
second year review

Resource Pooling
Damon Wischik, UCL



wifi

through-

put [Mb/s]

3G 

through-

put [Mb/s]

time 

[min]

We have a working implementation of multipath transport

wifi

3G

laptop 

with 

multipath 

TCP

server 

with 

multipath 

TCP



This user clearly benefits from multipath. But is it safe for the 
network and other users? Or does it cause instability, route 
flap, unfairness, disaster?



This user clearly benefits from multipath. But is it safe for the 
network and other users? Or does it cause instability, route 
flap, unfairness, disaster?

I. Resource pooling as a design principle
The earliest design goal of the Internet aimed to achieve “resource 
pooling”. Multipath transport is a natural extension. It can improve 
resilience to traffic surges and link failures.

II. A metric for resource pooling (WP1+WP2)
If multipath load balancing is done right, then the network achieves 
some degree of resource pooling. We have a metric for measuring 
how much, given the topology and traffic matrix.

III. A coupled congestion control algorithm (WP2)
We have designed and implemented a multipath congestion control 
algorithm that balances load, and we can guarantee it’s safe to 
deploy (but it’s harder than you’d think to do it right)



I. Resource pooling as a design principle
Resource pooling means “making a collection of resources 
behave like a single pooled resource”. It has been a design 
goal of the Internet from the beginning.

A single link, 

split into two 

circuits

Packet switching 

“pools” the two 

circuits

Multipath “pools” 

the two links



Resource pooling means the network is better able to 
accommodate a surge in traffic

or a loss of capacity

by shifting traffic and thereby “diffusing” congestion 
across the network.





Resource pooling relies on there being enough path choices, and 
enough traffic that can make a choice

Topic II. How much resource pooling can be achieved, given a set of 
multipath routes and a traffic matrix?

Will there be one big pool, or many small pools?

The network has 

split into two 

resource pools, 

because neither of 

the bottom two 

flows can access 

the top resource 

pool. 



Resource pooling relies on proper load-balancing by the end-systems

Topic III. Can we design a congestion controller such that users react in 
the right way to achieve resource pooling?

If they don’t, there may be a single pool but it won’t be shared properly.

Using an idealized 

coupled congestion 

controller, there is 

resource pooling

Using separate 

TCP controllers 

for each path, 

congestion is 

not equalized 

and capacity is 

not shared



Topic II. How much resource pooling can be achieved, 
given a set of multipath routes and a traffic matrix?

For the purposes of network-wide resource pooling,

• Is it sufficient to use end-host addressing?

• How much path diversity is enough, and what sort of 
diversity is useful?

To answer this, we first need a metric for the amount of 
resource pooling that a network achieves.



How should we measure resource pooling? It means
“making a collection of resources 
behave like a single pooled resource”.

To measure resource pooling, we need to decide what we 
mean by “behave” and “like a single resource”.

“Behave”
We’ve seen that resource pooling has 

the effect that congestion hotspots can 

be diffused across the network. So the 

behaviour I shall examine is “what is the 

change in congestion at a link, in 

response to a change in the capacity at 

that link?”

“Like a single resource”
Suppose for example that

• at an isolated link with capacity 

100Mb/s, the loss of 50Mb/s increases 

packet loss by a factor of 20

• at an isolated link with capacity 1Gb/s, 

the loss of 50Mb/s increases packet 

loss by a factor of 1.03

• at a resource-pooling link with capacity 

100Mb/s, the loss of 50Mb/s increases 

packet loss by a factor of 1.03

Then we’ll say that the “effective pooled 

capacity at that link” is 1Gb/s.



Theorem
In a network with idealized multipath congestion control, the change in 
loss rate at link j in response to a given drop in capacity is the same as 
would be experienced by an isolated link whose capacity is Cj /(1-Ψjj) 
where Cj is the actual link’s capacity.

I call Ψjj the “poolability score”, and Cj/(1-Ψjj) the “effective pooled 
capacity”.



GEANT data provided by WP1—

multipath routes, link capacities, and traffic matrices



2005-05-04 16:30:00

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 17:45:00 

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 19:00:00 

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 20:15:00

Colours show utilization

Grey shows effective pooled capacity



Topic III. Can we design a congestion controller such that 
users react in the right way to achieve resource pooling?

To achieve this, we thought it would be a simple matter of taking a 
published “fluid model” of a load-balancing congestion controller, 
and implementing it. [Kelly+Voice, 2005]

We were wrong.

In the analysis of resource pooling, I assumed an idealized 
congestion controller: one which knows exactly the level of 
congestion on each path, and shifts its traffic onto the least 
congested.



The idealized congestion control algorithm puts all its traffic on the 
least congested path. This can a failure of load balancing, when 
congestion levels vary.

Each flow 
should get 
1/5 of the 
pool.

The multipath flow 
should shift to using 
the top link. Then 
each flow gets 1/4 
of the pool.

The multipath flow 
is not using the 
lower link, so it 
never learns it 
should shift back.



The noisy nature of congestion feedback makes it difficult to 
estimate congestion levels.

▼ ▼ ▼ ▼ ▼ ▼▼
▼ ▼

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲

▼ ▼ ▼ ▼ ▼ ▼ ▼random

drops

random

drops

The top link 
is so
congested!

I better switch 
to the bottom 
link.

Now the bottom 
link is more 
congested!

loss rate 1%

loss rate 1%

▲▲



The information feedback stream (packet drops, delays) is noisy. To get a 
good measure of the true state of the link, we have to average the 
signal.

But congestion is not static. To react promptly to changes in 
congestion, we have to look only at recent data about congestion, 
and we should constantly probe all paths.

The Zen of resource pooling
To pool resources effectively, the 
end-system should not try too hard 
to pool resources.

Instead, it should maintain 
equipoise, i.e. balance its 
traffic rate across its paths, 
to the extent necessary to 
achieve resource pooling.



We devised a parameterized family of multipath congestion 
control algorithms, indexed by φϵ[0,2], to investigate the 
tradeoff between load balancing and equipoise.

φ=0

the idealized congestion 

controller, inspired by 

Kelly+Voice

φ=2

run independent TCP 

control on each path



φ=0

good at resource pooling: 

even though the links have unequal 

capacities, congestion is balanced 

perfectly

φ=2

bad at resource pooling:

the low-capacity link is 

highly congested

How good is this congestion controller at achieving 
resource pooling, in a static network?



φ=0

bad at resource pooling: 

shifts too enthusiastically to the less 

loaded link, and is slow to learn when 

the other link improves

φ=2

good at resource pooling:

constantly probes both links, 

so learns quickly when 

congestion levels change

How good is this congestion controller at achieving 
resource pooling, in a dynamic network?



the naïve coupled congestion 

controller, inspired by Kelly+Voice

φ=0

good at resource pooling: 

even though the links have unequal 

capacities, congestion is balanced 

perfectly

bad at resource pooling: 

shifts too enthusiastically to the less 

loaded link, and is slow to learn when 

the other link improves

run independent TCP control 

on each path

φ=2

bad at resource pooling:

the low-capacity link is highly 

congested

good at resource pooling:

constantly probes both links, 

so learns quickly when 

congestion levels change

static 

network

dynamic 

network



We tweaked the φ algorithm, to ensure fairness with TCP. 

We assign a weight to each link, and run a weighted version of the φ-algorithm. We 
have an adaptive algorithm for choosing the weights, to guarantee that

• the multipath user gets as least as much throughput as if he/she used the best 
single path

• the multipath user takes no more bandwidth on any link than a single-path TCP 
would.

more congested

short RTT

less congested

long RTT



The 3G link has lower drop probability. We’d prefer to use the 3G 
link, to get resource pooling.

But the 3G link has a long RTT, so single-path TCP gets low 
throughput. We shouldn’t take any more than single-path TCP 
would.

Therefore we need to keep some traffic on the wifi link, so that 
the multipath user gets as good throughput as if he used single-
path TCP.

wifi throughput

[Mb/s]
Congested, short RTT

3G throughput

[Mb/s]
Uncongested, long RTT

what a 

multipath 

flow gets

what a single-

path TCP flow 

gets

time 

[0—12 

min]



We have a working implementation of multipath 
transport.

It achieves a reasonable degree of load 
balancing.

This means that the network achieves some degree 
of resource pooling (subject to having good enough 
routes).

It maintains a reasonable degree of equipoise. 
This means it adapts sensibly to fluctuating 
congestion.

It is guaranteed to be fair compared to TCP.

The algorithm is ready for deployment. It is an 
experimental RFC in the mptcp working group at 
the IETF.

The work has been submitted to a top conference.



Ongoing research topics

How can we use poolability scores to help design a multipath 
routing algorithm? Is it sufficient to rely on end-host addressing?

The poolability analysis assumed idealized congestion control, 
which shifts all its traffic onto the least congested paths. But 
equipoise and fairness mean that such behaviour is not good. 
How does this impact resource pooling?

What is a principled way to choose the tradeoff between load 
balancing and equipoise?

What is the impact of resource pooling on competition and 
pricing?


