Input-Queued Switches in Heavy Traffic

Damon Wischik
Statistical Laboratory, Cambridge Electrical Engineering, Stanford http://www.wischik.com/damon
+J.M.Harrison, F.P.Kelly, S.Kumar, B.Prabhakar, D.Shah, R.Williams.

An $n \times n$ input-queued switch

Input port 1

Input port 2

Output port 1

Queue X_{32}

- Packets arrive at input port i destined for output port j as a Poisson process of rate $\lambda_{i j}$. They are stored in queue $X_{i j}$.
- Every time step, the switch chooses a matching of inputs to outputs, and tries to serve one packet from each of the n queues involved in the matching.
- If it offers service to an empty queue, we say it fires a blank.

Notation

where $W_{1 .}=\sum_{j} X_{1 j}$ etc.

A matching corresponds to a permutation matrix (or service matrix): say

$$
\pi_{i j}= \begin{cases}1 & \text { if input } i \text { matched to output } j \\ 0 & \text { else }\end{cases}
$$

Maximum-weight matching algorithm

Let the weight of matching π be

$$
\pi \cdot X=\sum_{i, j} \pi_{i j} X_{i j}
$$

Let the maximum-weight be

$$
m=\max _{\pi} \pi \cdot X
$$

The maximum-weight matching algorithm MWM chooses, at each time step, some service matrix of weight m.

Theorem. If the matrix of arrival rates $\lambda=\left(\lambda_{i j}\right)$ is doubly substochastic, then the switch is stable. (McKeown+Anantharam+Walrand 1996 for independent arrivals, Dai+Prabhakar 2000 for general arrivals).

The fact of
 state space collapse

1. Simulate a switch running MWM. Record the queue process $X(t)$.
2. Calculate the row and column workloads $W(t)=$ $\left(W_{1 \cdot}(t), \ldots, W_{\cdot 1}, \ldots\right)$.
3. Define $\tilde{X}(t)=\Delta W(t)$, for a function Δ (the lifting map) defined below.
4. Observe: $\tilde{X}(t) \approx X(t)$.

Definition. The lifting map $\Delta(w)$ gives a solution x to the linear program:
$\min \max _{\pi} \pi \cdot x$
subject to $\left\{\begin{array}{l}\sum_{j} x_{i j}=w_{i} . \\ \sum_{i} x_{i j}=w_{\cdot j} \\ * i f \lambda_{i j}=0 \text { then } x_{i j}=0\end{array}\right.$
over $\quad x \geq 0$.

Traces

- $X(t)$

$\lambda=$| .022 | .310 | .309 | .354 |
| :--- | :--- | :--- | :--- |
| .310 | .021 | .386 | .278 |
| .309 | .386 | .012 | .288 |
| .354 | .278 | .288 | .076 |

$$
\text { . } 995.995 .995 .
$$

Traces

- $W(X(t))$
2

		$\mathrm{Na}^{2} \mathrm{~N}^{4}$	

Traces

- $\tilde{X}(t)=\Delta W(X(t))$

Traces
$\left.=\begin{array}{l}X(t) \\ \tilde{X}(t)\end{array}\right)=\Delta W(X(t))$

Why does SSC happen?

Consider a simpler model:

Poisson arrivals rate λ_{1}

Poisson arrivals rate λ_{2}

Let $\lambda=\lambda_{1}+\lambda_{2}$. Let X_{1} and X_{2} be the two queue sizes, and $W=X_{1}+X_{2}$.

Timescale separation

How do W and X_{i} evolve, over timescales $L \delta$ and $L^{2} \delta ?$ (L large, δ small.)

Suppose the system is in heavy traffic: $\lambda=1-\frac{1}{L} C$.
Over timescale $L^{2} \delta$:

- Arrivals $\sim \operatorname{Poisson}\left(\lambda L^{2} \delta\right) \approx \lambda L^{2} \delta+L \mathrm{~N}\left(0, \sigma^{2} \delta\right)$.
- Service $L^{2} \delta$.
- Net change in W is $L^{2} \delta(\lambda-1)+L \mathrm{~N}\left(0, \sigma^{2} \delta\right)$, i.e. $L\left(-\delta C+\mathrm{N}\left(0, \sigma^{2} \delta\right)\right)$.
- W / L behaves like reflected Brownian Motion, drift $-C$.

The relevant timescales and spacescales are:

- How much does W / L change by over time $L^{2} \delta$? - By $-\delta C+\mathrm{N}\left(0, \sigma^{2} \delta\right)$.
- How much does W / L change by over time $L \delta$? - By $O(1 / \sqrt{L})$.
- How much does X_{1} / L change by over time $L \delta$?
- By $\delta\left(\lambda_{1}-C_{1}\right)+O(1 / \sqrt{L})$,
where C_{i} is the fraction of service effort devoted to server i : $C_{1}+C_{2}=1$.

Summary of SSC

Suppose $\lambda=1-\frac{1}{L} C$. Then:

- over timescale L^{2}, the scaled aggregate workload W / L evolves like a reflected Brownian motion;
- over timescale L, the balanced fluid model tells us about the disposition of workload over the two queues.
- here, the balanced fluid model is $\dot{x}_{i}=\lambda_{i}-c_{i}$,
$c_{1}+c_{2}=1, c_{i}=0$ if x_{i} is not the largest
- equilibrium states are those where $x_{i}=x_{j}$.

So, over timescale L, the system will head to an invariant state $X_{i}=X_{j}$, while W will hardly change.

- The state space has collapsed from two dimensions (X_{1}, X_{2}) to one dimension W.
- The lifting map $\Delta(W)=\left(\frac{1}{2} W, \frac{1}{2} W\right)$ maps from the workload to the actual state.

Fluid model of MWM

The fluid model for MWM is (Prabhakar+Dai 2000)

$$
\begin{gathered}
\dot{x}_{i j}= \begin{cases}\lambda_{i j}-\sigma_{i j} & \text { if } x_{i j}>0 \\
\left(\lambda_{i j}-\sigma_{i j}\right)^{+} & \text {if } x_{i j}=0\end{cases} \\
\sigma \in\langle\text { maximum-weight matchings }\rangle .
\end{gathered}
$$

Theorem. Let $m(t)=\max _{\pi} \pi \cdot x(t)$. Then there exists $\varepsilon>0$ (depending only on λ) such that

- either $\dot{m}(t)<-\varepsilon$,
- or $\dot{x}(t)=0$ and $x(t)$ is the unique solution to the linear program $x(t)=\Delta w(x(t))$.

The linear program $\Delta(w)$ is:
$\min \max _{\pi} \pi \cdot x \quad$ over $x \geq 0$

$$
\text { subject to }\left\{\begin{array}{l}
\text { if } \sum_{j} \lambda_{i j}=1 \text { then } \sum_{j} x_{i j}=w_{i} . \\
\text { if } \sum_{i} \lambda_{i j}=1 \text { then } \sum_{i} x_{i j}=w . \\
\text { if } \lambda_{i j}=0 \text { then } x_{i j}=0
\end{array}\right.
$$

Theorem. A point x is invariant if and only if $x=\Delta w(x)$.

Consequences of SSC

Consider a 2×2 switch running MWM. We only need keep track of the workloads $W=\left(W_{1}, W_{.1}, W_{. .}\right)$: from them we can infer the $X_{i j}$.

$\frac{1}{2}\left(W_{1 .}+W_{\cdot 1}\right)$	
$-\frac{1}{4} W .$.	
.	.

W_{1}.
W_{\cdot}
W..

We can calculate the set of invariant states, and the corresponding workloads. The space \mathcal{W} of allowed workloads is bounded by the four planes $X_{i j}(W)=0$.

The workload process $W(t)$ evolves in \mathcal{W} like a Brownian motion. At the boundaries of \mathcal{W}, it may be reflected to keep it in the space. A reflection on plane $X_{i j}(W)=0$ corresponds to firing blanks on queue $X_{i j}$.

Feasible workload space

Different weight functions

Let the weight of matching π be $\sum_{i, j} \pi_{i j} f\left(X_{i j}\right)$, with $f(x)=x^{\alpha}$.

Again, we can find the space of allowed workloads \mathcal{W}, and the lifting map $X=\Delta(W)$.

It turns out that \mathcal{W} gets smaller as α increases. When W hits the boundary of \mathcal{W}, blanks are fired; the smaller \mathcal{W}, the more blanks. Thus the performance of MWM is better for small α.

Conjecture. An optimal matching algorithm is MWM with $\alpha \rightarrow 0$. That is, look at all maximumsize matchings, and choose the one with the largest weight, using weight function $f(x)=\log x$.

Feasible workload space, $f(x)=x^{1 / 2}$

(

Feasible workload space, $f(x)=x^{2}$

Calculating the probability of overflow

Suppose the line card for input port 1 has buffer B, i.e. loss will occur if packets arrive on input port 1 when $W_{1}=B$.

We have seen that the workload process W evolves like a reflected Brownian motion. We know the drift, the state space, and the angles of reflection.

We would like to calculate $\mathbb{P}\left(W_{1} . \geq B\right)$.

- Perhaps amenable to numerical estimation, if B small.
- Perhaps amenable to calculation using large deviations techniques, if B large.

