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e Packets arrive at input port 7 destined for output
port 5 as a Poisson process of rate A;;. They
are stored in queue X,L-j.

e Every time step, the switch chooses a match-
ing of inputs to outputs, and tries to serve one
packet from each of the n queues involved in
the matching.

e If it offers service to an empty queue, we say it
fires a blank.



Notation

X11 | X12| - Wi.
X21
Waq |- : W..

where Wp. =5 ; X1, etc.

A matching corresponds to a permutation matrix
(or service matrix): say

1 if input + matched to output j
S
" 0 else



Maximum-weight
matching algorithm

Let the weight of matching =« be

TC . X — ZT‘-Z]X’L]
¥,]
Let the maximum-weight be

m=m7§><7r-X.

The maximum-weight matching algorithm MWM
chooses, at each time step, some service matrix of
weight m.

Theorem. If the matrix of arrival rates A = (};;)
IS doubly substochastic, then the switch is stable.

(McKeown+Anantharam-+Walrand 1996 for inde-
pendent arrivals, Dai4+Prabhakar 2000 for general
arrivals).



The fact of
state space collapse

1. Simulate a switch running MWM. Record the
queue process X (t).

2. Calculate the row and column workloads W (t) =
(W1.(t),..., W.q,...).

3. Define X(t) = AW(t), for a function A (the
lifting map) defined below.

4. Observe: X(t) ~ X ().

Definition. The lifting map A(w) gives a solution
x to the linear program:

min m7§X7r-a:'

,
Zj Lgj — w;.

subject to (>, Tij = W.j

\*if )\ZJ = 0 then Tij = 0

over x > 0.
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Why does SSC happen?

Consider a simpler model:

Poisson arrivals P
rate A Every timestep, serve one
. . acket from longer queue
Poisson arrivals P gera
N
rate Ao

Let A= A1 + Xo. Let X7 and X, be the two queue
sizes, and W = X1 4+ Xo.



Timescale separation

How do W and X, evolve, over timescales Lo and
L3257 (L large, § small.)

Suppose the system is in heavy traffic: A =1 —%C.

Over timescale L2§:

e Arrivals ~ Poisson(AL25) ~ AL25 4+ L N(0, 526).

e Service L256.

e Net change in W is L25(\ — 1) + L N(0, 526),
ie. L(—5C + N(O, 025)).

e W/L behaves like reflected Brownian Motion,
drift —C.

The relevant timescales and spacescales are:

e How much does W/L change by over time L2§7
— By —6C 4+ N(0, 526).

e How much does W/L change by over time L§7?
— By O(1/VL).

e How much does X /L change by over time L§7
— By 6(A\1 — C1) +0(1/VL),
where C; is the fraction of service effort devoted
to server . C1 4+ Ch = 1.



Summary of SSC

Suppose A =1 — +C. Then:

e over timescale L2, the scaled aggregate work-
load W/L evolves like a reflected Brownian mo-
tion;

e over timescale L, the balanced fluid model tells
us about the disposition of workload over the
two queues.

— here, the balanced fluid model is

Tj = A — G,

c1+co=1, ¢, =0 if z; is not the largest
— equilibrium states are those where z; = z;.

So, over timescale L, the system will head to an in-
variant state X; = Xj, while W will hardly change.

e [ he state space has collapsed from two dimen-
sions (X1, X») to one dimension W.

e The lifting map A(W) = (3W,3W) maps from
the workload to the actual state.



Fluid model of MWM

The fluid model for MWM is (Prabhakar+Dai 2000)
- )\Z'j—O'Z] if mz’j>0

17 — .

J ()\Z] — O'z])—l_ it Tij = 0

o€ <maximum—weight matchings>.

Theorem. Let m(t) = maxy=w-xz(t). Then there
exists € > 0 (depending only on \) such that

o either m(t) < —e,
e or z(t) = 0 and z(t) is the unique solution to

the linear program z(t) = Aw(x(t)).

The linear program A(w) is:

over x > 0

(if Y, 05 = 1 then ¥,z = w;

subject to  {if >, A,L-j = 1 then }; Tjj = W.j

\if >‘ij = 0 then Tij = O

min m7§X7r-:13

Theorem. A point z is invariant if and only if
xr = Aw(x).



Consequences of SSC

Consider a 2 x 2 switch running MWM. We only
need keep track of the workloads W = (W., W.1, W..):
from them we can infer the X;;.

1
2(1‘/“;}. + W) Wi,
_Z .o

W W..

We can calculate the set of invariant states, and
the corresponding workloads. The space W of
allowed workloads is bounded by the four planes

The workload process W(t) evolves in W like a
Brownian motion. At the boundaries of VW, it may
be reflected to keep it in the space. A reflection
on plane X;;(W) = 0 corresponds to firing blanks
on queue Xz-j.



Feasible workload space

W




Different weight functions

Let the weight of matching © be >, ; m;; f(X;;),
with f(x) = z©.

Again, we can find the space of allowed workloads
W, and the lifting map X = A(W).

It turns out that W gets smaller as « increases.
When W hits the boundary of W, blanks are fired;
the smaller W, the more blanks. Thus the perfor-
mance of MWM is better for small «.

Conjecture. An optimal matching algorithm is
MWM with o« — 0. That is, look at all maximum-
Size matchings, and choose the one with the largest
weight, using weight function f(x) = logx.



Feasible workload space,
f(z) = al/2

W1

X111 =0,
e (W =Wy - W)YV2=w2 4 w2




Feasible workload space,

f(z) = x°

Wi




Calculating the
probability of overflow

Suppose the line card for input port 1 has buffer B,
i.e. loss will occur if packets arrive on input port 1
when W;. = B.

We have seen that the workload process W evolves
like a reflected Brownian motion. We know the
drift, the state space, and the angles of reflection.

We would like to calculate P(W7. > B).

e Perhaps amenable to numerical estimation, if B
small.

e Perhaps amenable to calculation using large de-
viations techniques, if B large.



