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An n × n input-queued switch

Input port 1

Input port 2

Output port 1Matching

Queue X32

• Packets arrive at input port i destined for output

port j as a Poisson process of rate λij. They

are stored in queue Xij.

• Every time step, the switch chooses a match-

ing of inputs to outputs, and tries to serve one

packet from each of the n queues involved in

the matching.

• If it offers service to an empty queue, we say it

fires a blank.



Notation

X11 X12 · W1·

X21 · · ·

· · · ·

W·1 · · W··

where W1· =
∑

j X1j etc.

A matching corresponds to a permutation matrix

(or service matrix): say

πij =



1 if input i matched to output j

0 else



Maximum-weight
matching algorithm

Let the weight of matching π be

π · X =
∑
i,j

πijXij.

Let the maximum-weight be

m = max
π

π · X.

The maximum-weight matching algorithm MWM

chooses, at each time step, some service matrix of

weight m.

Theorem. If the matrix of arrival rates λ = (λij)

is doubly substochastic, then the switch is stable.

(McKeown+Anantharam+Walrand 1996 for inde-

pendent arrivals, Dai+Prabhakar 2000 for general

arrivals).



The fact of
state space collapse

1. Simulate a switch running MWM. Record the

queue process X(t).

2. Calculate the row and column workloads W (t) =

(W1·(t), . . . , W·1, . . . ).

3. Define X̃(t) = ∆W (t), for a function ∆ (the

lifting map) defined below.

4. Observe: X̃(t) ≈ X(t).

Definition. The lifting map ∆(w) gives a solution

x to the linear program:

minmax
π

π · x

subject to




∑
j xij = wi·∑
i xij = w·j

∗if λij = 0 then xij = 0

over x ≥ 0.



Traces

X(t)

λ =

.022 .310 .309 .354 .995

.310 .021 .386 .278 .995

.309 .386 .012 .288 .995

.354 .278 .288 .076 .995

.995 .995 .995 .995



Traces

W (X(t))



Traces

X̃(t) = ∆W (X(t))



Traces

X(t)
X̃(t) = ∆W (X(t))



Why does SSC happen?

Consider a simpler model:

Poisson arrivals
rate λ1

Poisson arrivals
rate λ2

Every timestep, serve one
packet from longer queue

Let λ = λ1 + λ2. Let X1 and X2 be the two queue

sizes, and W = X1 + X2.



Timescale separation

How do W and Xi evolve, over timescales Lδ and

L2δ? (L large, δ small.)

Suppose the system is in heavy traffic: λ = 1− 1
LC.

Over timescale L2δ:

• Arrivals ∼ Poisson(λL2δ) ≈ λL2δ + LN(0, σ2δ).

• Service L2δ.

• Net change in W is L2δ(λ − 1) + LN(0, σ2δ),

i.e. L
(
−δC + N(0, σ2δ)

)
.

• W/L behaves like reflected Brownian Motion,

drift −C.

The relevant timescales and spacescales are:

• How much does W/L change by over time L2δ?

— By −δC + N(0, σ2δ).

• How much does W/L change by over time Lδ?

— By O(1/
√

L).

• How much does X1/L change by over time Lδ?

— By δ(λ1 − C1) + O(1/
√

L),

where Ci is the fraction of service effort devoted

to server i: C1 + C2 = 1.



Summary of SSC

Suppose λ = 1 − 1
LC. Then:

• over timescale L2, the scaled aggregate work-

load W/L evolves like a reflected Brownian mo-

tion;

• over timescale L, the balanced fluid model tells

us about the disposition of workload over the

two queues.

– here, the balanced fluid model is

ẋi = λi − ci,

c1 + c2 = 1, ci = 0 if xi is not the largest

– equilibrium states are those where xi = xj.

So, over timescale L, the system will head to an in-

variant state Xi = Xj, while W will hardly change.

• The state space has collapsed from two dimen-

sions (X1, X2) to one dimension W .

• The lifting map ∆(W ) = (1
2W, 1

2W ) maps from

the workload to the actual state.



Fluid model of MWM

The fluid model for MWM is (Prabhakar+Dai 2000)

ẋij =




λij − σij if xij > 0

(λij − σij)
+ if xij = 0

σ ∈
〈
maximum-weight matchings

〉
.

Theorem. Let m(t) = maxπ π · x(t). Then there

exists ε > 0 (depending only on λ) such that

• either ṁ(t) < −ε,

• or ẋ(t) = 0 and x(t) is the unique solution to

the linear program x(t) = ∆w(x(t)).

The linear program ∆(w) is:

minmax
π

π · x over x ≥ 0

subject to




if
∑

j λij = 1 then
∑

j xij = wi·
if

∑
i λij = 1 then

∑
i xij = w·j

if λij = 0 then xij = 0

Theorem. A point x is invariant if and only if

x = ∆w(x).



Consequences of SSC

Consider a 2 × 2 switch running MWM. We only

need keep track of the workloads W = (W1·, W·1, W··):
from them we can infer the Xij.

1
2(W1· + W·1)
−1

4W··
· W1·

· ·
W·1 W··

We can calculate the set of invariant states, and

the corresponding workloads. The space W of

allowed workloads is bounded by the four planes

Xij(W ) = 0.

The workload process W (t) evolves in W like a

Brownian motion. At the boundaries of W, it may

be reflected to keep it in the space. A reflection

on plane Xij(W ) = 0 corresponds to firing blanks

on queue Xij.



Feasible workload space

W1·W1·

W·1W·1

X11 = 0 W1· = W··

W1·W1·

W·1

W··



Different weight functions

Let the weight of matching π be
∑

i,j πijf(Xij),

with f(x) = xα.

Again, we can find the space of allowed workloads

W, and the lifting map X = ∆(W ).

It turns out that W gets smaller as α increases.

When W hits the boundary of W, blanks are fired;

the smaller W, the more blanks. Thus the perfor-

mance of MWM is better for small α.

Conjecture. An optimal matching algorithm is

MWM with α → 0. That is, look at all maximum-

size matchings, and choose the one with the largest

weight, using weight function f(x) = logx.



Feasible workload space,
f(x) = x1/2

W1·W1·

W·1W·1

X11 = 0,
i.e. (W − W1· − W·1)1/2 = W

1/2
1· + W

1/2
·1

W1·W1·

W·1

W··



Feasible workload space,
f(x) = x2

W1·W1·

W·1W·1

W1·W1·

W·1

W··



Calculating the
probability of overflow

Suppose the line card for input port 1 has buffer B,

i.e. loss will occur if packets arrive on input port 1

when W1· = B.

We have seen that the workload process W evolves

like a reflected Brownian motion. We know the

drift, the state space, and the angles of reflection.

We would like to calculate P(W1· ≥ B).

• Perhaps amenable to numerical estimation, if B

small.

• Perhaps amenable to calculation using large de-

viations techniques, if B large.


