
Multipath TCP
Mark Handley
Costin Raiciu
Damon Wischik
UCL



We have a working implementation of multipath transport
wifi

3G

laptop 
with 
multipath 
TCP

server 
with 
multipath 
TCP



wifi
through-
put [Mb/s]

3G 
through-
put [Mb/s]

time 
[min]

We have a working implementation of multipath transport
wifi

3G

laptop 
with 
multipath 
TCP

server 
with 
multipath 
TCP



This user clearly benefits from multipath. But is it safe for the 
network and other users? Or does it cause instability, route 
flap, unfairness, disaster?



This user clearly benefits from multipath. But is it safe for the 
network and other users? Or does it cause instability, route 
flap, unfairness, disaster?

I. Resource pooling as a design principle
The earliest design goal of the Internet aimed to achieve “resource 
pooling”, and multipath transport is a natural extension.

II. How to measure the pooling potential of a multipath topology
We have a metric for measuring how much resource pooling there 
can be, given the topology and traffic matrix. This will be useful for 
designing multipath routing algorithms.

III. A coupled congestion control algorithm
We have designed and implemented a multipath congestion control 
algorithm that balances load, and we can guarantee it’s safe to 
deploy (but it’s harder than you’d think to do it right)



I. Resource pooling as a design principle
Resource pooling means “making a collection of resources 
behave like a single pooled resource”. It has been a design 
goal of the Internet from the beginning.

A single link, 
split into two 
circuits

Packet switching 
“pools” the two 
circuits

Multipath “pools” 
the two links



Resource pooling means the network is better able to 
accommodate a surge in traffic

or a loss of capacity

by shifting traffic and thereby “diffusing” congestion 
across the network.



The Internet already has resource pooling, in the form of 
multi-homing, BGP, etc.



The Internet already has resource pooling, in the form of 
multi-homing, BGP, etc.



The Internet already has resource pooling, in the form of 
multi-homing, BGP, etc.



The Internet already has resource pooling, in the form of 
multi-homing, BGP, etc.

We think resource pooling should be achieved by end-system multipath. 
This would harness the rapid responsiveness of end systems.













Resource pooling relies on there being enough path choices, and 
enough traffic that can make a choice.

Topic II. How much resource pooling can be achieved, given a set of 
multipath routes and a traffic matrix?
Will there be one big pool, or many small pools?

The network 

has split into 

two resource 

pools, because 

neither of the 

bottom two 

flows can 

access the top 

resource pool. 

There is enough 

diversity of useful 

paths to achieve 

complete 

resource pooling.



Resource pooling relies on proper load-balancing by the end-systems.

Topic III. Can we design a congestion controller such that users react in 
the right way to achieve resource pooling?
If they don’t, there may be a single pool but it won’t be shared properly.

Using an idealized 

coupled congestion 

controller, there is 

resource pooling

Using separate 

TCP controllers 

for each path, 

congestion is 

not equalized 

and capacity is 

not shared



Topic II. How much resource pooling can be achieved, 
given a set of multipath routes and a traffic matrix?

For the purposes of network-wide resource pooling,
• Is it sufficient to use end-host addressing?
• How much path diversity is enough, and what sort of 

diversity is useful?

To answer this, we first need a metric for the amount of 
resource pooling that a network achieves.



How should we measure resource pooling? It means
“making a collection of resources 
behave like a single pooled resource”.

To measure resource pooling, we need to decide what we 
mean by “behave” and “like a single resource”.



How should we measure resource pooling? It means
“making a collection of resources 
behave like a single pooled resource”.

To measure resource pooling, we need to decide what we 
mean by “behave” and “like a single resource”.

“Behave”
Resource pooling has the consequence 

that congestion hotspots can be diffused 

across the network. So the behaviour I 

shall examine is “what is the change in 

congestion at a link, in response to a 

change in the capacity at that link?”



How should we measure resource pooling? It means
“making a collection of resources 
behave like a single pooled resource”.

To measure resource pooling, we need to decide what we 
mean by “behave” and “like a single resource”.

“Behave”
Resource pooling has the consequence 

that congestion hotspots can be diffused 

across the network. So the behaviour I 

shall examine is “what is the change in 

congestion at a link, in response to a 

change in the capacity at that link?”

“Like a single resource”
Suppose for example that

• at an isolated link with capacity 

100Mb/s, the loss of 50Mb/s increases 

packet loss by a factor of 20

• at an isolated link with capacity 1Gb/s, 

the loss of 50Mb/s increases packet 

loss by a factor of 1.03

• at a resource-pooling link with capacity 

100Mb/s, the loss of 50Mb/s increases 

packet loss by a factor of 1.03

Then we’ll say that the “effective pooled 

capacity at that link” is 1Gb/s.



A simple flow allocation problem



A simple flow allocation problem (matrix form)



A simple flow allocation problem (relaxed)



We want to know how the solution changes when capacities change. 
I shall take y to be fixed, and only look at how x changes.



Write out the complementary slackness conditions
Take the total derivative with respect to Cj for some j
Solve for dzi/dCj using linear algebra

We want to know how the solution changes when capacities change. 
I shall take y to be fixed, and only look at how x changes.



Theorem
At an isolated link,

In a network with idealized multipath congestion control

I call Ψjj the “poolability score”, and Cj/(1-Ψjj) the “effective pooled 
capacity”.



If the poolability score is Ψjj ≈1 then the link sheds load easily.
If the poolability score is Ψjj ≈0 then the link is “solitary”.



If the poolability score is Ψjj ≈1 then the link sheds load easily.
If the poolability score is Ψjj ≈0 then the link is “solitary”.



There is a close link between the
multi-commodity flow problem, and the multipath rate problem.



There is a close link between the
workloads in heavy traffic, and poolability.



GEANT data provided by UCL Belgium

multipath routes, link capacities, and traffic matrices



2005-05-04 16:30:00

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 17:45:00 

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 19:00:00 

Colours show utilization

Grey shows effective pooled capacity



2005-05-04 20:15:00

Colours show utilization

Grey shows effective pooled capacity



Topic III. Can we design a congestion controller such that 
users react in the right way to achieve resource pooling?

To achieve this, we thought it would be a simple matter of taking a 
published “fluid model” of a load-balancing congestion controller, 
and implementing it. 
[Kelly+Voice, 2005; Han, Shakkottai, Hollot, Srikant, Towsley (2006)]

In the analysis of resource pooling, I assumed an idealized 
congestion controller: one which knows exactly the level of 
congestion on each path, and shifts its traffic onto the least 
congested.



Topic III. Can we design a congestion controller such that 
users react in the right way to achieve resource pooling?

To achieve this, we thought it would be a simple matter of taking a 
published “fluid model” of a load-balancing congestion controller, 
and implementing it. 
[Kelly+Voice, 2005; Han, Shakkottai, Hollot, Srikant, Towsley (2006)]

We were wrong.

In the analysis of resource pooling, I assumed an idealized 
congestion controller: one which knows exactly the level of 
congestion on each path, and shifts its traffic onto the least 
congested.



The idealized congestion control algorithm puts all its traffic on the 
least congested path. This can a failure of load balancing, when 
congestion levels vary.

Each flow 
should get 
1/5 of the 
pool.

The multipath flow 
should shift to using 
the top link. Then 
each flow gets 1/4 
of the pool.

The multipath flow 
is not using the 
lower link, so it 
never learns it 
should shift back.



The noisy nature of congestion feedback makes it difficult to 
estimate congestion levels.

▼ ▼▼ ▼ ▼ ▼▼ ▼▼

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲

▼ ▼ ▼▼ ▼▼ ▼random
drops

random
drops

The top link 
is so
congested!

I better switch 
to the bottom 
link.

Now the bottom 
link is more 
congested!

loss rate 1%

loss rate 1%

▲▲



Multipath congestion control theory has been developed by Kelly and Voice (2005), 
and by Han, Shakkottai, Hollot, Srikant, Towsley (2006).

Interpretation
• Increase xr by a constant, every time you get an acknowledgement on path r
• Decrease xr by an amount proportional to ys(r) if you detect a drop on path r

There is a large body of work on fluid models of congestion control: 
• write down a network utility maximization problem,
• write down a system of differential equations, 
• show that the (unique) fixed point solves the utility maximization,
• and interpret it as a discrete congestion control algorithm.



How we expect the fluid model to behave:



How they behave in simulation:

When there are many 
flows, then each flow 
will flip independently, 
and the aggregate will 
behave how the fluid 
models predict.



The information feedback stream (packet drops, delays) is noisy. To get a 
good measure of the true state of the link, we have to average the 
signal.

But congestion is not static. To react promptly to changes in 
congestion, we have to look only at recent data about congestion, 
and we should constantly probe all paths.



The information feedback stream (packet drops, delays) is noisy. To get a 
good measure of the true state of the link, we have to average the 
signal.

But congestion is not static. To react promptly to changes in 
congestion, we have to look only at recent data about congestion, 
and we should constantly probe all paths.

The Zen of resource pooling
To pool resources effectively, the 
end-system should not try too hard 
to pool resources.

Instead, it should maintain 
equipoise, i.e. balance its 
traffic rate across its paths, 
to the extent necessary to 
achieve resource pooling.



We devised a parameterized family of multipath congestion 
control algorithms, indexed by φϵ[0,2], to investigate the 
tradeoff between load balancing and equipoise.

φ=0

the idealized congestion 

controller, inspired by 

Kelly+Voice

φ=2

run independent TCP 

control on each path



φ=0

good at resource pooling: 

even though the links have unequal 

capacities, congestion is balanced 

perfectly

φ=2

bad at resource pooling:

the low-capacity link is 

highly congested

How good is this congestion controller at achieving 
resource pooling, in a static network?



φ=0

bad at resource pooling: 

shifts too enthusiastically to the less 

loaded link, and is slow to learn when 

the other link improves

φ=2

good at resource pooling:

constantly probes both links, 

so learns quickly when 

congestion levels change

How good is this congestion controller at achieving 
resource pooling, in a dynamic network?



the naïve coupled congestion 

controller, inspired by Kelly+Voice

φ=0

good at resource pooling: 

even though the links have unequal 

capacities, congestion is balanced 

perfectly

bad at resource pooling: 

shifts too enthusiastically to the less 

loaded link, and is slow to learn when 

the other link improves

run independent TCP control 

on each path

φ=2

bad at resource pooling:

the low-capacity link is highly 

congested

good at resource pooling:

constantly probes both links, 

so learns quickly when 

congestion levels change

static 

network

dynamic 

network



the naïve coupled congestion 

controller, inspired by Kelly+Voice

φ=0

good at resource pooling: 

even though the links have unequal 

capacities, congestion is balanced 

perfectly

bad at resource pooling: 

shifts too enthusiastically to the less 

loaded link, and is slow to learn when 

the other link improves

run independent TCP control 

on each path

φ=2

bad at resource pooling:

the low-capacity link is highly 

congested

good at resource pooling:

constantly probes both links, 

so learns quickly when 

congestion levels change

static 

network

dynamic 

network



We tweaked the φ algorithm, to ensure fairness with TCP. 

We assign a weight to each link, and run a weighted version of the φ-algorithm. We 
have an adaptive algorithm for choosing the weights, to guarantee that
• the multipath user gets as least as much throughput as if he/she used the best 

single path
• the multipath user takes no more bandwidth on any link than a single-path TCP 

would.

more congested
short RTT

less congested
long RTT



The 3G link has lower drop probability. We’d prefer to use the 3G 
link, to get resource pooling.

But the 3G link has a long RTT, so single-path TCP gets low 
throughput. We shouldn’t take any more than single-path TCP 
would.

Therefore we need to keep some traffic on the wifi link, so that 
the multipath user gets as good throughput as if he used single-
path TCP.

wifi throughput

[Mb/s]
Congested, short RTT

3G throughput

[Mb/s]
Uncongested, long RTT

what a 

multipath 

flow gets

what a single-

path TCP flow 

gets

time 

[0—12 

min]



Theorem
Let xr be the fixed-point throughput on path r of our multipath 
algorithm, and let xr

TCP be the throughput that a single-path TCP flow on 
that path. Assume that packet drop probabilities are given. Then



But is there a principled way to think about the congestion 
control problem?



* * *

“Resource pricing and the evolution of congestion control”, 
Gibbens and Kelly, 1999.

But is there a principled way to think about the congestion 
control problem?



But is there a principled way to think about the congestion 
control problem?



This is the Bellman 
equation for a long-
term average-cost 

dynamic programming 
problem. 

Note: this equation is a toy model for single-path 

congestion control, not multipath.!

Control: at what rate the user should send 

packets

State: the user’s current belief about the 

network

Plant: Bayesian update of user’s beliefs, 

based on acknowledgements and drops, and 

incorporating a preconceived notion of how 

quickly congestion levels might fluctuate



We consider a model in which, 
each round trip time (RTT), 
the user chooses how many 
packets to send in that RTT. 
We assume u ϵ {0,1,…,umax}.

D is the number of dropped 
packets. The reward is u-D, 

the number of delivered 
packets. The cost is γD, for 

some constant γ>0.



The distribution of D
depends on the packet drop 

probability, Q.

The user’s current Bayesian 
belief about Q is specified by 

a Beta distribution, 
parameterized by n and p. 

(Here, p is the expected drop 
probability and n is the 

“amount of evidence” for p.)

The user’s belief about q is 
updated every RTT, in two ways:

the user gains information about 
the distribution of Q, from 

observing D

congestion levels may change 
over an RTT, which adds 

uncertainty to the distribution of 
Q. That is, the network is a 

restless bandit.





I solved the Bellman 
equation numerically, 
and derived an optimal 
congestion control 
algorithm.

I then ran this algorithm 
on a link with packet 
drop probability 0.02.



SUMMARY. We have a working implementation of 
multipath transport.

It achieves a reasonable degree of load 
balancing.

This means that the network achieves some degree 
of resource pooling (subject to having good enough 
routes).

It maintains a reasonable degree of equipoise. 
This means it adapts sensibly to fluctuating 
congestion.

It is guaranteed to be fair compared to TCP.

The algorithm is ready for deployment. It is an 
experimental RFC in the mptcp working group at 
the IETF.

This means that the network achieves some degree 
of resource pooling (subject to having good enough 

It maintains a reasonable degree of equipoise. 



Ongoing research topics

How can we use poolability scores to help design a multipath 
routing algorithm? Is it sufficient to rely on end-host addressing?

Can multipath TCP help achieve resource pooling in data 
centres?

Can multipath TCP make good routing choices in ad-hoc wireless 
networks?

Does the dynamic programming approach shed light on CUBIC, 
Compound TCP etc.? Why has classic TCP worked so well?

What is the impact of resource pooling on competition and 
pricing? Will it drive network operators to switch to congestion 
volume pricing?




