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Roundabouts and crossroads

• There are twelve possible 
flows of traffic

• The road layout places 
constraints on which flows 
can use the roundabout 
simultaneously

• Traffic regulations, and 
maybe traffic lights, 
determine which flows get 
to move
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Input-queued switches

• This is a model for the 
silicon fabric at the core of 
a high-speed Internet 
router

• Slotted time, fixed-size 
packets

• At each timeslot, the switch 
chooses a matching of 
inputs to outputs, and 
serves the corresponding 
queues
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Wireless base-station

• A wireless base station, 
transmitting data to several 
users

• At each timeslot, the base 
station chooses what power 
to use to transmit to each of 
the users

• The resulting transmission 
rates depend on 
interference, distance, and 
channel state
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Wireless ad-hoc network

• Each node has a stream 
of data to send to its 
neighbours

• Each node can broadcast 
to its neighbours; if a node 
receives more than one 
broadcast, both are lost

• Each node can choose a 
broadcast probability, and 
every timeslot it 
broadcasts with this 
probability

• These choices determine 
the throughput
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Database concurrency control

• A system runs several 
databases, and it receives 
a stream of jobs
– Each job may require write 

access to some of the 
databases, and read access
to others

– If a job is writing to one of 
the databases, no other jobs 
can read from that database 
at the same time

• The system chooses which 
jobs to run concurrently
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Flow-level model of TCP

• Consider a set of routes 
through the Internet

• There may be a number of 
simultaneous TCP flows 
on each route

• TCP determines the 
transmission rate that 
each flow receives, given 
the numbers of jobs and 
the routes

• This has the effect of 
draining the queues of 
jobs
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Routing and sequencing in a multihop network

• An abstract queueing 
network with routing and 
sequencing choice

• A DHT. A query arrives at 
a node, and is forwarded 
to a succession of other 
nodes until it finds an 
answer
– nodes may choose to drop 

a request if they are 
overloaded

– they also choose which 
queue to serve
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Abstract model

• A single-hop network (packets leave once they are served)
• Slotted time, equal-sized packets
• N queues, with the vector of queue sizes Q(t) =

¡
Q1(t), . . . , QN (t)

¢
• An exogeneous arrival process of rate λ = (λ1, . . . ,λN ) to each queue
• Each timeslot, an action π(t) is chosen from a finite set S ⊂ {0, 1}N
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The static planning problem

PRIMAL(λ)

minimize
X
π∈S

απ such that λ ≤
X
π∈S

αππ, over απ ≥ 0 for all π ∈ S

DUAL(λ)

maximize ξ>λ such that ξ>π ≤ 1 for all π ∈ S , over ξ ≥ 0

STABILITY REGION

Λ =
©
λ ∈ RN+ : solution to PRIMAL(λ) ≤ 1ª
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Interpret απ as the fraction of timeslots in 
which we should run schedule π.

If the solution to this problem is ≤1, then 
the optimal απ tell us how much time to 
dedicate to each schedule. We can simply 
run a static sequence of schedules, and 
the system will be stable.

Interpret απ as the fraction of timeslots in 
which we should run schedule π.

If the solution to this problem is ≤1, then 
the optimal απ tell us how much time to 
dedicate to each schedule. We can simply 
run a static sequence of schedules, and 
the system will be stable.

Imagine that each packet in queue n is worth an amount of 
money ξn. Then ξ>λ is the total rate at which money arrives, and 
ξ>π is the most money that action π can take away.

If the solution to this problem is >1, then the amount of money in 
the system will build up, i.e. the queue lengths will explode.

Imagine that each packet in queue n is worth an amount of 
money ξn. Then ξ>λ is the total rate at which money arrives, and 
ξ>π is the most money that action π can take away.

If the solution to this problem is >1, then the amount of money in 
the system will build up, i.e. the queue lengths will explode.

For λ∈Λ, it is 
possible to 
schedule all 
incoming work 
and keep the 
system stable. 
Otherwise the 
system is 
unstable.

For λ∈Λ, it is 
possible to 
schedule all 
incoming work 
and keep the 
system stable. 
Otherwise the 
system is 
unstable.
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Interesting questions

• Given a scheduling algorithm, is it stable for all λ∈Λ? 
(described as having 100% throughput)

• Is there an online algorithm, i.e. one whose action in timeslot t
depends only on queue sizes at timeslot t, which has 100% 
throughput?
– such an algorithm ought to be more responsive to transient conditions

• Even if an algorithm has 100% throughput, it may have terrible 
performance. What are the properties of an algorithm which 
lead to low average delay? 

• If the network is overloaded, i.e. PRIMAL(λ)>1, does the 
algorithm work OK?
– e.g. maximize net departure rate
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Some scheduling algorithms

• BIGSTEP
– Count arrivals over T slots. Compute a sequence of 

schedule which would serve them. Use these schedules for 
the next T slots.

• Greedy
– Serve the biggest queues you can

• MaxSize
– Pick any schedule which maximizes the number of 

departures

• MaxWeight
– pick any schedule π which maximizes π>Q
– or, pick any schedule π which maximizes π>(Qα), for some 

prespecified α>0, where the exponent is componentwise
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Analysis I. Foster-Lyapunov criteria

Let Xn, n ∈ N, be an irreducible aperiodic Markov chain which
takes values in a countable state space X . Suppose
(i) |Xn+1 − Xn| ≤ f(Xn) almost surely, for some finite-valued

function f(·)
(ii) H : X → R+ is some function with finite level sets, i.e.

{x : H(x) ≤ θ} is finite for all levels θ ∈ R+
(iii) L : X → R+ is another function with finite level sets

Theorem. If there exist constants ε > 0 and B ≥ 0 such that

E
£
L(Xn+1)− L(Xn)

¯̄
Xn
¤ ≤ B − εH(Xn)

then Xn has a unique invariate distribution, and

lim sup
n→∞

E[H(Xn)] ≤ B/ε.
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Applying the Foster-Lyapunov drift criterion
Let L(Q) =

P
nQ

2
n = Q>Q.

L
³
(Q(t+1))− L(Q(t)

´
=
³
Q(t+1)−Q(t)

´>³
Q(t+1)−Q(t)

´
= ∆(t)>

³
2Q(t) +∆(t)

´
where ∆(t) = Q(t+1)−Q(t)

=
X
n
∆n(t)

2 + 2
X
n
∆n(t)Qn(t)

=
X
n
∆n(t)

2 + 2
X
n

³
An(t)−Dn(t)

´
Qn(t) where An(t) is arrivals and Dn(t) is departures at t

=
X
n
∆n(t)

2 + 2
X
n

³
An(t)−Πn(t)

´
Qn(t) where Πn(t) is service, since we only fire a blank if Qn(t) = 0

≤ N +2
X
n

³
An(t)−Πn(t)

´
Qn(t) since ∆n(t) ∈ −1,0,1 assuming Bernoulli arrivals

= N +2
³
A(t)>Q−max

ρ∈S ρ>Q
´

since matching is chosen to have max weight

E
·
L(Q(t+1))− L(Q(t))

¯̄̄
Q(t)

¸
≤ N +2

³
λ>Q−max

ρ∈S ρ>Q
´

≤ N +2
³ X
π∈S

αππ
>Q−max

ρ∈S ρ>Q
¶

with απ as in the primal problem

= N +2(
X

απ − 1)max
ρ∈S ρ>Q

≤ N − εmax
ρ∈S ρ>Q where ε = 2(1−X

απ) > 0, assuming λ ∈ Λ◦
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Analysis II. Fluid stability
Consider a sequence of switched queueing networks indexed by

r ∈ N. Let

Qr(t) = queue size vector at time t, t ∈ N
Ar(t) = total arrivals up to time t, t ∈ N
Sπ(t) = number of timeslots in which π has been done, up to t, t ∈ N
xr(t) =

¡
Qr(rt)/r,Ar(rt)/r, [Srπ(rt)/r]π∈S

¢
, t ∈ R

Definition. Let FLP = {x : there is a subsequence of points in the
sample space, satisfying SLLN, with xrk → x in an appropriate sense }

Definition. Say the fluid system is stable if there is some T > 0
such that x(t) = 0 for all t > T , for all x ∈ FLP with |x(0)| ≤ 1.

Theorem. Consider a Markov chain describing the switched queue-
ing network, assuming IID Bernoulli arrivals. If the fluid system is
stable, then the Markov chain has a unique invariant distribution.
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Applying the fluid method

The typical use of the fluid method is like this. Following Dai+Prabhakar, we

first prove

Lemma. If x ∈ FLP then x satisfies all the following fluid model equa-

tions.

i. x is absolutely continuous, hence differentiable almost everywhere

ii. a(t) = λt

iii.
P
π sπ(t) = t

iv. q̇n(t) = λn −P
π ṡπ(t)πn, or the positive part of this expression if qn(t) = 0

v. ṡπ(t) = 0 if π>q(t) < maxρ ρ>q(t)

Then define FMS = {x : x satisfies all these equations }. Then, using much

the same reasoning as for the Foster-Lyapunov drift condition, prove

Lemma. If x ∈ FMS and λ ∈ Λ◦, then
L̇(q(t)) ≤ −εmax

ρ∈S ρ>q(t).

Finally, using a result of Stolyar, we obtain stability.
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Analysis III. Heavy traffic

• For an input-queued switch 
running MaxWeight, simulations 
suggest that

Q(t) ≈ ∆(w(Q(t))
for suitably-chosen functions ∆
and w

• This is called state space 
collapse, and is a general feature 
of heavily-loaded systems
– that is, systems where the solution 

to PRIMAL(λ) is ≈1

• It may help us understand 
queueing delay for scheduling 
algorithms

output 
workloads

input 
workloadoutput 2

input 2

input 4

input 3

input 1

output 4output 3output 1

queue sizes inferred from the 
measured workloads

measured queue sizes, 
from a simulation
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Practical algorithms: backpressure
• MaxWeight rule says

• To compute weights, each node needs to know 
its queue sizes and downstream queue sizes —
nothing more

• Assume that you always have the option of 
idling. Then MaxWeight has 100% throughput.

Each action π serves a collection of pack-
ets p ∈ P (π). Each of these packets
will be removed from a queue src(p) and
sent to another queue dest(p), or it will
leave the network.

Choose the schedule π which maxi-
mizes the weightX
p∈P (π)

£
Qsrc(p) −Qdest(p)1p doesn’t leave

¤
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Practical algorithms: randomized versions

• In an input-queued switch with N
ports, MaxWeight can be computed 
in time O(N3)

• N may be 30 to 300, so MaxWeight
is impractical

• Randomized MaxWeight
– Each timestep pick a new schedule at 

random
– Use the last timestep's schedule, or this 

new schedule, whichever has larger
weight

• This algorithm has 100% throughput 
and terrible delay performance. 
Tweaked versions do much better.
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Practical algorithms: iSLIP

• Each port maintains a priority ring
• For a NxN switch, run log N

iterations of the following:
1. Each input sends I have packets for you

to all outputs for which there are packets 
waiting

2. Each output chooses no more than one 
of the inputs that it heard from, giving 
preference to the next input in its priority 
ring, and replies I want your packets

3. Each input chooses no more than one of 
the outputs that it heard from, giving 
preference to the next output in its 
priority ring, and replies OK, let's match

4. Any matched input-output pairs move 
their priority pointers to 
(port they matched to +1) mod N

3.

2.

1.

Figures from N.McKeown, 1999



23

Practical algorithms: the Chang method

• Suppose the traffic matrix is sub-
uniform, λm,n≤1/N for all m,n
– Then we can use a static round-

robin scheduling policy

• Chang's ingenious idea is to 
send incoming packets to a 
random destination, and then to 
switch them to the correct 
destination
– the traffic matrix at each stage is 

sub-uniform, so a static round-
robin scheduling policy works

randomrandom


