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Abstract— In large multiplexers with many TCP flows,
the aggregate traffic flow behaves predictably; this is a
basis for the fluid model of Misra, Gong and Towsley [1]
and for a growing literature on fluid models of congestion
control. In this paper we argue that different fluid models
arise from different buffer-sizing regimes. We consider
the large buffer regime (buffer size is bandwidth-delay
product), an intermediate regime (divide the large buffer
size by the square root of the number of flows), and
the small buffer regime (buffer size does not depend on
number of flows). Our arguments use various techniques
from queueing theory.

We study the behaviour of these fluid models (on a
single bottleneck link, for a collection of identical long-
lived flows). For what parameter regimes is the fluid
model stable, and when it is unstable what is the size of
oscillations and the impact on goodput? Our analysis uses
an extension of the Poincaŕe-Linstedt method to delay-
differential equations.

We find that large buffers with drop-tail have much
the same performance as intermediate buffers with either
drop-tail or AQM; that large buffers with RED are better
at least for window sizes less than 20 packets; and that
small buffers with either drop-tail or AQM are best over
a wide range of window sizes, though the buffer size must
be chosen carefully. This suggests that buffer sizes should
be much much smaller than is currently recommended.

I. INTRODUCTION

In 2000 Misra, Gong and Towsley [1] published a
differential equation model, also called a fluid model, for
TCP. There is now a substantial literature [2] covering a
variety of fluid models for Internet congestion control—
this begs the question of which fluid model is most
useful. One way to answer this is by simulation, and of
course every proposed model has been accompanied by
simulations. Another way is to look for limit theorems
which say that a given fluid model is obtained asymp-
totically, for example as the number of flows increases,
in some idealized system. Limit theorems can alert us
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to effects which are hard to spot with simulation—we
will describe certain instabilities which we predict are
only seen in systems with more than 5,000 or so flows,
common in backbone routers, hard to simulate1.

In this paper we will explore several different buffer-
sizing regimes. We will work with large multiplexers,
i.e. we will let the service rate be proportional to the
number of flows, and we will consider what happens
when this is very large. Now, there are several ways
to choose buffer size. In the large buffer regime we let
buffer size be proportional to the number of flows—
this is the standard rule of thumb, which says to choose
buffer equal to bandwidth-delay product. In the small
buffer regime we choose a fixed buffer size and rely on
statistical multiplexing to keep loss low. There is also
an intermediate regime suggested in [3]. We will use
various techniques from queueing theory to argue that
these three regimes lead to different fluid models. The
cornerstone of our argument is an account of the relative
timescales of queueing phenomena and of flow-control
phenomena. This approach was inspired by [4]. It has
also been used in [5] to address a very similar question,
though using different queueing-theoretic techniques.

We will then analyse these fluid models, using the
dynamical-systems techniques described in detail in [6],
[7]. We first calculate whether the system is locally
stable. (Local stability is reasonably well-understood; see
[2], [8]–[10] and references therein.) When the system
is unstable we compute the size of the limit cycles (i.e.
oscillations) in traffic rate. These limit cycles are a sign
of synchronization: when the system is locally stable the
flows are totally unsynchronized; when there are limit
cycles there is some degree of synchronization in the
TCP sawtooths; the larger the limit cycles the greater
the degree of synchronization. We also study the impact
of limit cycles on goodput. This lets us rank the different
buffer-sizing regimes, as mentioned above in the abstract.

Here is an outline of the dynamical-systems the-
ory. Given a delay-differential equation dxt/dt =
f(xt, xt−T ), first find an equilibrium point: f(x∗, x∗) =

1We are currently working on a custom large-scale simulator.
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0. Next, write down a modified system by introducing
an artificial gain parameter κ > 0:

dxt/dt = κf(xt, xt−T ). (1)

Determine local stability of the modified system, by
guessing the solution xt = x∗ + eλt and solving the
first-order approximation to (1) for λ; the system is
locally stable about x∗ if λ has negative real part. Find
the critical value κc, the largest gain κ such that the
modified system is locally stable. (Therefore the original
system is locally stable if κc > 1.) When κ > κc,
use a power series expansion based on the Poincaré-
Linstedt method to find the amplitude of the resulting
limit cycles; the answer is σ

√
κ − κc +O(κ−κc) where

σ can be calculated. Therefore the limit cycles for the
original system have amplitude ≈ σ

√
1 − κc. Since this

comes from a power series expansion, it is only accurate
when it predicts small limit cycles; we suspect that when
it predicts large limit cycles then the actual system also
behaves badly, though not in exactly the manner we have
calculated.

A limitation in this work is that we only consider a
single bottleneck router, shared by a collection long-lived
flows with common round trip time. Some local stability
results are known for networks with heterogeneous round
trip times [2], [9], [10]. Those results indicate that such
networks may have limit cycles: we therefore believe that
the behaviours we analyse here are not artefacts of our
simple setup. We hope that our work is a useful stepping
stone to a comprehensive theory.

The paper is organized thus: in Section II we review
the fluid model for TCP, and explain the connection with
buffer sizing regimes. In Sections III–VI we describe
four regimes: small buffer, intermediate buffer, large
buffer with AQM, large buffer with droptail. In Section
VII we propose a rule of thumb for deciding which of
these regimes is relevant. In Section VIII we summarize
the different regimes.

II. OVERVIEW OF LIMITING REGIMES

Consider a single bottleneck queue with service rate
NC shared by a large number N of TCP flows, each with
the same round trip time RTT. We will first recapitulate
the differential equation for TCP [1].

A. Fluid model for TCP

Consider a single TCP flow, whose window size at
time t is W (t). When there are no loss indications, W
increases by one packet every RTT; when there is a loss
indication, W is cut in half. The rate at which packets
are emitted at time t is roughly W (t)/RTT, so the rate at

which acknowledgements or loss indications are received
at time t is W (t−RTT)/RTT. Let p(t) be the packet loss
probability for packets emitted at time t. (We may as well
assume the queue is located adjacent to the source, and
that all the propagation delay comes after the queueing
delay, since the source dynamics are the same regardless
of where along the round-trip path the queue is located.
Then p(t) is the loss probability for packets which arrive
at the queue at time t.)

Suppose now there are N flows, and let W N(t) be the
sum of all the window sizes. In the interval (t, t + δ),
W N(t) changes in two ways. First, there is a decrement
due to window halving: the total number of flows which
receive loss indications is roughly

δ
W N (t − RTT)

RTT
p(t − RTT)

and (assuming each flow is equally likely to receive a
loss indication) the average reduction in window size for
each of these flows is W N(t)/2N . Second, there is an
increment of δ(N/RTT−O(δ)), since each flow increases
its window size by δ/RTT, except for those which receive
loss indications. The net change in window size is

W N (t + δ) − W N (t) ≈
δN

RTT
− W N

2N

(
δ
W N (t − RTT)

RTT
p(t − RTT)

)
.

This suggests that the average window size w(t) =
W N(t)/N should not depend on N , and should obey
a differential equation

dw(t)
dt

=
1
RTT

− w(t)
2

(w(t − RTT)
RTT

p(t − RTT)
)
. (2)

In this paper, we will find it more convenient to
work with the following reparameterization: let ρ(t) =
w(t)/CRTT be the traffic intensity, and let s = Ct, giving

dρ(s)
ds

=
1

wnd2 − ρ(s)ρ(s − wnd)p(s − wnd)
2

(3)

where wnd = CRTT.
We have made two major approximations. The first

is that each flow is equally likely to receive a loss
indication. There are versions of this differential equa-
tion which do not make this assumption, and which
additionally are able to take account of slow start,
multiple duplicate ACKs, etc., especially those in [11],
[12]. The trouble is that these more refined versions
involve partial differential equations, and we have not
yet managed to analyse the stability of the resulting
dynamical system. However, it is suggested in [1] that
“this approximation does not change the fundamental
nature of the multiplicative decrease mechanism, and we
are able to capture TCP dynamics”. This is backed up by
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the observation [11] that the partial differential equation
and the differential equation give essentially the same
results, at least for queues with AQM.

The second major approximation is that packets are
being emitted at rate W (t)/RTT at time t, which means
we are modelling a rate-based mechanism parameterized
by W (t) rather than a genuine window-based mech-
anism. The technically formidable work of Bain [13]
explicitly models window-based control, and suggests an
integro-differential equation instead of (2). Happily, it
also indicates that (2) gives very similar results, at least
in the small buffer regime.

B. Fluid model for the queue

Let the total arrival rate to the queue at time t be
XN (t) = W N(t)/RTT, and let x(t) = XN (t)/RTT. In
the interval (t, t + δ), the total arrival rate changes by
Nδx′(t) and a total of Nδx(t) packets arrive. Suppose
the queue has service rate NC and buffer size BN .
Lindley’s recursion gives us an idea of how the queue
size QN (t) will evolve:

QN (t + δ) ≈
[
QN (t) + δNx(t) − δNC

]BN

0
(4)

where [q]b0 = min(max(q, 0), b). Depending on how BN

is chosen, this can lead to different queueing models. For
example, if BN =

√
NB, then it is entirely possible for

the queue to go from empty to full in a short interval
(t, t + δ), if N is large enough; if BN = NB this is
not possible. The details of different choices for BN are
given in the following sections.

III. SMALL BUFFERS

In this section we study the choice BN = B. We will
treat the traffic flow from each source as a point pro-
cess, where the points indicate packets. We will further
assume that, over short timescales, and conditional on
the mean window size w(t), each flow can be treated as
independent.

Note that the maximum queueing delay is B/NC . For
large N , queueing delay is a negligible part of RTT.

A. Fluid model

Consider first an open-loop queueing system with N
flows, in which each flow has mean rate x. The following
theory for this system is taken from [14]. The aggregate
arrival process converges to a Poisson process2, in the

2It has been observed [15] that the packet arrival process for
Internet traffic is not Poisson. However, as is pointed out in [14], the
former work is concerned with long timescales, whereas for systems
with buffers which are O(1) it is only the short-timescale traffic
characteristics that matter, and these are approximately Poisson.

following sense: if AN (t, u) is the total number of
packets arriving in the interval (t, u), then the random
process ÃN (u) = AN (t, t+u/N) converges to a Poisson
process with rate x. This result carries through to queue
size: if QN (t) is the queue size at time t, then the
distribution of QN (t) converges to that for a queue fed
by a Poisson process with arrival rate x and served at
constant rate C , in an infinite-buffer system, assuming
x < C . We expect that this result can be extended to
a system with a finite buffer B, and thence to x ≥ C .
The loss probability for a finite-buffer open-loop queue
is thus

p = LB(x/C)

where LB(·) can be calculated by finding the equilibrium
distribution of a suitable Markov chain, as in [16], which
also explains how to incorporate AQM. It is also known
that QN (t) makes excursions of size O(1) in timescale3

O(1/N). Therefore, in any O(1) time interval, the queue
size will repeatedly hit empty and full, i.e. it will ‘loose
its memory’.

This suggests [5] that in the closed-loop system if the
mean arrival rate x(t) doesn’t change by much in a short
interval, then the the loss probability is

p(t) = LB(ρ(t)), ρ(t) = x(t)/C. (5)

B. Equilibrium analysis

We have derived the dynamical system (3) & (5). As
we described in the introduction, we will study stability
properties in the vicinity of an equilibrium point, i.e. a
point (ρ∗, p∗) such that

0 =
1

wnd2 − (ρ∗)2p∗

2
(6)

p∗ = LB(ρ∗). (7)

Throughout this paper, we will illustrate equilibrium
points using a load-loss graph. For a given wnd, plot
the ρ∗ and p∗ which solve (6); for a given B, plot the ρ∗

and p∗ which solve (7). Where these two curves intersect
is the equilibrium point (ρ∗, p∗). This is illustrated in
Figure 1.

C. Stability analysis

Given wnd and B we find the equilibrium point
(ρ∗, p∗); we then calculate whether the system is locally
stable around this equilibrium point, as described in the
introduction. In Figure 1 we have coloured the unstable
equilibrium points grey.

3For intuition, consider an MNx/MNC/1 queue, which is just
an Mx/MC/1 queue speeded up by a factor of N . Therefore the
MNx/MNC/1 queue hits any given size B in timescale O(1/N).
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Fig. 1. The TCP throughput curve (6) for a range of window sizes
wnd, and the loss probability curve (7) for a range of buffer sizes B.
For a given wnd and B, the intersection of the two curves gives the
equilibrium operating point (ρ∗, p∗). Equilibrium points which are
locally unstable are coloured grey.

The plot shows the dilemma in choosing buffer size.
If we choose a small buffer B = 10 packets, the system
is stable for almost all wnd, but the utilization must be
low to achieve wnd large. If we choose a larger buffer
B = 100 packets we can get higher utilization, but the
system is stable only when wnd > 100 packets (or when
wnd is very small).

We found qualitatively the same results when we
modified L(·) to model AQM schemes including RED.

D. Instability analysis

It is not a priori obvious that local instability is bad.
It might be that the system is locally unstable, but that
oscillations are nevertheless harmless. To investigate this
we plot in Figure 2 the amplitude of the oscillations in ρ,
for a range of buffer sizes, calculated using the method
outlined in the introduction. (The horizontal bar about
an equilibrium point (ρ, p) indicate the amplitude.) At
B = 50 packets, for example, the system is unstable
for window sizes less than around 45 packets, but the
oscillations are only serious for window sizes of around
5 packets.

To judge just how serious these oscillations are, we
take the four scenarios from Figure 2 and show in Figure
3 the goodput attained. At a stable equilibrium point
(ρ∗, p∗) the goodput is just ρ∗(1 − p∗); at an unstable
point where the traffic intensity oscillates about ρ with
amplitude a, the goodput is

1
2π

∫ 2π

θ=0

(
ρ + a sin θ

)[
1 − L(ρ + a sin θ)

]
dθ.

The large oscillations when B = 100 packets can cause
goodput to fall by as much as 50%. We see that the
buffer size must be chosen carefully—if it is too small,
goodput is low because TCP backs off too much; if it is
too high, goodput is low because of oscillations.
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Fig. 2. When the system is unstable, there are oscillations in
traffic intensity ρ. The size of the oscillations in ρ about an unstable
equilibrium point (ρ∗, p∗) is indicated by a horizontal bar.
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Fig. 3. If there are large oscillations in traffic intensity ρ, goodput
drops. Let ρ′ be the goodput corresponding to an unstable equilibrium
point (ρ∗, p∗). We plot (ρ∗, p∗) in black and (ρ′, p∗) dashed (and a
horizontal line joining the two points).

IV. INTERMEDIATE BUFFERS

In this section we study the choice BN = NγB where
0 < γ < 1. (Recall that N is the number of flows,
and NC is the service rate.) This buffer sizing regime
is a consequence, for example, of the rule suggested in
[3], which says that buffer size should be proportional
to NCRTT/

√
N i.e. γ = 1/2. We will make the same

assumptions about the flows as in Section III.
Note that the maximum queueing delay is NγB/NC .

For large N , queueing delay is a negligible part of RTT.

A. Queueing theory for underload

Consider first an open-loop queueing system with an
infinite buffer, serving N flows each with mean rate x <
C . Model each flow by a point process. According to the
global approximation [17, Section 10.3], the queue size
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satisfies

log P
(
QN (0) > NγB

)
≈ − inf

t≥0
sup
θ≥0

θ(NγB + NCt) − NΛt(θ)

where Λt(θ) = log E exp θA(t), and A(t) is the number
of packets from a typical flow in an interval of duration
t. The interpretation of t is that it is the most likely
timescale for the buffer to go from empty to full. Let
s = N (1−γ)t. Then

1
Nγ

log P
(
QN (0) > NγB

)
≈ − inf

s≥0
sup
θ≥0

θ(B + Ct) − s

M
ΛM (θ)

where M = N−(1−γ)s. Suppose that packets from a
single flow cannot be closer together than ε for some ε >
0. Then, whenever M < ε, A(M) = 0 with probability
xM and 1 with probability 1−xM , from which we can
deduce that ΛM (θ)/M → x(eθ − 1) as N → ∞. Thus

1
Nγ

log P
(
QN (0) > NγB

)
≈ − inf

s≥0
sup
θ≥0

[
θ(B + Ct) − sx(eθ − 1)

]
= −B sup

{
θ > 0 : x(eθ − 1) < θC

}
. (8)

The last equality is from [17, Lemma 1.7], which also
shows that the optimal s satisfies 0 < ŝ < ∞, and
the optimal θ satisfies 0 < θ̂ < ∞. Furthermore, it is
reasonable to believe that (8) also gives the asymptotic
probability of overflow for a finite buffer system; see
[17, Chapter 6] for an outline of why.

That theory also says that the timescale of overflow
for this open-loop system is t = N−(1−γ)ŝ. Since this
becomes smaller and smaller as N increases, and since
(2) suggests that TCP’s arrival rate only changes by a
small amount δx′(t) in a short interval (t, t + δ), it is
reasonable to believe that in the closed-loop system the
loss probability experienced by a packet arriving at time t
is roughly exp(−NγBθ̂). In particular, whenever x(t) <
C , the packet loss probability tends to zero as N → ∞.
An AQM scheme would not change this.

B. Queueing theory for overload

Consider now an open-loop queueing system with a
finite buffer NγB, serving N flows each with mean rate
x > C . Let RN (t) = NγB − QN (t) be the amount
of free space in the queue. This evolves as follows: it
increases at a constant rate NC (up to a maximum of
NγB), and it decreases by 1 whenever there is a packet
arrival (as long as it can do so and remain non-negative),

traffic intensity ρ

log10 of
packet loss
probability
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−2

−3

−4

0.5 1 1.5 2

wnd 4 pkts

wnd 20 pkts

wnd 100 pkts

Fig. 4. Oscillations in traffic intensity ρ about an unstable equilib-
rium point (ρ∗, p∗), indicated by horizontal bars, for the intermediate
buffer regime.

and these arrivals occur at rate Nx. So RN is like a
queue with traffic intensity NC/Nx < 1. The theory
in Section IV-A suggests that the probability that RN

overflows decays like exp(−NγBϕ̂) for some ϕ̂ > 0, so
it is reasonable to approximate RN (t) by R̄N (t) which
has the same dynamics but no upper limit. We wish to
know the packet loss probability for the original queue
QN , i.e. the probability that R̄N (t) < 1. For this purpose
we can replace R̄N (t) by R̃N (t), in which a complete
unit of work arrives every 1/(NC) time units, rather
than have work arrive continuously at rate NC . Now
apply Little’s law to the head of the queue R̃N (t): the
expected number of units of work present at the head of
the queue is NC/Nx. Since the head of the queue can
hold at most one complete unit of work, the probability
that there is one complete unit of work there is C/x.
But this is exactly the probability that a service event
finds some work to serve, which in the original system
is the probability that an incoming packet is not dropped.
Therefore the packet loss probability for the original
system is 1 − C/x.

For this open loop queueing system, fluctuations of
size O(1) in the queue RN (t) occur over timescales
which are O(1/N), just as in Section III. Therefore it is
reasonable to use this same formula p(t) = 1 − C/x(t)
for the packet loss probability in a closed-loop system.

C. Stability/instability analysis

We have derived a fluid model of exactly the same
form as that in Section III, but where the loss function
is p(t) = L(ρ(t)) = [1 − 1/ρ(t)]+. This loss function
was introduced in [18], though with different reasoning.
The fluid model can be analysed just as before—Figure
4 shows that things go seriously wrong for window sizes
larger than a few packets. We might have guessed this
from Figure 2, which shows that larger buffers result in
greater instability.

Interestingly, the simulations in [3] show a different
picture. They show small oscillations in traffic rate,



6

synchronized with large oscillations in queue size. As
we will see in Section V, this is a symptom of a system
with a reasonable amount of buffer space per flow, not
the negligible amount of buffer space per flow we have
analysed in this section. The simulations described in
that work did not have enough flows for the problems
we have described here to become apparent. They had
several hundred flows; our rule of thumb in Section VII
suggests the problems will start to appear at 5,000 flows
or so.

V. LARGE BUFFERS WITH AQM

In this section we study the choice BN = NB, and
we assume there is an AQM scheme in operation.

A. The fluid model

Lindley’s recursion (4) suggests that the scaled queue
size q(t) = QN (t)/N satisfies

dq(t)
dt

=
[
x(t)

(
1 − p(t)

) − C
]+[q(t)=0],−[q(t)=B]

(9)

where the notation for dq/dt means that if q(t) = 0 we
take the positive part of the term in brackets [·], and if
q(t) = B we take the negative part. This is the fluid
model suggested by [1].

The AQM scheme specifies how p(t) depends on
q(t). We will look at GentleRED, choosing parameters
according to the guidelines in [19]: pmax = 10%, and
minth = O(1) packets which translates to 0 in the
1/N scaling. RED also keeps an exponentially-weighted
moving average of queue size, in order that it should
detect persistent changes in rate rather than momentary
bursts. Since momentary bursts lead to O(1) fluctuations
in queue size (see Section III-A), whereas q(t) only
reflects O(N) changes in queue size, there is no need for
this sort of smoothing in large multiplexers. Therefore
we will take the loss probability to be an function of
the instantaneous queue size. Thus we might as well set
maxth = B/2. This leads to p(t) = LB(q(t)) where

LB(q) =

{
2qpmax/B if q ≤ B/2
pmax + (1 − pmax)(2q/B − 1) else.

In fact, to make our calculations more realistic when the
oscillations are moderate-sized, we prefer to approximate
LB(·) by a smoother loss function

L̃B(q) =
aq/B − 1

a − 1

where a is chosen so that L̃B(B/2) = LB(B/2) = pmax.
This is useful because our theory is based on third-order
expansions of LB(q∗ + δ) about an equilibrium point

q∗, and for a piecewise-linear function like LB such an
expansion doesn’t reveal what happens for moderately
large δ.

Note that the round trip time may vary, depending
on the queue size: the round trip time experienced by
packets/ACKs which arrive at the source at time t is
RTTt = t − t̃ where t = t̃ + q(t̃) + PT and PT is the
propagation delay. So t̃ is the time that a packet must
leave the source if an ACK is to return at time t.

A very similar model was studied by [20]. They
considered a rate model of TCP in which the window
size W (t) for each connection increases steadily at rate
1/RTTt and decreases according to a Poisson process of
intensity W (t−RTTt)p(t−RTTt)/RTTt. They prove that,
as N → ∞, this stochastic system converges to a fluid
model, similar to (2) but involving partial differential
equations. As remarked in Section II-A, the PDE model
has very similar behaviour to (2).

B. Equilibrium analysis

An equilibrium point of (2) & (9) satisfies w∗ =√
2/p∗, x∗(1 − p∗) = C , p∗ = LB(q∗), RTT∗ =

PT+ q∗/C . As usual we prefer to express this in terms
of ρ∗ = x∗/C and p∗: so the equilibrium point is

ρ∗ =
√

2/p∗/CRTT∗ (10)

p∗ = 1 − 1/ρ∗ (11)

and the subsidiary quantities are

q∗ = L−1
B (p∗), CPT = CRTT∗ − q∗. (12)

Note that (10) is the usual equation for TCP equilibrium
(6), and (11) is the loss function we used in Section
IV-C.

As usual we will plot load-loss graphs of ρ against
p, although now that CRTT∗ depends on the equilibrium
point we prefer to illustrate (10) differently: we assume
the buffer sizing rule B = βCPT (a generalization of
the bandwidth-delay product rule), we use (10) & (12)
to obtain a relationship between ρ∗ and p∗ parameterized
by flt = CPT, and we plot several dotted lines corre-
sponding to flt = 4, 20, 100 packets. See Figure 5 for
an illustration.

C. Stability/instability analysis

It seems very difficult to analyse the stability of (3) &
(9) taking into account the time-dependence of RTTt. We
are able to analyse delay-differential equations in which
the delay is constant, and so we will approximate (3) &
(9) by replacing wndt = CRTTt by wnd∗ = CRTT∗, where
RTT∗ is the equilibrium round trip time, as calculated in
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Fig. 5. Oscillations in ρ about an unstable equilibrium point (ρ∗, p∗)
are indicated by horizontal bars. The bars are dashed if the oscillations
in q hit both q = 0 and q = B, i.e. if the buffer size fluctuates wildly.
In order to prevent such oscillations for flt = 20 packets or higher,
one needs at least a buffer at least four times the bandwidth-delay
product.

Section V-B. We will also reparameterize (9) in terms of
s = Ct to give

dq(s)
ds

=
[
ρ(s)

(
1 − p(s)

) − 1
]+[q(s)=0],−[q(s)=B]

.

Figure 5 illustrates the stability of this system, assuming
the buffer sizing rule B = βCPT, for a range of values
of β. The black/grey line illustrates (11), with points
coloured grey if the system is locally unstable. At such
points, we calculate the oscillations in ρ(t) and q(t), and
we indicate the amplitude of the former by means of a
horizontal bar; the bar is dashed if the oscillations in
q(t) hit both q = 0 and q = B (by which point one
should not place too much faith in our estimates, based
as they are on third-order expansions about equilibrium;
nonetheless this is a sign of worryingly large fluctuations
in queue size).

VI. LARGE BUFFERS WITH DROPTAIL

In this section we consider the choice BN = NB, for
a queue with no AQM.

A. Fluid model

At an equilibrium point there must be some non-zero
loss probability, which requires ρ∗ > 1. Suppose there
is a small fluctuation in ρ, with ρ(t) > 1, about the
equilibrium. As in Section IV-B, the free-space process
makes excursions from 0 of size O(1) over timescales
which are O(1/N), and so the loss probability is p(t) =
1− 1/ρ(t). These excursions are negligible compared to
the total buffer size, so the scaled queue size remains
q(t) = B.

Suppose now that ρ(t) drops < 1. Then the queue size
starts to decrease, and (4) suggests

dq(t)
dt

=
[
C

(
ρ(t) − 1

)]+[q(t)=0]
.

Indeed this will remain true until q(t) hits B again, when
ρ(t) ≥ 1, bringing us back to the former situation.

Reparameterizing in terms of s = Ct, we obtain

dq(s)
ds

=
[
ρ(t) − 1

]+[q(s)=0],−[q(s)=B]

p(s) =
(
1 − 1/ρ(s)

)
1q(s)=B .

B. Stability/instability analysis

When ρ(t) > 1 and q(t) = B, this is exactly like the
intermediate-buffer system in Section IV; if the analysis
there indicates either stability or small oscillations with
ρ(t) > 1 then we will see exactly the same in the
large-buffer system. Note though from Figure 4 that
the intermediate-buffer system hardly ever has small
oscillations, that it is either stable or wildly unstable.

When the intermediate-buffer system is wildly unsta-
ble, it has oscillations in which ρ(t) drops < 1. The
impact of large oscillations on the large-buffer system is
to lag the response, thereby making the instability more
pronounced. On the other hand goodput is improved with
large buffers4, since there is idleness only when q(t) = 0,
and this requires that ρ(t) < 1 for an extended period.

VII. LIMIT PHILOSOPHY

We have presented three different buffer-sizing
regimes, and analysed their performance in the limit as
the number of flows increases. We now describe a rule
of thumb for judging how to apply those results to a
given system with N flows, total service rate C , and
total buffer size B. Also let wnd = CRTT/N . The idea
is to calculate the tipping time, the time it takes to tip
from underloaded to overloaded or vice versa.

First, calculate the equilibrium traffic intensity ρ∗,
using (6) & (7). (The latter equation reduces to (11)
when B is large.) Consider first ρ∗ < 1. Suppose that
there have not been any drops for a short time, so that
mean transmission rate is increasing at rate 1/RTT2 and
thus traffic intensity is increasing at rate N/CRTT2. It
takes time (1 − ρ∗)wndRTT until ρ = 1. Consider next
ρ∗ > 1. On the grounds that in equilibrium the increase
rate and decrease rate balance out, suppose that traffic
intensity is decreasing at rate N/CRTT2. Then it takes

4To estimate goodput, one needs to estimate how long it takes for
q to hit 0, based on the oscillations in ρ. This goes beyond the scope
of the dynamical systems theory in this paper.
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time (ρ∗ − 1)wndRTT until ρ = 1. In both cases, the first
component of tipping time is

τ1 = |1 − ρ∗|wndRTT.

Now, for the case ρ∗ < 1, we calculate the further
time it takes for the buffer to fill completely (and for the
queue size distribution to shift from bouncing around
empty to bouncing around full). Suppose that the mean
transmission rate continues to increase at the same rate as
before. After a short time t of this, the total arrival rate
is C + tN/RTT2, so the time it takes to fill the buffer
is RTT

√
2B/N . For the case ρ∗ > 1 we want instead

the time it takes for the buffer to drain completely,
which turns out to be exactly the same. In terms of
the maximum queueing delay D = B/C , the second
component of tipping time is in both cases

τ2 =
√

2DwndRTT.

If the total tipping time τ1 + τ2 is much less than RTT
then this counts as a drastic ‘bang-bang’ response, and so
the system is likely to be unstable. Stability can come
either from making τ1 large (i.e. keeping equilibrium
utilization ρ∗ low) or from making τ2 large (i.e. making
sure the queueing delay D is large).

The simulations in [3] had N ranging from 50 to
500 flows, propagation delays PT ranging from 25ms
to 300ms, buffer sizes from 50 to 350 packets, and
service rate around 100 pkts/ms. Using midpoints of
these ranges, RTT ≈ 165ms, wnd ≈ 60 packets, ρ∗ ≈
99.4%, τ1 ≈ 63ms, τ2 ≈ 196ms. Thus N is not large
enough to see the effects we have predicted. If we scale
the system up to have M flows, scaling the service rate
in proportion to M and the buffer size in proportion to√

M , then τ2 scales like M−1/4; at M = 5000 flows
we get τ2 = 60ms, which we suspect is small enough to
cause serious instability.

VIII. CONCLUSION

In Section VI we studied the bandwidth-delay product
rule for sizing buffers (which we have called the large
buffer regime), without any AQM. It is the most unstable
of all the regimes we studied.

The intermediate buffer regime, as suggested by [3]
and studied in Section IV, has marginally better stability
(see Figure 4) though the goodput may be slightly lower.
Adding AQM has marginal impact.

To improve things, use large buffers with AQM. This
has much better stability, at least for window sizes up to
around 20 packets (see Figure 5).

Switching to small buffers (with or without AQM)
leads to improved stability even for very large window

sizes, though the buffer size and/or AQM must be chosen
carefully to avoid instability5 at window sizes of around
5 packets (see Figure 2).

If the bandwidth-delay product rule becomes techno-
logically impractical, then buffers should be slashed ruth-
lessly. Indeed, we recommend slashing buffers ruthlessly
right now, since this should improve goodput; it would
also cut costs and reduce delay and jitter.
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