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Theorem 1 Let (Xn, n ∈ N) be a sequence of independent random variables
each distributed like X, and let Sn = X1 + · · · + Xn. Let Λ(θ) = log EeθX, and
let Λ∗(x) = supθ∈R

θx − Λ(θ). Suppose that Λ is finite in a neighbourhood of
zero. Then for any measurable set B ⊆ R

− inf
x∈B◦

Λ∗(x) ≤ lim inf
n→∞

1
n

log P

(Sn

n
∈ B

)
(1)

≤ lim sup
n→∞

1
n

log P

(Sn

n
∈ B

)
≤ − inf

x∈B̄
Λ∗(x). (2)

Proof. We first establish the upper bound (1) for closed half-spaces, i.e. sets
of the form [x,∞) and (−∞, x]. We then extend it to all closed sets. We then
establish the lower bound (2).

Upper bound for closed half-spaces. Write out the probability we wish to
estimate:

P

(Sn

n
∈ [x,∞)

)
= P

(
Sn ≥ nx

)
= E1Sn−nx≥0

≤ Eeθ(Sn−nx) = e−nθx
(
EeθX

)n for all θ ≥ 0.

The inequality is known as the Chernoff bound. Assume for the moment that
x ≥ EX . Taking logarithms,

1
n

log P

(Sn

n
∈ [x,∞)

)
≤ inf

θ≥0

{−θx + Λ(θ)
}

= − sup
θ≥0

{
θx − Λ(θ)

}

= − sup
θ∈R

{
θx − Λ(θ)

}
(3)

= −Λ∗(x).

To see that the supremum can be taken over θ ∈ R in (3), note that

Λ(θ) = log EeθX ≥ log eθEX = θEX by Jensen’s inequality

and hence that θx − Λ(θ) ≤ θ(x − EX); thus θx − Λ(θ) ≤ 0 whenever θ ≤ 0,
and so the supremum in (3) is attained for θ ≥ 0. Finally, note that Λ∗(x) is
increasing in x > EX , since for any y ≥ x

Λ∗(x) = sup
θ≥0

θx − Λ(θ) ≤ sup
θ≥0

θy − Λ(θ) = Λ∗(y).

Thus we have proved that for x ≥ EX

lim sup
n→∞

1
n

log P

(Sn

n
∈ [x,∞)

)
≤ − inf

y∈[x,∞)
Λ∗(y). (4)

It remains to deal with the case x < EX . In this case, trivially,

1
n

log P

(Sn

n
∈ [x,∞)

)
≤ 0



since P( ) ≤ 1. Also note that Λ (EX) ≤ 0, using Jensen s inequality as before;
and that Λ∗(·) is clearly non-negative; hence that Λ∗(EX) = 0. This implies
that

1
n

log P

(Sn

n
∈ [x,∞)

)
≤ 0 = inf

y∈[x,∞)
Λ∗(y).

So we have proved that (4) holds also for x < EX . The proof of the upper
bound for sets of the form (−∞, x] follows by considering the random variable
−X .

LD upper bound for general closed sets. Let F be an arbitrary closed set. If
F contains EX , then the LD upper bound holds trivially since

inf
x∈F

Λ∗(x) = Λ∗(EX) = 0.

Otherwise, F can be written as the union F = F1 ∪ F2 where F1 and F2 are
closed and

F1 ⊆ [EX,∞) and F2 ⊆ (−∞, EX).

Suppose F1 is non-empty, and let x be the infimum of F1. By closure, x ∈ F1.
Now,

1
n

log P

(Sn

n
∈ F1

)
≤ 1

n
log P

(Sn

n
∈ [x,∞)

)

≤ −Λ∗(x) by the upper bound for closed half-spaces
= − inf

y∈F1
Λ∗(y)

where the last equality is by monotonicity of Λ∗ on [EX,∞), in which F1 is
contained. Similarly, by considering the LD upper bound for (−∞, x], where x
is the supremum of F2, we obtain

1
n

log P

(Sn

n
∈ F2

)
≤ − inf

y∈F2
Λ∗(y).

In other words, the LD upper bound holds for both of F1 and F2. Hence, by
the principle of the largest term, it holds for F = F1 ∪ F2.

LD lower bound. Let G be any open set, and let x ∈ G. We will show that

lim inf
n→∞

1
n

log P

(Sn

n
∈ G

)
≥ −Λ∗(x). (5)

Taking the supremum over x ∈ G will then yield the large deviations lower
bound. We will proceed by calculating the value of Λ∗(x). We will do this in
two cases: first the case when P(X < x) = 0 or P(X > x) = 0, second the case
when neither holds.

Suppose that P(X < x) = 0. We can calculate Λ∗ explicitly as follows:

Λ∗(x) = sup
θ∈R

{
θx − Λ(θ)

}
= − inf

θ∈R

{
Λ(θ) − θx

}
= − inf

θ∈R

log Eeθ(X−x)

= − lim
θ→−∞

log Eeθ(X−x) since X ≥ x almost surely

= − log lim
θ→−∞

Eeθ(X−x)

= − log E1X=x by monotone convergence
= − log P(X = x).

If P(X = x) = 0, then the lower bound in (5) is trivial. If P(X = x) = p > 0
then

1
n

log P

(Sn

n
∈ (x − δ, x + δ)

)
≥ 1

n
log P

(
X1 = · · · = Xn = x)

=
1
n

log pn = log p = −Λ∗(x)
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and so (5) is also satisfied. If P(X > x) 0, a similar argument shows that (5)
holds.

Assume now that P(X > x) > 0 and P(X < x) > 0. Again, we investigate
the value of the lower bound:

Λ∗(x) = sup
θ∈R

θx − Λ(θ)

= − inf
θ∈R

Λ(θ) − θx = − inf
θ∈R

log Eeθ(X−x).

Now, the function g(θ) = Λ(θ) − θx satisfies g(θ) → ∞ as |θ| → ∞, by the as-
sumption that there is probability mass both above and below x; and it inherits
lower-semicontinuity from Λ (see Lemma 2). Any set of the form {g(θ) ≤ α}
is thus bounded as well as closed, hence compact, and so g attains its infimum
(see the note at the end of this proof), say

Λ∗(x) = θ̂x − Λ(θ̂).

We will use θ̂ to estimate the probability in question.
We will do this using a tilted distribution1. Let µ be the measure of X , and

define a tilted measure µ̃ by

dµ̃

dµ
(x) = eθ̂x−Λ(θ̂).

Let X̃ be a random variable drawn from µ̃.
Observe that

EX̃ = EXeθ̂X−Λ(θ̂) = Λ′(θ̂)

where the last equality comes from Lemma 2, making the assumption that Λ is
differentiable at θ̂. (We will leave the case where it is not differentiable to Dembo
& Zeitouni.) Note also that since the optimum in Λ∗(x) = supθ θx − Λ(θ) is
attained at θ = θ̂, it must be that Λ′(θ̂) = x. Thus EX̃ = x. (This tilted random
variables captures the idea of being close in distribution to X , conditional on
having a value close to x.)

We can now estimate the probability of interest, using the fact that (since G
is open), the set (x − δ, x + δ) is contained in G for sufficiently small δ. Let S̃n

be the sum of n i.i.d. copies of X̃ . Then

P

(∣∣∣Sn

n
− x

∣∣∣ < δ
)

=
∫
· · ·

∫
|x1+···+xn−nx|<nδ

µ(dx1) · · ·µ(dxn)

=
∫
· · ·

∫
|x1+···+xn−nx|<nδ

e−θ̂(x1+···+xn)+nΛ(θ̂)µ̃(dx1) · · · µ̃(dxn)

= E

(
e−θ̂S̃n+nΛ(θ̂)1|S̃n/n−x|<δ

)

≥ E

(
e−n(θ̂x−Λ(θ̂)+|θ̂|δ)1|S̃n/n−x|<δ

)

= e−n(θ̂x−Λ(θ̂)+|θ̂|δ)
P

(∣∣∣ S̃n

n
− x

∣∣∣ < δ
)
.

By the weak law of large numbers, and the fact that our tilted distribution has
mean x, the term P(·) tends to 1 as n → ∞. Taking logarithms and then lim inf,

lim inf
n→∞

1
n

log P

(Sn

n
∈ G

)
≥ lim inf

n→∞
1
n

log P

(∣∣∣Sn

n
− x

∣∣∣ < δ
)

≥ −(
θ̂x − Λ(θ̂) + |θ̂|δ).

1What this means in practice is that Ef(X̃) = E

(
f(X)dµ̃

dµ
(X)

)
or, in integral notation,∫

f(x)µ̃(dx) =
∫

f(x)dµ̃
dµ

(x)µ(dx).
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But δ was arbitrarily small, so

lim inf
n→∞

1
n

log P

(Sn

n
∈ G

)
≥ −Λ∗(x).

This completes the proof. �

Here are some basic properties of Λ and Λ∗. Recall that a function f :
R → R ∪ {∞} is said to be lower-semicontinuous if xn → x implies that
lim inf f(xn) ≥ f(x), or equivalently that any set {x : f(x) ≤ α} for α ∈ R is
closed. It is not hard to prove that if K is a compact set and infx∈K f(x) < ∞
then the infimum is attained at some x̂ ∈ K.

Lemma 2 (Properties of Λ and Λ∗) Assume that Λ(θ) is finite in a neigh-
bourhood of θ = 0. Then
i. EX is finite and equal to Λ′(0)
ii. Λ(0) = 0
iii. Λ is convex and lower-semicontinuous
iv. Λ is infinitely differentiable in the interior of {θ : Λ(θ) < ∞},

and Λ′(θ) = E(XeθX)/EeθX

v. Λ∗(EX) = 0
vi. Λ∗ is non-negative, convex, and lower-semicontinuous
vii. (Λ∗)∗ = Λ
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