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My interest

• Internet routers have buffers,
– to accomodate bursts in traffic
– to keep the link fully utilized

• How big do the buffers need to be,
to accommodate TCP traffic?
– 3 GByte? Rule of thumb says buffer = bandwidth×delay

– 300 MByte? buffer = bandwidth×delay/√#flows
[Appenzeller, Keslassy, McKeown, 2004]

– 30 kByte? constant buffer size, independent of line rate    [Kelly, Key, etc.]

• What is the role of probabilistic queueing theory?
Is it all just fluid models & differential equations?



if (seqno > _last_acked) {
if (!_in_fast_recovery) {

_last_acked = seqno;
_dupacks = 0;
inflate_window();
send_packets(now);
_last_sent_time = now;
return;
}

if (seqno < _recover) {
uint32_t new_data = seqno - _last_acked;
_last_acked = seqno;
if (new_data < _cwnd) _cwnd -= new_data; else _cwnd=0;
_cwnd += _mss;
retransmit_packet(now);
send_packets(now);
return;
}

uint32_t flightsize = _highest_sent - seqno;
_cwnd = min(_ssthresh, flightsize + _mss);
_last_acked = seqno;
_dupacks = 0;
_in_fast_recovery = false;
send_packets(now);
return;
}

if (_in_fast_recovery) {
_cwnd += _mss;
send_packets(now);
return;
}

_dupacks++;
if (_dupacks!=3) {

send_packets(now);
return;
}

_ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));
retransmit_packet(now);
_cwnd = _ssthresh + 3 * _mss;
_in_fast_recovery = true;
_recover = _highest_sent;
}time [0-8 sec]
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TCP sawtooth & buffer size
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• The traffic rate produced by a TCP flow 
follows a ‘sawtooth’

• To prevent the link’s going idle, the buffer 
must be big enough to smooth out a sawtooth

– buffer = bandwidth×delay

• When there are many TCP flows, 
the sawteeth should average out, 
so a smaller buffer is sufficient

– buffer = bandwidth×delay/√#flows
[Appenzeller, Keslassy, McKeown, 2004]

• If we could keep the traffic rate just a little 
bit lower, virtually no buffer would be 
needed...

• ...unless the flows are synchronized



TCP packets & buffer size

• TCP traffic is made up of packets

– there may be packet clumps, 
if the access network is fast

– or the packets may be spaced out

• Even if we manage to keep  total data rate < service rate, 
chance alignment of packets will still lead to some queueing & loss,
so we can’t dispense with buffers entirely
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Formulate a maths question

• What is the limiting queue-length process, as 
N→∞, in the three regimes
– large buffers B(N)=BN
– intermediate buffers B(N)=B√N
– small buffers B(N)=B

• Why are these limiting regimes interesting? 
What are the alternatives? [Bain, 2003]

N TCP flows
Service rate NC

Buffer size B(N)

Round trip time RTT



TCP traffic model

Desynchronized 
TCP flows:

Synchronized
TCP flows:
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• A single TCP flow follows a characteristic 
‘sawtooth’
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• A single TCP flow follows a characteristic 
‘sawtooth’

• Many TCP flows added together are smoother



TCP traffic model

• When there are many TCP flows, the average traffic rate xt
varies smoothly, according to a delay differential equation
[Misra, Gong, Towsley, 2000]

• The equation involves
– pt, the packet loss probability at time t
– RTT, the average round trip time
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Queue model

• How does packet loss probability pt
depend on buffer size?

• The answer depends on the buffer size
– large buffers B(N)=BN
– intermediate buffers B(N)=B√N
– small buffers B(N)=B



Large buffer  B(N) = BN

• When the aggregate data rate is less than the service rate, 
the queue stays small

• No packet drops, so TCPs increase their data rate
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• When the aggregate data rate is less than the service rate, 
the queue stays small

• No packet drops, so TCPs increase their data rate
• Eventually the aggregate data rate exceeds the service rate, 

and a queue starts to build up
• When the queue is full, packets start to get dropped
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Large buffer  B(N) = BN
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• When the aggregate data rate is less than the service rate, 
the queue stays small

• No packet drops, so TCPs increase their data rate
• Eventually the aggregate data rate exceeds the service rate, 

and a queue starts to build up
• When the queue is full, packets start to get dropped
• One round trip time later, TCPs respond and cut back

They may overreact, leading to synchronization   i.e. periodic fluctuations
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• Queue size & arrival rate vary on the same timescale
• The total queue size Nqt satisfies the fluid model

• When the queue is near full, Little’s Law gives the drop probability

[cf McDonald, Reynier, 2003]
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Large buffer  B(N) = BN

{ }
dqt
dt
= xt(1− pt)−C

pt= 1{qt=B}(xt −C)/xt



Small buffer B(N)=B

• As the number of flows N and the capacity NC increase, we observe
– queues aise because of chance alignments of packets 
– queue size fluctuates more and more rapidly,

much more rapidly than variations in arrival rate
– queue size distribution does not change
– like an MN x / MNC / 1 / B queue
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Small buffer B(N)=B

• We conjecture
– a typical busy cycle lasts O(1/N)
– packet arrivals over timescale O(1/N) look like a Poisson process 

with constant arrival rate xt ≈ xt+O(1/N)
– drop probability converges to that for an M/D/1/B queue: pt ≈ (xt/C)B

• Evidence
– In a queue with a small buffer, fed by arbitrary exogenous traffic, a typical 

busy cycle lasts O(1/N), and queue size matches that in an M/D/1/B queue
[Cao, Ramanan, 2002]

– Over short timescales (<1ms), TCP traffic is approximately Poisson
[“Internet traffic tends toward Poisson and independent as the load increases”, 
Cao, Cleveland, Lin, Sun, 2002]
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Intermediate buffers B(N)=B√N
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Consider a queue 
• fed by N flows, each of rate x pkts/sec (x=0.95 then 1.05 pkts/sec)

• served at rate NC (C=1 pkt/sec)

• with buffer size B√N (B=3 pkts)



System summary
• xt = average traffic rate at time t

pt = packet loss probability at time t
C = capacity/flow    B = buffer size   RTT = round trip time    N=# flows

• TCP traffic model

• Small buffer queueing model
(though this is sensitive to traffic statistics)

• Large buffer queueing model

dxt

dt
=

1

RTT2
− pt−RTTxt−RTT xt

2

pt ≈ (xt/C)B

pt= 1{qt=B}(xt −C)/xt
dqt

dt
= xt(1− pt) −C



Standard TCP, single bottleneck link, no AQM
service C=1.2 kpkt/sec, RTT=200 ms, #flows N=20

B=20 pkts
(small buffer)

B=54 pkts
(intermediate buffer)

B=240 pkts
(large buffer)

Illustration 20 flows



Standard TCP, single bottleneck link, no AQM
service C=12 kpkt/sec, RTT=200 ms, #flows N=200

B=20 pkts
(small buffer)

B=170 pkts
(intermediate buffer)

B=2,400 pkts
(large buffer)

Illustration 200 flows



Standard TCP, single bottleneck link, no AQM
service C=120 kpkt/sec, RTT=200 ms, #flows N=2000

B=20 pkts
(small buffer)

B=537 pkts
(intermediate buffer)

B=24,000 pkts
(large buffer)

Illustration 2000 flows



Stability/instability analysis

• For some values of C*RTT,  the dynamical system is stable
– we calculate the steady-state traffic rate, loss probability etc.

• For others it is unstable and there are oscillations
(i.e. the flows are partially synchronized)
– we calculate the amplitude of the oscillations

[Gaurav Raina, PhD thesis, 2005]
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Instability plot small-buffer case
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Intermediate buffers buffer buffer = C*RTT*√N

or
Large buffers buffer = C*RTT*N

Large buffers with AQM
buffer = C*RTT*N *{¼,1,4}

Small buffers
buffer = {10,20,50} pkts

Small buffers, ScalableTCP
buffer = {50,1000} pkts
[Vinnicombe 2002, T.Kelly 2002]

Alternative buffer-sizing rules



Limitations/concerns
• Surely bottlenecks are at the access network, 

not the core network?
– Unwise to rely on this!
– If the core is underutilized, it definitely doesn’t need big buffers
– The small-buffer theory works fine for as few as 20 flows

• The Poisson model sometimes breaks down
– because of short-timescale packet clumps
– need more measurement of short-timescale Internet traffic statistics

• Limited validation so far
[McKeown et al. at Stanford, Level3, Internet2]

• Proper validation needs
– goodly amount of traffic
– full measurement kit
– ability to control buffer size



Conclusion
• Buffer sizes can be very small

– a buffer of 25pkt gives link utilization > 90%
– small buffers mean that TCP flows get more regular feedback,

so they can better judge how much capacity is available
– use Poisson traffic models for the router,

differential equation models for aggregate traffic

• TCP can be improved with simple changes
– e.g. space out the packets
– e.g. modify the window increase/decrease rules

[ScalableTCP: Vinnicombe 2004, Kelly 2004; XCP: Katabi, Handley, Rohrs 2000]
– any future transport protocol should be designed along these lines
– improved TCP may find its way into Linux/Windows within 5 years
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