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Burst-switching

Suppose there are not enough wavelengths

to set up a full static wavelength-routed net-

work.

Q. How to achieve full connectivity?

—Let the ingress nodes collect packets and

assemble them into bursts.

—Send data in bursts, instead of as a con-

tinuous flow; interleave bursts from different

flows on the same wavelength.

Q. How to dynamically assign network re-

sources? How to control burst assembly and

transmission?

—Bayvel: the ingress node collects several

packets then asks ‘Please allocate me a light-

path so I can send a burst’.

—Qiao: the ingress node collects several pack-

ets, warns the network ‘I shall shortly send a

burst’, then sends it without waiting for a

reply.



Burst-slotting

If traffic is predictable, why not

—tell the network ‘I shall have bursts to send

every T seconds; please ensure I can send

them’

—adjust T according to traffic

—signal a new choice of T every T ∗ seconds

Adaptive burst assembly

X(s, t] = work arriving in (s, t]

B = ingress-node buffer size

Choose T to satisfy QoS constraints:

Delay constraint

T ≤ Tmax

Loss constraint

P(X(t, t+ T ] ≥ B) ≤ e−γ



Adaptive burst assembly

We have designed an algorithm based on

− log P(X(0, t] ≥ b) ≈ (b − µt)2

2Vt

where µ=mean rate and Vt = VarX(0, t].

The algorithm measures how often the buffer

contents reach a threshold b, and infers the

probability of overflowing the buffer B.

It measures µ and the overflow probability,

over a given timescale T ∗.



Adaptive burst assembly

Traffic (arrival rate):
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—When the mean arrival rate doubles, T

halves, so that the average burst size stays

the same.

—When the input becomes more variable,

the mean burst size decreases, to retain qual-

ity of service.



The Algorithm

updateBurstFreq[B_,γtarget_,ω_][w_,t_,{µold_,γold_}] :=
Module [ {µ,b,γ,γγ,δt,tnew},
µ = ω(1/t) w/t + (1− ω(1/t)) µold;
If [ µt ≥ B,

{Max[Floor[B/µ − 0.1],1],{µ, γtarget}},
γ = If [ µold t ≥ B, 0, µold

µ

(
B−µ t

B−µold t

)2
γold];

b = µ t + 0.1 (B-µt);

γγ =
(

b−µt
B−µt

)2
γ;

γγ = - Log[ω(1/t) Indicator[w≥b] + (1−ω(1/t)) Exp[−γγ]];

γ =
(

B−µt
b−µt

)2
γγ;

δt = t
(

γ−γtarget
γ

) (
B−µt
B+µt

)
;

tnew = Max[Round[t+0.2δt],1];
{tnew,{µ, γ}}
] ]

(* B=buffer size;
γtarget=target loss.prob;
ω=weight for moving average;
µold=current est. of mean rate;
γold=current est. of loss.prob;
w=size of most recent burst;
t=current burst-timescale *)



Timescales

—Let T ∗ be the timescale of adaptation.
—Measure µ and VT over timescale T ∗.

—The larger T ∗, the less often the network
needs to be reconfigured.

—The smaller T ∗, the smaller the estimate
of VT , and the more efficiently the network

can be run.
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Self-similarity
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Left. Internet traffic (left) is bursty at all timescales,
while a traditional Gaussian traffic model (right), matched
to have the same mean and variance, is not. The top
plots have the finest time-scale; each subsequent plot
shows a four-fold longer time-scale.

Right. Internet traffic (left) becomes smoother as it
is aggregated, as does a traditional Gaussian traffic
model (right), matched to have the same mean and
variance. The top plots show traffic from a single
flow; each subsequent plot shows a four-fold increase
in the level of aggregation.

Source: Bellcore ethernet traffic trace



Multiplexing

Consider a single link:

—L sources

—source i sends a burst every Ti seconds

—time to transmit a burst is d seconds

—Λ wavelengths available

Need

Λ ≥
L∑

i=1

d T−1
i



Erlang model

Contrast to Erlang model, in which bursts:
—arrive in L Poisson streams of rate ν.
—take time ∼ exp(mean d/µ) to transmit.

If we require

P(burst blocked) ≤ e−γ

then the maximum allowed arrival rate is

Lν ≤ Λµ

d
Λ−γ/Λ.

Contrast to burst-slotted model. If we re-
quire

P(burst-assembly buffer overlows) ≤ e−γ

then

T ≤ 1

ν

(√
µB −√

γ
)2

and maximum allowed arrival rate is

Lν ≤ Λµ

d

(√
B −

√
γ/µ

)2
.

Notice: the benefits of buffering; the more
efficient use of wavelengths.



Multiplexing model

In a simple multiplexing model:
—Λ wavelengths available
—L streams of packets
—each stream is a Poisson process of rate ν

—all packets the same size
—assembled into bursts of size B

—takes time d to transmit a burst.

If we require

log P(burst blocked) ≤ e−γ

then

Λ

L
≥ dν

B
+

√
2γ

L

dν

B

(
1− dν

B

)
.

Contrast to the burst-slotted model:

Λ

L
≥ dν

B
+

dν

B

( √
2γ

1−√
2γ

)
.

Notice: burst-slotted model makes more ef-
ficient use of the buffer; but does not benefit
from multiplexing.



Networks

Adaptation. How can networks adapt to

changing traffic loads?

Timescales. Over what timescale does this

adaptation take place?

Capacity. What is the most traffic a network

can carry? Where are the bottlenecks?



Network adaptation

Fast optical switch model. Suppose that

an optical switch can reconfigure itself very

quickly, and send each burst in a different di-

rection.

Q. Given the demands Ti from all the flows,

what switching schedules should all the switch

follow?



Network adaptation

Reflector model. Suppose that optical switches

reconfigure slowly, but that ingress-nodes can

adapt quickly.

—Designate some interior nodes as reflec-

tors.

—Set up a static wavelength-routed network,

in which some paths are direct and others go

via (a choice of) reflectors.

—Let each reflector convert incoming bursts

into electronic packets, classify them, con-

vert them back into optical bursts (possibly

on a different wavelength).

Q. How to adapt, over two timescales?

—Long timescale: Which nodes should be

reflectors? How should the routing be done?

Which paths should be direct, and which go

via a reflector?

—Short timescale: How should an ingress

node divide its traffic among reflectors?



Bottleneck cuts

Routing choice leads naturally to the idea of

bottleneck cuts. If for any set of links C there

is total traffic ρ(C) which must go across C,

then we need

Λ|C| ≥ ρ(C) for all C.
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Left. With fixed routing, there is a single

bottleneck link B, which determines

Λ ≥ 8 + 2.

Right. When there is routing choice, we find

a bottleneck cut {A, B}, which determines
2Λ ≥ 4+ 6+ 8.



Network capacity

As demand changes, the bottleneck cut will

move around the network.

The network adapts over two timescales (un-

der the reflector model):

Slow timescale. Network should select re-

flectors and routes to minimize the bottle-

neck cut constraint.

Fast timescale. Ingress nodes should choose

the proportion of flow to send via each reflec-

tor, so as to avoid the bottleneck cut where

possible.

These decisions should be made using traf-

fic measurements taken over the respective

timescales.


