλ + L(1+β)/2C)
)

∨ 0.

Prove that

lim
L→∞

1

Lβ
log � (overflow) = − 1

2C2/λ.

(c) Let Y L be the amount of work that is served by the queue (in a given
timestep):

Y L = X⊕L − W L.

Using the notion of exponential equivalence, or otherwise, prove the following:
If Y L is fed into another bufferless queue, which has service rate Lλ+L(1+α)/2B
for some 0 < α < β and B > 0, then for this queue

lim
L→∞

1

Lα
log � (overflow) = − 1

2B2/λ.

(d) Let Y L be as in part (c). Suppose that Y L is instead fed into a different
bufferless queue, one which has service rate Lλ+L(1+γ)/2D, for some β < γ < 1
and D > 0. Prove that for this queue

lim
L→∞

1

Lγ
log � (overflow) = −∞.

(e) Comment briefly on the implication of (c) and (d) for the relative bursti-
ness of the input X⊕L and the output Y L.

Q 4. Write an essay on the scaling properties of queues. In your answer, you
should give a heuristic derivation of at least three different scaling results, for
queues in which one or more of the buffer size, the service rate, and the input
process, grow large (in an appropriate sense). Discuss how you would choose
which of these results to use, in order to describe a given queueing system.
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