
Buffer sizing theory for bursty TCP flows
Damon Wischik∗

Computer Science, UCL
Email: D.Wischik@cs.ucl.ac.uk

Abstract— In a router serving many TCP flows, queues will
build up from time to time. The manner in which queues build
up depends on the buffer space available and on the burstiness of
the TCP traffic. Conversely, the traffic generated by a TCP flow
depends on the congestion it sees at queues along its route. In
order to decide how big buffers should be, we need to understand
the interaction between these effects.

This paper reviews the buffer-sizing theory in [1] and extends
it to cope with bursty TCP traffic. This enables us to explain an
observation about TCP pacing made in [2].

I. INTRODUCTION

The general purpose of buffers in Internet routers is to
accomodate bursts in traffic.

‘Bursty’ is a word with no agreed meaning. Some authors
stress the scale-free nature of traffic fluctuations: μs-long
fluctuations on top of ms-long fluctuations on top of second-
long fluctuations etc. [3]. Some authors propose to describe
traffic variability simply in terms of the variance of the amount
of traffic generated in a given time interval [4]. Some authors
consider the effective bandwidth to be a useful descriptor of
traffic variability [5].

In this paper, I will describe a different notion of burstiness,
one tied specifically to the mechanics of the TCP protocol. I
will explain how burstiness affects the build-up of queues,
and how this in turn feeds back to affect the behaviour of
TCP sources. This theory results a simple model which lets
us calculate the impact of burstiness and buffer size on TCP
throughput, link utilization, and drop probability.

Section II gives a brief overview of those parts of TCP
that we will be concerned with, and explains the notion of
burstiness. Section III describes the impact of bursty traffic
on queues, expanding on the results for smooth traffic in [1].
Section IV and V give an integrated mathematical model for
network performance in the presence of bursty TCP traffic.

A naive guess would be that greater burstiness leads to
larger queues, which leads to more packet loss, which leads
to reduced throughput. This guess suggests a mechanism
for improving throughput: modify TCP so that it produces
smoother traffic flows. Simulation studies [2], [6] show that
this is not always the outcome: that smooth traffic flows can
paradoxically cause burstiness in the network. In Section VI
we use our mathematical model to explain this observation.

II. TCP

This paper will be concerned with long-lived TCP flows.
The typical behaviour of such a flow is as follows. Packets

∗Research supported by a Royal Society university research fellowship, and
DARPA Buffer Sizing Grant no. W911NF-05-1-0254.

time [s]
10 20 30 40 50

4

cwnd
[pkt] 8

12

Fig. 1. cwnd as a function of time. When there are no drops cwnd increases
steadily; when a drop is detected then cwnd is reduced. This results in a
characteristic ‘sawtooth’ graph. Here RTT = 1s and the packet drop probability
is p = 5%.

are sent from a source to a receiver. The receiver sends back
acknowledgements. Let RTT be the time it takes to send a
packet from the source to the receiver, and to get back an
acknowledgement. (RTT may vary, because of fluctuations in
queue size, but we will not model this.) The source maintains a
window parameter cwnd; this is the target number of packets
that have been sent but not yet acknowledged. When an
acknowledgement is received, cwnd increases by 1/cwnd,
and this may permit new packets to be sent. When a dropped
packet is detected, cwnd decreases by cwnd/2, but no more
than once every RTT. This results in cwnd evolving in a
sawtooth, as illustrated in Figure 1. If cwnd stays constant
then the source will transmit cwnd packets every RTT, i.e. it
will send at rate x = cwnd/RTT pkt/s.

(There is much more to TCP than this, including the
mechanism by which TCP detects dropped packets, timeouts,
and the behaviour of short-lived flows. There are some brief
remarks about these aspects of TCP in the conclusion.)

This description of TCP permits some rather different
behaviours. Figure 2 shows two simulation runs in which the
round trip time is the same, the initial cwnd is the same, and
there are no packet drops—the only difference is the spacing
of the first three acknowledgements. In the first run, they arrive
at times 0.2, 0.5 and 0.7; in the second they arrive at times 0.2,
0.22 and 0.24. The impact of clumped acknowledgements is to
induce clumped packet transmissions. It can also be seen that
TCP itself induces some clumpiness in packet transmissions,
even when the acknowledgements start out paced.

A. Traffic/burstiness model

We will work with two different models for TCP, a smooth
traffic model and a bursty traffic model.

Smooth TCP traffic: In the first model, the traffic generated
by a single TCP flow is a point process. Each point represents
a single data packet (and all packets are taken to have the



smooth bursty

time [s]

pkts
sent

5

10

15

20

1 2 3 4

Fig. 2. Number of packets sent as a function of time. If the initial packets
are spaced out then subsequent packets will inherit this spacing and the flow
will be smooth; if the initial packets are clumped together then the entire flow
will be bursty.

same size). The points are assumed to be separated, e.g. there
exists some δ > 0 such that no two points are any closer than
δ in time. This would be guaranteed if, for example, the TCP
source is throttled by a slow access link. The precise statistics
of the point process do not matter in what follows.

Bursty TCP traffic: In the second model, the traffic gen-
erated by a single TCP flow is a point process. Each point
represents a clump of data packets. For a TCP flow with
average window size w, the number of packets in a clump is
assumed to be uniformly distributed between 2w/3 and 4w/3;
this reflects the shape of the TCP sawtooth. The clumps are
assumed to be separated by one round trip time. As above,
packets are all the same size.

These two cases are extremes. Figure 2 suggests that the
true behaviour of TCP is likely to be somewhere between these
two extremes. But it’s easiest to work with the extremes, so
we will stick with them in the analysis that follows.

B. Throughput formula

When a TCP flow experiences drop probability p, then
(according to e.g. [7]) its throughput is roughly

x =
0.87
RTT

√
p

pkt/s. (1)

When packet drops are independent, p is simply the per-packet
drop probability. However in the bursty TCP model it’s likely
that if one packet in a clump is dropped then all subsequent
packets in that clump are dropped also. In this case it’s easiest
to define p operationally: take two successive clumps with
drops in them, and let 1/p−1 be the expected number of not-
dropped packets between the drops. (For clumps of size 1,
this reduces to the former case of independent packet drops.)
A crude estimate is p = q/w where q is the per-clump drop

probability and w is the average clump size; this should be a
decent approximation when q is small.

III. QUEUE MODEL

Consider a single queue, with constant service rate, fed by
many TCP flows. Raina and Wischik [1] have described the
queueing behaviour that results, for smooth TCP traffic. In this
section we will review the conclusions of that paper, and also
see how the behaviour changes when the flows are bursty. The
aim of this section is to produce an expression for p, the loss
probability term in (1).

In fact, [1] gives two different queueing models, one for
small buffers and one for large buffers. The models are
justified heuristically, in the limit as the number of flows N
increases. The small-buffer model is suitable when buffer size
does not depend on N ; the large-buffer model is suitable
when buffer size increases with N . To be concrete, the
small-buffer model seems good for buffers up to a several
hundred packets, and the large-buffer model seems good when
maximum possible queueing delay is a non-negligble fraction
of the round trip time.

A. Smooth traffic, small buffers

Let there be N smooth TCP flows with average window
size w and common round trip time RTT (so that the average
transmit rate is x = w/RTT), sharing a queue with service rate
NC and buffer size B. Then the packet drop probability p
is approximately the same as that for a queue with constant
service rate NC and buffer size B, fed by a Poisson flow of
rate Nx (i.e. a classic M/D/1/B queue). Indeed, the queue
length distributions in the real system and the approximate
Poisson system should be roughly equal.

The justification for approximating the traffic by Poisson is
that the typical duration of a busy period is O(1/N), and over
an interval of duration 1/N the aggregate of N independent
simple point processes is approximately Poisson.

B. Bursty traffic, small buffers

Let there be N bursty TCP flows with average window
size w and common round trip time RTT (so that the average
transmit rate is x = w/RTT). Packets arrive in clumps, and the
clump size is uniform between 2w/3 and 4w/3, so the average
clump size is w. Clumps arrive as a point process, say with
mean rate λ. The average transmit rate is then x = λw pkt/s,
so λ = x/w.

Over an interval of duration 1/N , the aggregate point pro-
cess is approximately Poisson, as above, and so the aggregate
packet arrival process can be modelled as a batch Poisson
arrival process, where the batch size is uniform between 2w/3
and 4w/3. For large N , the duration of the interval 1/N is
so short that there can be at most one clump from any single
flow, and so we will assume that batch sizes are independent.
Hence the packet drop probability is the same as for a queue
with constant service rate NC, fed by packets which arrive in
clumps according to a Poisson process of rate Nλ.

For numerical purposes one should set up a Markov chain
and compute the packet drop probability p from it. For simple



algebraic argument, here is a further simplification. First
some notation. Write LC(B, λ,D) for the drop probability
in a queue with constant service rate C, buffer size B,
and a Poisson arrival process of rate λ where packet sizes
are independent and have distribution D. (This is the first
simplification. In the real system, if a clump of packets arrives
and some of the packets can fit in the buffer then those packets
are admitted; in this LC(B, λ,D) system the entire clump is
dropped.) We want to calculate q = LC(B, λ,Uw), where Uw

denotes the uniform distribution between 2w/3 and 4w/4. As
a further simplification, approximate this by LC(B, λ,Fw),
where Fw indicates that all batches have fixed size w. But
this is exactly equal to LC/w(B/W, λ,F1) (just rescale packet
size), which is exactly equal to LC(B/W, λw,F1) (just rescale
time). In summary, while the packet drop probability for
smooth traffic is LC(B, x,F1), the clump drop probability
for bursty traffic is q ≈ LC(B/w, x,F1). An even cruder
approximation is

q ≈ (1 − ρ)ρB/w

1 − ρB/w+1
, where ρ = x/C; (2)

this comes from taking the service to be Markov rather than
constant-rate.

What we have calculated here is the clump drop probability,
i.e. the probability that there is not enough space in the buffer
to accomodate all the packets in an incoming clump. The p in
(1) is then p ≈ q/w.

C. Smooth traffic, large buffers

Let there be N smooth TCP flows with average window
size w and common round trip time RTT (so that the average
transmit rate is x = w/RTT), sharing a queue with service rate
NC. According to [1], if x < C then the queue length is O(1)
as N → ∞, and the packet drop probability is approximately
zero. If x > C then the packet drop probability is (x−C)/x,
or 1 − 1/ρ when expressed in terms of ρ = x/C, from
Little’s Law. The amount of free space in the queue can be
estimated by considering a queue with constant arrival rate
NC and with exponential service times of rate Nx; the queue
size distribution in this D/M/1 queue is the same as the
distribution of free buffer space in the real queue. Furthermore,
the typical time between two drops if O(1/N).

D. Bursty traffic, large buffers

Let there be N bursty TCP flows, with parameters as in
Section III-B. If x < C then, as with smooth traffic, the
queue size is O(1) and the drop probability is approximately
zero. If x > C then the packet drop probability is still
(x−C)/x = 1−1/ρ, from Little’s Law. To find the probability
q that an arriving clump of packets experiences one or more
packet drops, here is an approximation:

For smooth traffic, the amount of free buffer space has
the same distribution as the queue size in a D/M/1 queue.
Approximate it by the queue size of an M/M/1 queue with
the same mean arrival and service rates; this gives

P(free space = r) = (1 − 1/ρ)/ρr.

(Observe that the probability that there is no free space,
i.e. that an incoming packet is dropped, is 1 − 1/ρ, so
this approximation is consistent with the smooth-TCP case.)
Now consider an incoming clump of w packets. This clump
experiences a drop if the amount of free space is less than
w, which has probability 1− 1/ρw. We therefore propose the
approximation q ≈ 1 − 1/ρw. The p in (1) is then p ≈ q/w.

IV. FIXED POINT CALCULATION

When deciding on buffer size, the first questions to ask are:
what throughput do I expect to get? what is the link utilization?
and what sort of quality of service? We now find out how these
quantities depend on TCP burstiness.

Consider N long-lived TCP flows sharing a single bottle-
neck link with service rate NC, with drop probability p, and
where the common round trip time is RTT. By (1), the offered
traffic intensity is

ρ =
Nx

NC
=

0.87
CRTT

√
p
. (3)

From Section III, we have two different formulae for what
q = pw might be:

q ≈
{

(1 − ρ)ρB/w/(1 − ρB/w+1) for small buffers

(1 − 1/ρw)+ for large buffers
(4)

where ρ = x/C is the offered traffic intensity, B is the buffer
size and w is the average clump size: w = 1 for smooth TCP
traffic and w = xRTT for bursty TCP traffic. (One can come
up with more accurate values for p and q from a Markov
chain calculation, but these simple formulae are more readily
interpretable.)

We have two equations with two unknowns, ρ and p. To
find ρ and p, solve the two equations simultaneously. This is
referred to as a fixed point solution. Figure 3 illustrates. There
are two confounding effects: burstier traffic leads to higher
per-packet drop probability, which indicates lower throughput;
but at the same time burstier traffic means that packet drops
come in bursts so TCP doesn’t respond to all of the packet
drops, which indicates higher throughput. For the parameters
in Figure 3 these two effects cancel out. For smaller buffers or
for larger burst sizes, the net effect is to reduce throughput. For
very large buffers, the difference between bursty and smooth
is negligible.

For more complicated network topologies, there will be
more equations: one for each route of TCP flows, and one
for each queue. They should all be solved simultaneously, as
in [8], [9].

V. STABILITY CALCULATION

When deciding on buffer size, a second question to ask is:
do I expect stable good performance, or will there be jitter and
instability? Fluid models have emerged as a powerful tool for
answering this question. A crude first-cut answer is as follows:

Consider as above a single bottleneck shared by N long-
lived flows, with mean rate x, and where the service rate is
NC. Let ρ = x/C be the traffic intensity. Let p(ρ) be the



B = 100pkt B large

bursty smooth

smooth
bursty

log10 p

ρ
0.5 1 1.5

-1

-2

-3

Fig. 3. A plot of drop probability p against traffic intensity ρ. The dashed
line shows TCP throughput (3), with CRTT = 6pkt. The solid lines show (4),
one line for smooth traffic (w = 1) and one for bursty traffic (w = xRTT).
Buffer size is either 100pkt (left) or very large (right). Where the dashed line
intersects with the relevant solid line, there is the simultaneous solution of
(3) & (4).

B = 100pkt B large

bursty
smooth

bursty

smooth

s(ρ)

ρ
0.6 0.8 1 1.2 1.4

20

40

60

80

Fig. 4. Instability index s(ρ) as a function of traffic intensity ρ. The higher
the instability index, the more prone the system is to synchronization. For a
given small buffer size, smooth TCP has a higher instability index than bursty
TCP. For large buffer size there is negligible difference.

drop probability resulting from traffic intensity ρ, from one of
the calculations in Section III. Let ρ∗ be the fixed-point traffic
intensity, calculated as in Section IV. Define the instability
index to be

s(ρ∗) =
ρ∗p′(ρ∗)

p(ρ)
.

The larger this is, the more prone the system is to instability
(see (19) and (20) in [10]). Figure 4 plots the instability
index as a function as a function of ρ∗. With small buffers,
smooth traffic is much more prone to instability than bursty
traffic; with large buffers this effect is still there but it’s barely
noticeable.

Reference [1] gives much more detail about the nature
and consequences of instability. The typical way in which
instability shows itself is in oscillations in queue size, which
leads to synchronization of TCP flows (i.e. many of them
cutting their windows at the same time), which can lead to
unfairness [6]. Additionally it leads to jitter, and oscillations in
traffic rate. In [1] it is explained how to calculate the amplitude
of all these oscillations.

VI. TCP PACING

TCP pacing is a mechanism which enforces smooth traffic.
It does this by spacing out packets: if the window is cwnd
and the round trip time is RTT then it attempts to send one
packet every RTT/cwnd. (See [2] for references.)

According to the results in the previous two sections, this
will have several different effects. First, the traffic is made
smoother, so packet drop probability is lower, which indicates
increased throughput. Second, packets are spaced out, so
packet drops are made independent, so TCP responds to more
of them, which indicates decreased throughput. (The balance
of these two effects will depend on the specific parameters.)
Third, the instability index is made higher, which indicates
instability and synchronization. Paradoxically, by making the
traffic smoother at the source, we have induced “bursty”
behaviour in the network! This theoretical prediction validates
simulation results in [2], [6].

The problem of synchronization can be solved by making
the buffer smaller. This makes p′(·) smaller, so the instability
index is lower.

It can be seen that TCP burstiness has a range of differ-
ent effects, sometimes conflicting, and that the relationship
between burstiness and buffer size merits careful analysis.

A topic for further analysis is the impact of short-lived
flows, timeouts, etc. In slow start, TCP tends to emit packets
in clumps, which may make the aggregate traffic burstier. On
the other hand, many short flows (of one or two packets) may
make the aggregate traffic smoother, so that occasional bursts
do not do too much damage.

REFERENCES

[1] Gaurav Raina and Damon Wischik, “Buffer sizes for large multiplexers:
TCP queueing theory and instability analysis,” in EuroNGI, 2005.

[2] Amit Aggarwal, Stefan Savage, and Tom Anderson, “Understanding the
performance of TCP pacing,” in IEEE Infocom, 2000.

[3] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic (extended version),” IEEE/ACM
Transactions on Networking, vol. 2, pp. 1–15, 1994.

[4] Ronald G. Addie, Moshe Zukerman, and Timothy D. Neame, “Appli-
cation of the central limit theorem to communication networks,” Tech.
Rep. SC-MC-9819, University of Southern Queensland, 1998.

[5] Frank Kelly, “Notes on effective bandwidths,” in Stochastic Networks:
Theory and Applications, F. P. Kelly, S. Zachary, and I. Ziedins, Eds.,
Royal Statistical Society Lecture Note Series, chapter 8, pp. 141—168.
Oxford University Press, Oxford, 1996.

[6] David X. Wei, Pei Cao, and Steven H. Low, “TCP pacing revisited,”
Unpublished, 2006.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” in Proceedings
of ACM SIGCOMM, 1998.

[8] Tian Bu and Don Towsley, “Fixed point approximations for TCP
behavior in an AQM network,” in ACM SIGMETRICS, 2001.

[9] R. J. Gibbens, S. K. Sargood, C. Van Eijl, F. P. Kelly, H. Azmoodeh,
R. N. Macfadyen, and N. W. Macfadyen, “Fixed-point models for the
end-to-end performance analysis of IP networks,” in 13th ITC specialist
seminar, 2000.

[10] Frank Kelly, “Fairness and stability of end-to-end congestion control,”
European Journal of Control, 2003.


