
The teleology of
Internet congestion control
Damon Wischik, Computer Science, UCL

What network am I looking at?

There is the physical network, that
describes which computers and
switches are connected by which links.

There is the logical network, that
describes which users are using which
paths through the network.

This talk is about traffic flows. Each
traffic flow belongs to some user, and
is carried over some collection of
computers and switches. One user's
traffic flow influences other users'
flows indirectly, by virtue of the links
they use in common.

teleology
from the Greek τελος (end) + -λογια (discourse, study)

The doctrine or study of ends or final causes,
especially as related to the evidences of design or
purpose in nature; also transf. such design as
exhibited in natural objects or phenomena.

The history of the Internet

• 1974: First draft of TCP/IP
“A protocol for packet network interconnection”,
Vint Cerf and Robert Kahn

• 1983: ARPANET switches on TCP/IP

• 1986: Congestion collapse

“In October of ’86, the Internet had the
first of what became a series of
‘congestion collapses’. During this period,
the data throughput from LBL to UC
Berkeley (sites separated by 400 yards
and two IMP hops) dropped from 32 Kbps
to 40 bps. We were fascinated by this
sudden factor-of-thousand drop in
bandwidth and embarked on an
investigation of why things had gotten so
bad.”

Van Jacobson, “Congestion avoidance and
control”, 1988

The history of the Internet

• 1974: First draft of TCP/IP
“A protocol for packet network interconnection”,
Vint Cerf and Robert Kahn

• 1983: ARPANET switches on TCP/IP

• 1986: Congestion collapse

• 1988: Congestion control for TCP
“Congestion avoidance and control”, Van Jacobson

and not much has happened since (apart from the
web, Google, eBay, Facebook, BitTorrent, …)

Each user should increase his/her transmission rate
when the network seems underused, and cut it
when one of his/her packets is dropped (which
signifies congestion).

If all users do this, the network ends up near-100%
used, and the capacity is shared fairly.

* * *

* * * * * * * * * * * * * **

Jacobson’s big idea

if (seqno > _last_acked) {
if (!_in_fast_recovery) {

_last_acked = seqno;
_dupacks = 0;
inflate_window();
send_packets(now);
_last_sent_time = now;
return;
}

if (seqno < _recover) {
uint32_t new_data = seqno - _last_acked;
_last_acked = seqno;
if (new_data < _cwnd) _cwnd -= new_data;

else _cwnd=0;
_cwnd += _mss;
retransmit_packet(now);
send_packets(now);
return;
}

uint32_t flightsize = _highest_sent - seqno;
_cwnd = min(_ssthresh, flightsize + _mss);
_last_acked = seqno;
_dupacks = 0;
_in_fast_recovery = false;
send_packets(now);
return;
}

if (_in_fast_recovery) {
_cwnd += _mss;
send_packets(now);
return;
}

_dupacks++;
if (_dupacks!=3) {

send_packets(now);
return;
}

_ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));
retransmit_packet(now);
_cwnd = _ssthresh + 3 * _mss;
_in_fast_recovery = true;
_recover = _highest_sent;
}

tr
a

n
sm

is
si

o
n

 r
a

te
 [

0
–1

0
0

 k
B

/s
ec

]

time [0–8 sec]

Jacobson’s big idea was that congestion
could be controlled by relying on users to
respond sensibly.

The big telecoms companies did not
believe him. (They still don’t want to.)

Why should they?

if (seqno > _last_acked) {
if (!_in_fast_recovery) {

_last_acked = seqno;
_dupacks = 0;
inflate_window();
send_packets(now);
_last_sent_time = now;
return;
}

if (seqno < _recover) {
uint32_t new_data = seqno - _last_acked;
_last_acked = seqno;
if (new_data < _cwnd) _cwnd -= new_data;

else _cwnd=0;
_cwnd += _mss;
retransmit_packet(now);
send_packets(now);
return;
}

uint32_t flightsize = _highest_sent - seqno;
_cwnd = min(_ssthresh, flightsize + _mss);
_last_acked = seqno;
_dupacks = 0;
_in_fast_recovery = false;
send_packets(now);
return;
}

if (_in_fast_recovery) {
_cwnd += _mss;
send_packets(now);
return;
}

_dupacks++;
if (_dupacks!=3) {

send_packets(now);
return;
}

_ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));
retransmit_packet(now);
_cwnd = _ssthresh + 3 * _mss;
_in_fast_recovery = true;
_recover = _highest_sent;
}

We can derive
macroscopic formulae
which tell us about the
average behaviour of
each component.

But how does the
whole behave?

We know the
microscopic rules of
behaviour of the
Internet, i.e. the
code.

The Internet shares capacity as if there were an
intelligent designer+controller who seeks to maximize
the sum total of every user’s happiness with his/her
lot, subject to available capacity on each link.

Theorem
(Kelly et al. 1998, Towsley et al. 2000)

The Internet's algorithms behave as if the network as a
whole were trying to solve an optimization problem.

I call this emergent teleology.

Theorem
(Kelly et al. 1998, Towsley et al. 2000)

2 4 6 8 10 12 14

Your implied utility function

Microscopic rules of
behaviour, specified
by the code

Macroscopic formulae
for average behaviour
of a component

Teleological
descriptions of how
the whole behaves

if (seqno > _last_acked) {
if (!_in_fast_recovery) {

_last_acked = seqno;
_dupacks = 0;
inflate_window();
send_packets(now);
_last_sent_time = now;
return;
}

if (seqno < _recover) {
uint32_t new_data = seqno - _last_acked;
_last_acked = seqno;
if (new_data < _cwnd) _cwnd -= new_data;

else _cwnd=0;
_cwnd += _mss;
retransmit_packet(now);
send_packets(now);
return;
}

uint32_t flightsize = _highest_sent - seqno;
_cwnd = min(_ssthresh, flightsize + _mss);
_last_acked = seqno;
_dupacks = 0;
_in_fast_recovery = false;
send_packets(now);
return;
}

if (_in_fast_recovery) {
_cwnd += _mss;
send_packets(now);
return;
}

_dupacks++;
if (_dupacks!=3) {

send_packets(now);
return;
}

_ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));
retransmit_packet(now);
_cwnd = _ssthresh + 3 * _mss;
_in_fast_recovery = true;
_recover = _highest_sent;
}

Research agenda

form + functiontopology + algorithms

There has been much work on the structure of complex networks (scale
free topologies etc.)

In Internet architecture, we are more interested in how algorithms
function over the network. We treat the topology as a given, and we
seek robust algorithms that work well with any topology or traffic
pattern.

There is one area where the two fields overlap…

Where topology and algorithms overlap:
We conjecture that if users have sufficiently diverse paths, and they
balance their traffic appropriately, then the Internet will achieve
resource pooling, i.e. it will behave as if there were a single giant link,
fairly shared between all users.

“I want to book a train to Aberdeen. There’s spare
capacity on the train to Bristol. Therefore my booking
will be accepted.”

Formally speaking, we believe that multipath congestion
control will change the constraint in the teleology.

if (seqno > _last_acked) {
if (!_in_fast_recovery) {

_last_acked = seqno;
_dupacks = 0;
inflate_window();
send_packets(now);
_last_sent_time = now;
return;
}

if (seqno < _recover) {
uint32_t new_data = seqno - _last_acked;
_last_acked = seqno;
if (new_data < _cwnd) _cwnd -= new_data;

else _cwnd=0;
_cwnd += _mss;
retransmit_packet(now);
send_packets(now);
return;
}

uint32_t flightsize = _highest_sent - seqno;
_cwnd = min(_ssthresh, flightsize + _mss);
_last_acked = seqno;
_dupacks = 0;
_in_fast_recovery = false;
send_packets(now);
return;
}

if (_in_fast_recovery) {
_cwnd += _mss;
send_packets(now);
return;
}

_dupacks++;
if (_dupacks!=3) {

send_packets(now);
return;
}

_ssthresh = max(_cwnd/2, (uint32_t)(2 * _mss));
retransmit_packet(now);
_cwnd = _ssthresh + 3 * _mss;
_in_fast_recovery = true;
_recover = _highest_sent;
}

Engineering agenda

Work out macroscopic
formulae for the
average behaviour of a
component

Invent microscopic
code that yields this
macroscopic
behaviour

Decide on the
teleology that we
want

(We don't want
network topology to
be a constraint, only
total network
capacity.)

