

Queueing theory, control theory, & buffer sizing

Damon Wischik

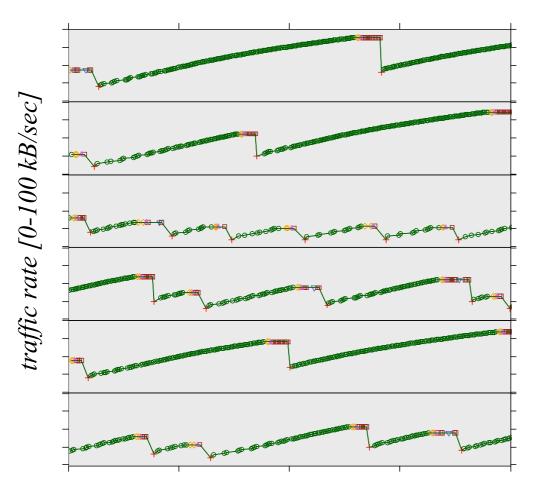
www.wischik.com/damon

DARPA grant W911NF05-1-0254

My interest

- Internet routers have buffers,
 - to accomodate bursts in traffic
 - to keep the link fully utilized
- How big do the buffers need to be, to accommodate TCP traffic?
 - -3 GByte? Rule of thumb says buffer = bandwidth×delay
 - 300 MByte? buffer = bandwidth×delay/√#flows [Appenzeller, Keslassy, McKeown, 2004]
 - 30 kByte? constant buffer size, independent of line rate [Kelly, Key, etc.]
- What is the role of probabilistic queueing theory? *Is it all just fluid models & differential equations?*

TCP

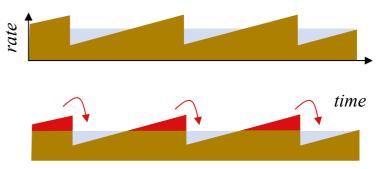


time [0-8 sec]

if (seqno > _last_acked) { if (!_in_fast_recovery) { _last_acked = seqno; dupacks = 0;inflate window(); send packets(now); last sent time = now; return; if (seqno < recover) { uint32_t new_data = seqno - _last_acked; last acked = seqno; if (new data < cwnd) cwnd -= new data; else cwnd=0; $_cwnd += _mss;$ retransmit packet(now); send packets(now); return; uint32 t flightsize = highest sent - sequo; _cwnd = min(_ssthresh, flightsize + _mss); _last_acked = seqno; dupacks = 0;_in_fast_recovery = false; send packets(now); return; if (in fast recovery) { _cwnd += _mss; send_packets(now); return; dupacks++; if (_dupacks!=3) { send_packets(now); return; $ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));$ retransmit_packet(now); cwnd = ssthresh + 3 * mss;_in_fast_recovery = true; recover = highest sent;

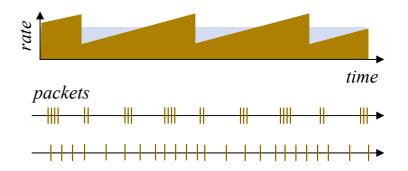
TCP sawtooth & buffer size

- The traffic rate produced by a TCP flow follows a 'sawtooth'
- To prevent the link's going idle, the buffer must be big enough to smooth out a sawtooth
 - buffer = bandwidth×delay
- When there are many TCP flows, the sawteeth should average out, so a smaller buffer is sufficient
 - buffer = bandwidth×delay/\#flows
 [Appenzeller, Keslassy, McKeown, 2004]
- If we could keep the traffic rate just a little bit lower, virtually no buffer would be needed...
- ...unless the flows are synchronized

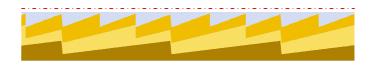


TCP packets & buffer size

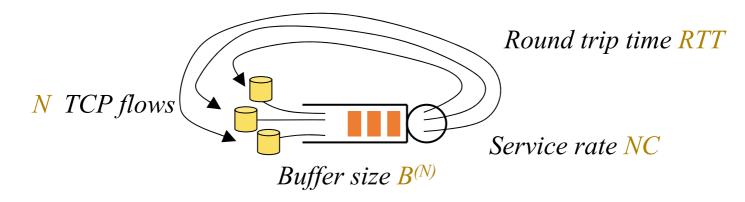
- TCP traffic is made up of packets
 - there may be packet clumps, if the access network is fast
 - or the packets may be spaced out



• Even if we manage to keep total data rate < service rate, chance alignment of packets will still lead to some queueing & loss, so we can't dispense with buffers entirely



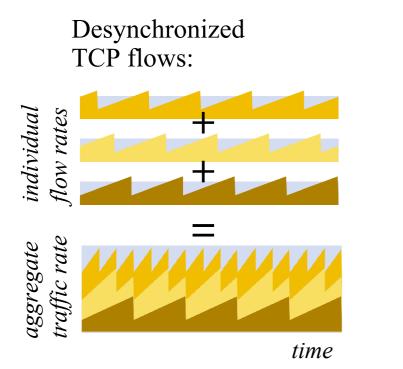
Formulate a maths question



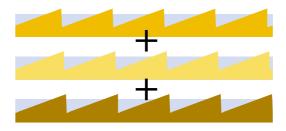
- What is the limiting queue-length process, as $N \rightarrow \infty$, in the three regimes
 - large buffers $B^{(N)}=BN$
 - intermediate buffers $B^{(N)}=B\sqrt{N}$
 - small buffers $B^{(N)}=B$
- Why are these limiting regimes interesting? What are the alternatives? [Bain, 2003]

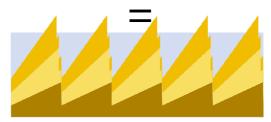
TCP traffic model

• A single TCP flow follows a characteristic 'sawtooth'



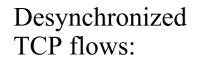
Synchronized TCP flows:



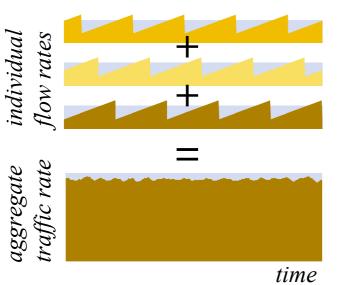


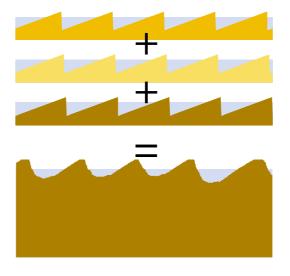
TCP traffic model

- A single TCP flow follows a characteristic 'sawtooth'
- Many TCP flows added together are smoother



Synchronized TCP flows:





TCP traffic model

• When there are many TCP flows, the average traffic rate x_t varies smoothly, according to a delay differential equation [Misra, Gong, Towsley, 2000]

$$\frac{dx_t}{dt} = \frac{1}{RIT^2} - p_{t-RIT}x_{t-RIT}\frac{x_t}{2}$$

- The equation involves
 - $-p_t$, the packet loss probability at time t
 - *RTT*, the average round trip time

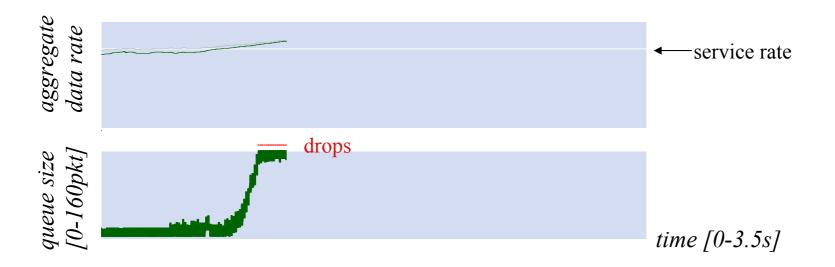
ıggregate raffic rate



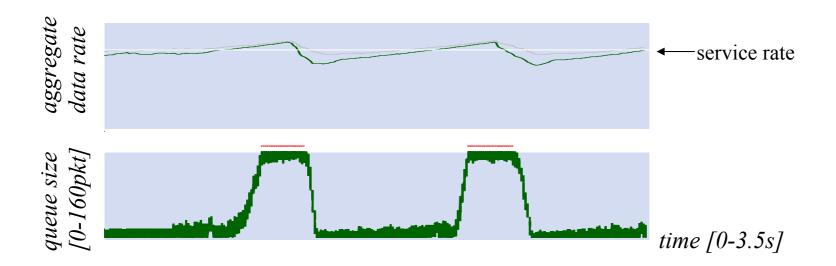
Queue model

- How does packet loss probability p_t depend on buffer size?
- The answer depends on the buffer size
 - large buffers $B^{(N)}=BN$
 - intermediate buffers $B^{(N)}=B\sqrt{N}$
 - small buffers $B^{(N)}=B$

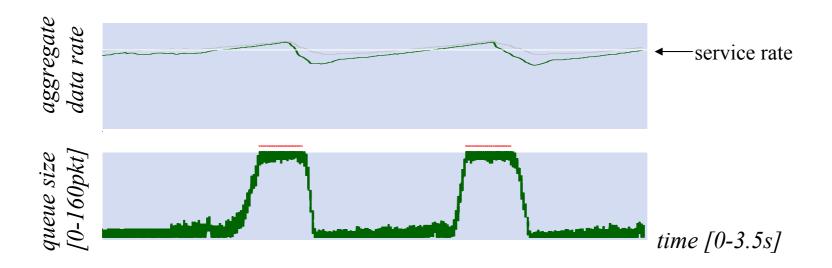
- When the aggregate data rate is less than the service rate, the queue stays small
- No packet drops, so TCPs increase their data rate



- When the aggregate data rate is less than the service rate, the queue stays small
- No packet drops, so TCPs increase their data rate
- Eventually the aggregate data rate exceeds the service rate, and a queue starts to build up
- When the queue is full, packets start to get dropped



- When the aggregate data rate is less than the service rate, the queue stays small
- No packet drops, so TCPs increase their data rate
- Eventually the aggregate data rate exceeds the service rate, and a queue starts to build up
- When the queue is full, packets start to get dropped
- One round trip time later, TCPs respond and cut back They may overreact, leading to synchronization *i.e. periodic fluctuations*



- Queue size & arrival rate vary on the same timescale
- The total queue size Nq_t satisfies the fluid model

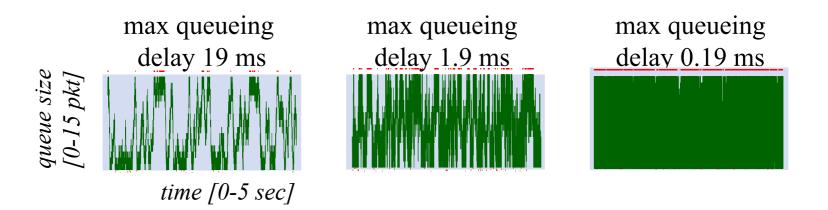
$$\frac{dq_t}{dt} = x_t(1-p_t) - C$$

• When the queue is near full, Little's Law gives the drop probability

$$p_t = 1_{\{q_t = B\}}(x_t - C)/x_t$$

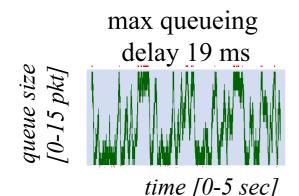
[cf McDonald, Reynier, 2003]

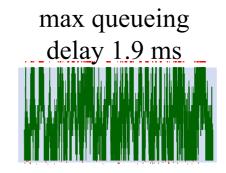
Small buffer B(N)=B



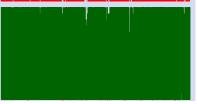
- As the number of flows N and the capacity NC increase, we observe
 - queues aise because of chance alignments of packets
 - queue size fluctuates more and more rapidly, much more rapidly than variations in arrival rate
 - queue size distribution does not change
 - like an $M_{Nx}/M_{NC}/1/B$ queue

Small buffer B(N)=B





max queueing delay 0.19 ms



- We conjecture
 - a typical busy cycle lasts O(1/N)
 - packet arrivals over timescale O(1/N) look like a Poisson process with constant arrival rate $x_t \approx x_{t+O(1/N)}$
 - drop probability converges to that for an M/D/1/B queue: $p_t \approx (x_t/C)^B$
- Evidence
 - In a queue with a small buffer, fed by arbitrary exogenous traffic, a typical busy cycle lasts O(1/N), and queue size matches that in an M/D/1/B queue [Cao, Ramanan, 2002]
 - Over short timescales (<1ms), TCP traffic is approximately Poisson ["Internet traffic tends toward Poisson and independent as the load increases", Cao, Cleveland, Lin, Sun, 2002]

Intermediate buffers $B^{(N)}=B\sqrt{N}$

Consider a queue

- fed by *N* flows, each of rate *x* pkts/sec (*x*=0.95 then 1.05 pkts/sec)
- served at rate NC (C=1 pkt/sec)
- with buffer size $B\sqrt{N}$ (B=3 pkts)



System summary

- x_t = average traffic rate at time t p_t = packet loss probability at time tC = capacity/flow B = buffer size RTT = round trip time N=# flows
- TCP traffic model

 $\frac{dx_t}{dt} = \frac{1}{RIT^2} - p_{t-RIT}x_{t-RIT}\frac{x_t}{2}$

• Small buffer queueing model (though this is sensitive to traffic statistics)

 $p_t \approx (x_t/C)^B$

• Large buffer queueing model

$$p_t = \mathbf{1}_{\{q_t = B\}}(x_t - C)/x_t$$
$$\frac{dq_t}{dt} = x_t(1 - p_t) - C$$

Illustration 20 flows

Standard TCP, single bottleneck link, no AQM service *C*=1.2 kpkt/sec, *RTT*=200 ms, #flows *N*=20

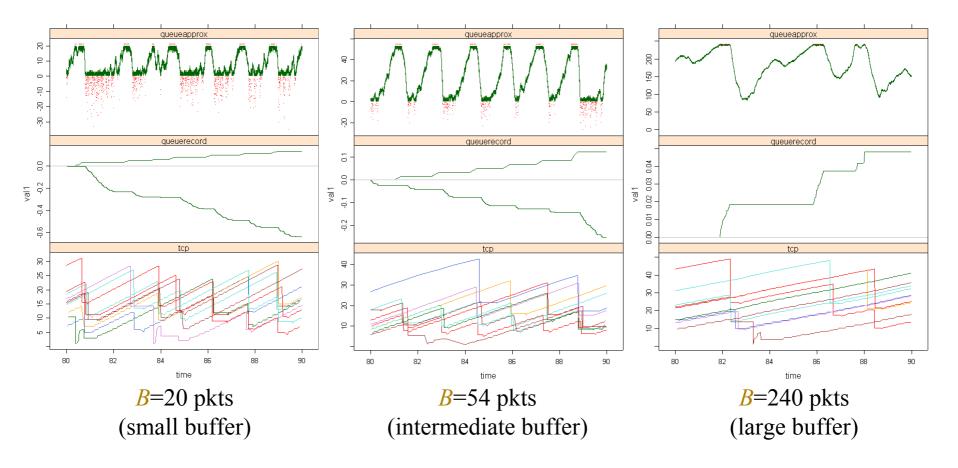


Illustration 200 flows

Standard TCP, single bottleneck link, no AQM service *C*=12 kpkt/sec, *RTT*=200 ms, #flows *N*=200

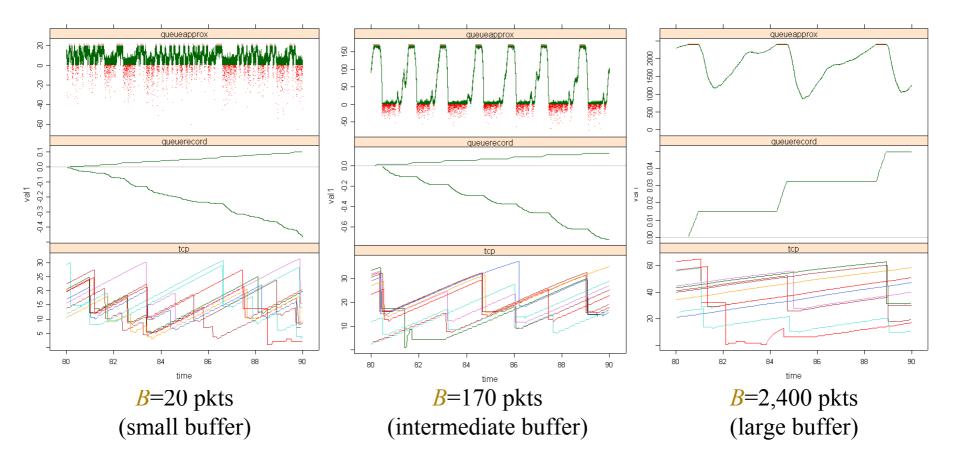
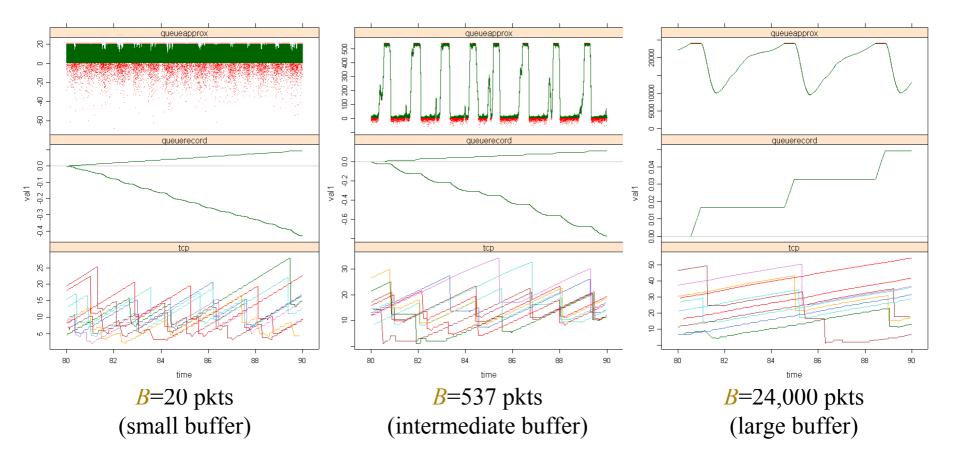
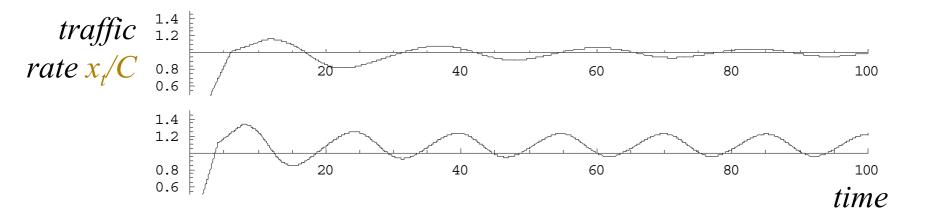


Illustration 2000 flows

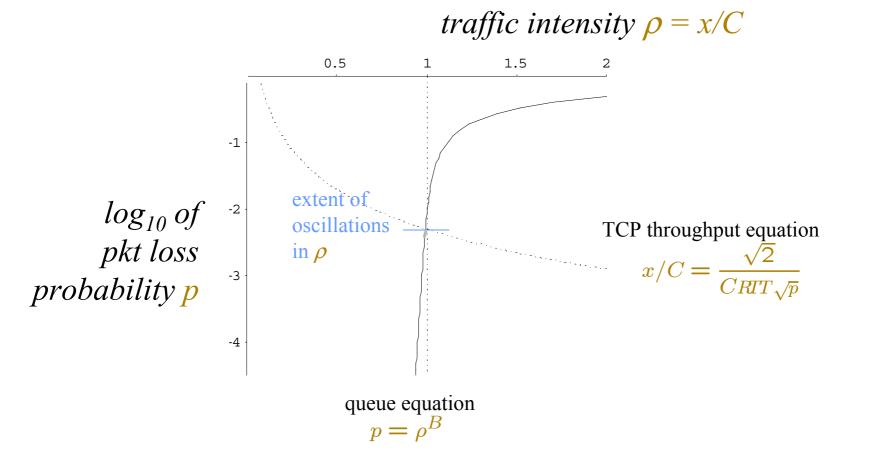
Standard TCP, single bottleneck link, no AQM service *C*=120 kpkt/sec, *RTT*=200 ms, #flows *N*=2000

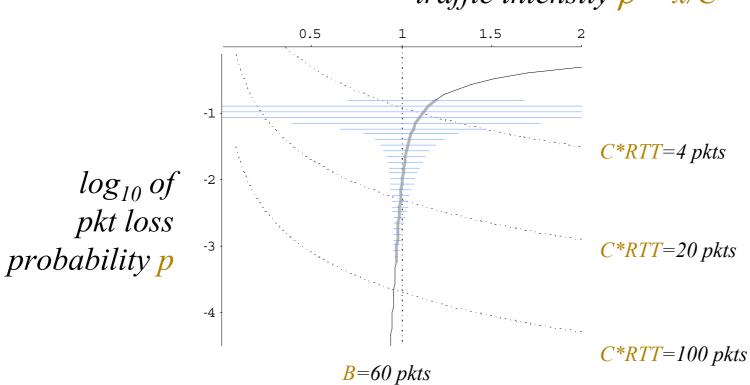


Stability/instability analysis

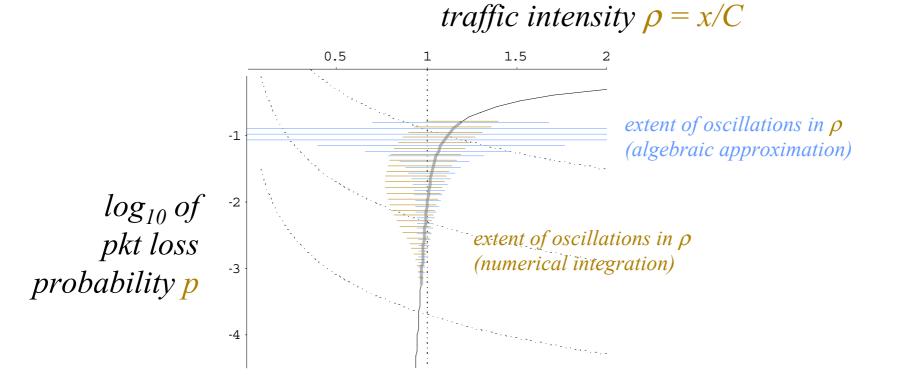


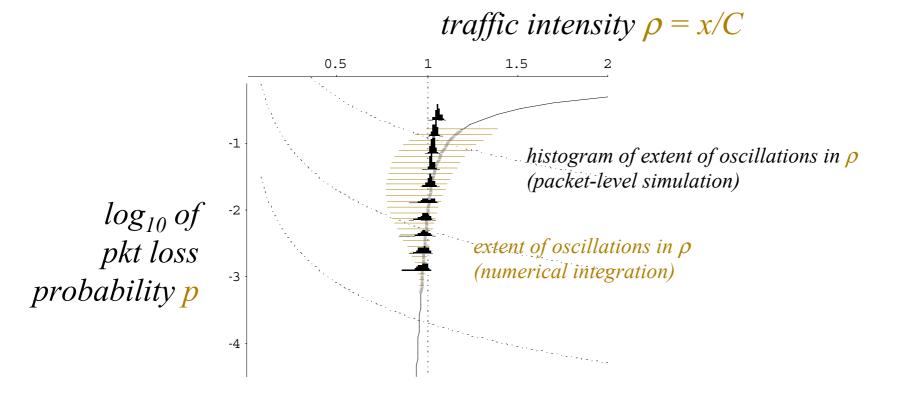
- For some values of C^*RTT , the dynamical system is stable
 - we calculate the steady-state traffic rate, loss probability etc.
- For others it is unstable and there are oscillations (i.e. the flows are partially synchronized)
 - we calculate the amplitude of the oscillations
 [Gaurav Raina, PhD thesis, 2005]

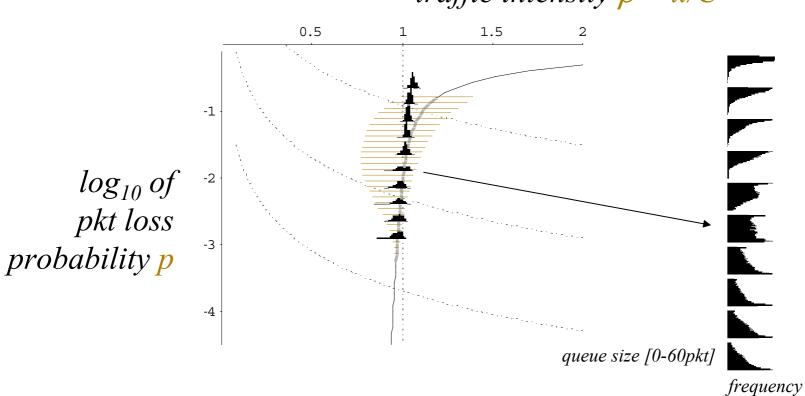




traffic intensity $\rho = x/C$



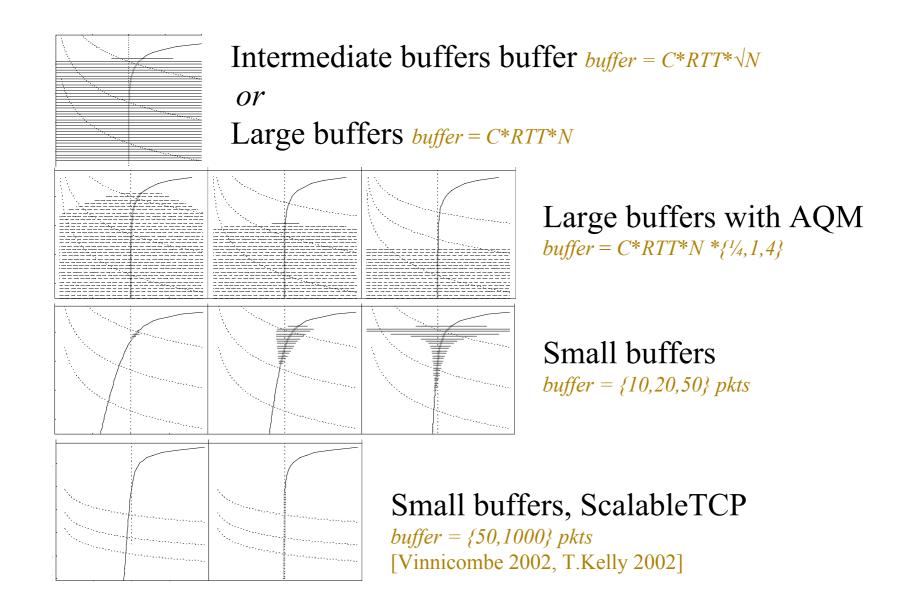




traffic intensity $\rho = x/C$

histogram of queue size (packet-level simulation)

Alternative buffer-sizing rules



Limitations/concerns

- Surely bottlenecks are at the access network, not the core network?
 - Unwise to rely on this!
 - If the core is underutilized, it definitely doesn't need big buffers
 - The small-buffer theory works fine for as few as 20 flows
- The Poisson model sometimes breaks down
 - because of short-timescale packet clumps
 - need more measurement of short-timescale Internet traffic statistics

• Limited validation so far [McKeown et al. at Stanford, Level3, Internet2]

- Proper validation needs
 - goodly amount of traffic
 - full measurement kit
 - ability to control buffer size

Conclusion

- Buffer sizes can be very small
 - a buffer of 25pkt gives link utilization > 90%
 - small buffers mean that TCP flows get more regular feedback, so they can better judge how much capacity is available
 - use Poisson traffic models for the router, differential equation models for aggregate traffic

- TCP can be improved with simple changes
 - e.g. space out the packets
 - e.g. modify the window increase/decrease rules
 [ScalableTCP: Vinnicombe 2004, Kelly 2004; XCP: Katabi, Handley, Rohrs 2000]
 - any future transport protocol should be designed along these lines
 - improved TCP may find its way into Linux/Windows within 5 years