Cramér’s Theorem

Large Deviations and Queues—Damon Wischik

Theorem 1 Let (X,,, n € N) be a sequence of independent random variables
each distributed like X, and let S, = X1 + -+ X,,. Let A(9) = logEe?X | and
let A*(z) = supger 0 — A(0). Suppose that A is finite in a neighbourhood of
zero. Then for any measurable set B C R
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z1€n]!£oA (x) < hgnlnf - logP( " € B) (1)
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Proof. We first establish the upper bound (1) for closed half-spaces, i.e. sets
of the form [z,00) and (—oo,z]. We then extend it to all closed sets. We then
establish the lower bound (2).

Upper bound for closed half-spaces. Write out the probability we wish to
estimate:

Sn
P(? € [, oo)) =P(S, > nz) = Els, —na>0
< Eef(5nmn) = e7m07(EefX)"  for all 6 > 0.

The inequality is known as the Chernoff bound. Assume for the moment that
x > EX. Taking logarithms,

Lo P(& €| )) < inf{—0z+ A(0)}

n 3 n L)) = 6>0 *

= —sup{fz — A(0)}

>0
= —sup{fz — A(0)} (3)
0eR
= —A"(z).
To see that the supremum can be taken over § € R in (3), note that

A(8) =logEe’X >1oge’™X = AEX by Jensen’s inequality

and hence that 0z — A(f) < 0(x — EX); thus 6z — A(f) < 0 whenever § < 0,
and so the supremum in (3) is attained for § > 0. Finally, note that A*(z) is
increasing in z > EX | since for any y > =

A*(z) =supfx — A(0) < supby — A(0) = A*(y).
>0 0>0

Thus we have proved that for z > EX
. 1 Sn . .
lim sup — log]P’(— € [x,oo)) < — inf A*(y). (4)
n—oo N n y€E[z,00)

It remains to deal with the case x < EX. In this case, trivially,

%logP(% € [x,oo)) <0
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and that A*(-) is clearly non-negative; hence that A*(EX) = 0. This implies
that

llo P(& €[z oo)) <0= inf A*(y)

n & n ’ - y€E[z,00) Y-
So we have proved that (4) holds also for x < EX. The proof of the upper
bound for sets of the form (—oo, 2] follows by considering the random variable
-X.

LD upper bound for general closed sets. Let F' be an arbitrary closed set. If
F contains EX, then the LD upper bound holds trivially since
Ilrgl%A () =A"(EX) =0.

Otherwise, F' can be written as the union F' = F; U Fy where F; and F5 are

closed and
F C[EX,00) and Fy C (—o0, EX).

Suppose Fj is non-empty, and let z be the infimum of Fy. By closure, z € F3.
Now,
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< —A*(z) by the upper bound for closed half-spaces

— — inf A
Jnf (y)

where the last equality is by monotonicity of A* on [EX,00), in which F is
contained. Similarly, by considering the LD upper bound for (—oo, z], where x
is the supremum of Fy, we obtain

1 n
—1ogJP>(S— € FQ) < — inf A*(y).
n n yeEF2
In other words, the LD upper bound holds for both of F; and F;. Hence, by
the principle of the largest term, it holds for F' = F} U F5.
LD lower bound. Let G be any open set, and let z € G. We will show that

lim inf 1 logP(& € G) > —A*(x). (5)
n—oo N n
Taking the supremum over x € G will then yield the large deviations lower
bound. We will proceed by calculating the value of A*(xz). We will do this in
two cases: first the case when P(X < z) = 0 or P(X > z) = 0, second the case
when neither holds.
Suppose that P(X < z) = 0. We can calculate A* explicitly as follows:

* = — — — _ _ (X —x)
A*(x) zgg{ﬁx A(G)} égﬂ%{A(G) 033} ég%lOgE@

0(X—x)

=-, lim logEe since X > x almost surely
——00

= —logelim Eef(X—®)

= —logElx—, by monotone convergence

= —logP(X = z).
If P(X = x) = 0, then the lower bound in (5) is trivial. f P(X =) =p >0
then

1 Sy 1
— — — > — B =
nlog}P’( - € (x 5,x+5)) > log]P’(Xl X, =1)

- logp™ =logp = —A"(2)
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holds.
Assume now that P(X > z) > 0 and P(X < z) > 0. Again, we investigate
the value of the lower bound:

A*(z) = sup Oz — A()
0eR

= — inf A(0) — fz = — inf log Ee? X~
9cR 0eR

Now, the function g(0) = A(6) — 0z satisfies g(f) — oo as |#] — oo, by the as-

sumption that there is probability mass both above and below z; and it inherits

lower-semicontinuity from A (see Lemma 2). Any set of the form {g(f) < a}

is thus bounded as well as closed, hence compact, and so g attains its infimum

(see the note at the end of this proof), say

A*(z) = Oz — A(D).

We will use § to estimate the probability in question.
We will do this using a tilted distribution'. Let p be the measure of X, and
define a tilted measure i by

d_/l(x) _ eér—A(GA).
dp

Let X be a random variable drawn from /i.

Observe that X X

EX = EXe?XAO = A'(9)

where the last equality comes from Lemma 2, making the assumption that A is
differentiable at 6. (We will leave the case where it is not differentiable to Dembo
& Zeitouni.) Note also that since the optimum in A*(z) = supy 0z — A(0) is
attained at = @, it must be that A’() = x. Thus EX = z. (This tilted random
variables captures the idea of being close in distribution to X, conditional on
having a value close to z.)

We can now estimate the probability of interest, using the fact that (since G
is open), the set (z — 8,2 4 6) is contained in G for sufficiently small §. Let S,
be the sum of n i.i.d. copies of X. Then

(1 -] <3

_ // plday) - p(dey)
|z14 42 —nz|<nd

:// e Irttm) A0 ) ida)
|z14+xn—nz|<nd

_ 7é§n+n/\ 9

- E(@ ( )1\S’n/n7w\<5)

—n(0z—A(0)+]6|5
Z]E(e (Bz—A(0)+]6] )1|s~n/n7$|<a)
_ e—n(éz—A(é)Hé\a)P(’& _x’ < 5).
n

By the weak law of large numbers, and the fact that our tilted distribution has
mean z, the term P(-) tends to 1 as n — oo. Taking logarithms and then lim inf,

liminf%logP(% c G) > liminf — logP(‘% - x‘ < 5)

n— 00 n—oo N

> —(fz — A(0) +10]9).

1'What this means in practice is that Ef(X) = E(f(X)‘;—ﬁ(X)) or, in integral notation,
[ F@)ildz) = [ £() % (@)u(da).
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im inf = 2n > —A*(z).
hmlnfnlog]P’(n EG)_ A (x)

n—oo

This completes the proof. O

Here are some basic properties of A and A*. Recall that a function f :
R — R U {oo} is said to be lower-semicontinuous if x, — x implies that
liminf f(xz,) > f(x), or equivalently that any set {x : f(z) < a} for & € R is
closed. It is not hard to prove that if K is a compact set and inf,cx f(z) < oo
then the infimum is attained at some & € K.

Lemma 2 (Properties of A and A*) Assume that A(0) is finite in a neigh-
bourhood of 8 = 0. Then

i. EX is finite and equal to A’(0)

it. A(0)=0
1. A is convex and lower-semicontinuous

iv. A is infinitely differentiable in the interior of {6 : A(0) < oo},

and N'(9) = E(XeX) /EefX

v. A*(EX)=0

vi. A* is non-negative, convex, and lower-semicontinuous
vii. (A*)* =A



