
Buffer Requirements for High-Speed Routers 
Damon Wischik 

Computer Science, UCL. D.Wischik@cs.ucl.ac.uk  
 

Abstract A core Internet router can typically buffer 250ms worth of data (1.25GByte at 40Gb/s). This would be 
challenging for an all-optical router. Happily, recent theory suggests that the optimal buffer size is around 
30kByte. 
 
1. Introduction 
Today, the buffer size in core Internet routers is 
typically chosen according to a rule of thumb which 
says: provide at least one round trip time's worth of 
buffering. The round trip time is often taken to be 
around 250ms (it takes 134ms to send a packet half 
way round the world and back, but queueing delay 
may plausibly add 100ms). A 40Gb/s linecard 
therefore needs 1.25GByte of memory.  

Such large memories are hard to build in electronics. 
(The problem is that data can arrive at line rate, so 
the memory needs to be writeable at line rate. Such a 
high memory bandwidth is hard to engineer—and 
DRAM access speeds increases at only 7.5% a year 
[6].) Such large memories are also wildly impractical 
for any all-optical router that we can conceive of 
today. 

Recent theoretical work has challenged the rule of 
thumb: it seems that a buffer of just 20 packets 
should be sufficient. The modeling behind this deals 
with TCP's algorithm for congestion control, with very 
short-timescale traffic statistics, and with queueing 
theory for Poisson traffic. (Long-range dependence 
has no bearing on buffer size.) This article outlines 
the theory. 

Practical work has also challenged the rule of thumb. 
A measurement study of a Sprint backbone router [1] 
found that the queue size hardly ever exceeded 10 
packets! (perhaps not surprising given that Sprint 
aims to keep utilization below 20%). Preliminary 
experiments on working routers [15] suggest that 
buffers can be much smaller than they are now, 
though the experimentation does not yet make clear 
quite how much. 

Small buffers have obvious practical benefits. In an 
electronic router, the buffer could be on-chip, giving 
much higher memory bandwidth. In an all-optical 
router, 20-packet buffers might become feasible in the 
coming few years. 

There are various design goals on which to base a 
decision about buffer size, beyond the practical 
question of `how hard is it to build and how much 
does it cost?' Section 2 outlines some of these goals, 
and the mathematical models that have accompanied 
them. Section 3 outlines a model for the behaviour of 

a network with small buffers, and suggests a 
refinement of the design goals.  

The work described here is covered further in [2] [3] 
[5]. There are other approaches to small buffer 
theory. See especially [2] [6]. 

2. Design goals for buffer sizing 
The buffer in an Internet router has several roles. It 
accommodates transient bursts in traffic, without 
having to drop packets. It keeps a reserve of packets, 
so that the link doesn't go idle. It also introduces 
queueing delay and jitter. 

Delay and jitter. For real-time traffic, queueing delay 
and jitter are bad. It's hard to find a universal model 
for these two quantities; but at least with small buffers 
it's easy to get useful bounds. 

Example. Consider a 20-packet buffer, serving a 
40Gb/s link, and assume a packet size of 1500Byte. 
The maximum possible queueing delay is 6µs, which 
is negligible compared to a propagation delay of say 
10ms. Jitter is therefore also negligible. 

Accommodate bursts. A classical queueing-
theoretic approach to buffer sizing might go like this. 
The purpose of a buffer is to absorb transient bursts 
in traffic. Given the service rate, the buffer size, and a 
traffic model, we can estimate the probability of 
packet loss. Choose a sufficiently large buffer size so 
that the loss probability is less than some specified 
threshold. 

Example. Suppose we have a 40Gb/s queue, and we 
aim to run it at 95% utilization. A widely accepted 
Internet traffic model is fractional Brownian motion: if 
A(t) is the amount of work arriving in an interval of 
length t then A(t) has a Gaussian distribution with 
mean µt and standard deviation σ t H . We're aiming 
for 95% utilization, so let µ=38Gb/s. There are 
numerous measurement studies of long-range 
dependence in Internet traffic; a typical estimate of H 
is H≈0.85. Traffic measurements on the link of 
interest can be used to find σ; perhaps σ≈1Gb/s. 
Queueing theory (for reference see [7]) says that the 
packet loss probability p with a buffer of size B 
satisfies 

log(p) ≈ - inft≥0 (B+(C-µ)t)2 / 2 σ2 t2H 

In order to guarantee a packet loss probability of less 
than say 10-4 we'd need a buffer of B=19.4Gb. 



This approach is that it is rather sensitive to the traffic 
model. (Try changing σ and see how much B 
changes.) It also assumes that traffic statistics do not 
change over the time period of interest, which is hard 
to judge. 

TCP's congestion avoidance. One trouble with 
naively using queueing theory to work out buffer size 
is that it doesn't take account of TCP's feedback 
control loop. How does this control loop work? 

A TCP source attempts to limit congestion by using 
windowed flow control. The standard behaviour is that 
TCP sends a packet, the packet reaches the 
destination, the destination sends an 
acknowledgement back to the source. TCP limits the 
number of not-yet-acknowledged packets it allows 
into the network, and thereby limits its transmission 
rate. Let W be the permitted number of not-yet-
acknowledged packets (the window size), and let RTT 
be the round trip time. In one round trip time, a TCP 
flow would send W packets and receive W 
acknowledgements, so its transmission rate is 
W/RTT. 

By changing W, TCP can control its transmission rate. 
TCP steadily increases W when it receives 
acknowledgements (giving an average increase rate 
of roughly 1 packet per RTT), and it cuts W by W/2 
when it detects a loss, inferred from missing 
acknowledgements. Therefore TCP will always 
experience loss, even in the absence of transmission 
errors, because it itself causes loss. 

 
A plot of TCP window size [0-11 pkt] as a function 
of time [0-8s] for a flow with RTT 220ms. This graph 
is called the `TCP Sawtooth'. 

Keep utilization high. The rule of thumb for buffer 
sizing derives from the following goal: If capacity is 
limited, it's desirable to make sure the link never goes 
idle. Therefore there should always be some packets 
in the buffer. By reasoning about how TCP responds 
to loss, we can work out how big the buffer needs to 
be.  

Illustration. Consider a single bottleneck link with a 
single TCP flow. TCP will gradually increase the 
window size W, say to Wmax, until it detects a loss, 
when W is cut to Wmax/2. But this still leaves Wmax 
unacknowledged packets in the network, so TCP is 
not allowed to send anything more until it has 
received Wmax/2 acknowledgements. When it has, it 
starts up again sending new packets. We want the 
buffer never to empty, so packets reach the 
destination at rate C, so this pause lasts for Wmax/2C. 

The buffer needs to be at least Wmax/2 to avoid going 
empty during the pause. 

What is Wmax? Suppose the buffer is just big enough 
to avoid emptying. When TCP starts sending packets 
again, we want it to send at rate at least C, so the link 
doesn't idle. But its window size after the drop is 
Wmax/2, so we need Wmax/2RTT=C. 

Putting these arguments together, the buffer needs to 
have capacity at least C×RTT packets to avoid going 
empty. 

It is much harder to calculate the required buffer size 
in this way when there are multiple flows and multiple 
links. The trouble is that the flows may have different 
RTTs, the TCP flows may halve their windows at 
different times, etc. For some further work in this 
direction see [6] [8] [9]. 

Discussion of design goals. The objectives and the 
models discussed above should not be taken 
separately. The queueing-theory model suggests that 
loss can be reduced by making buffers large 
enough—but TCP's design means it fills up any 
buffer, no matter how large. It is good to have 
reasonably high utilization of the output link—but 
higher utilization generally means more loss and also 
larger fluctuations in buffer size, i.e. jitter. The small-
buffer model in the next section marks a compromise 
between the objectives we have described here. 

3. Theory of small buffers 
In this section, we present a model for networks with 
small buffers and its justification. We also explain the 
design goals that such a network meets. 

Summary of model. The network model comprises 
two parts: one part describing the dynamics of TCP, 
another describing the dynamics of the queue. For 
the first, consider a single long-lived TCP flow which 
experiences packet drop probability p and has round 
trip time RTT. According to the classic throughput 
formula [10], it achieves average transmission rate 

 x ≈ 0.87 / RTT √p. (1) 

If the drop probabilities at the queues along the route 
are q1,...,qn then p=1-Π(1-qi.) The drop probability q at 
a given queue depends on the total incoming traffic 
rate y: q is approximately the drop probability when 
that queue is fed by Poisson traffic of rate y. All these 
equations (for flow rates, and for drop probabilities) 
should then be solved simultaneously. 

This procedure, of setting up equations for link rates 
and for drop probabilities and then solving them 
simultaneously, is called the fixed point approach. 
References are collected in [11]. 

Example. Consider a single link serving 100 flows 
with common RTT of 200ms. The total load is 



y ≈ 100×0.87 / 0.2 √p   pkt/s. 

Suppose the queue has service rate C=2000 pkt/s 
(24Mb/s for packet size 1500Byte) and a buffer for 
B=20 packets. We could set up a Markov chain model 
to calculate the drop probability, but to save a tedious 
calculation we will make the crude approximation  

 p ≈ (y/C)B (2) 

(i.e. pretend the queue has exponential service and 
an infinite buffer, and calculate the probability that the 
queue size exceeds B). Solving these two equations 
simultaneously yields 

p≈0.062,  y≈1741 pkt/s. 

Non-TCP traffic and short-lived TCP flows can be 
incorporated into the model as an extra component to 
the total traffic rate y.  

Justification of model. The first part of the model, 
giving the average transmission rate of a long-lived 
TCP flow, is well-known. A simplistic model shows us 
why x depends on RTT and p in the way it does. 
Suppose that drops are periodic, once every 1/p 
packets. Then the window size follows a precise 
sawtooth, increasing from Wmin packets to Wmax 
packets and then falling back to Wmin. Since the 
window halves when there is a loss, Wmin=Wmax/2. 
Since the window size increases at rate 1 packet per 
RTT, and it increases by Wmax/2 packets in every 
sawtooth, the period is RTT×Wmax/2. The number of 
packets sent in any single sawtooth can then be 
found by integrating the transmission rate, which 
increases from Wmax/2RTT to Wmax/RTT pkt/s over 
RTT×Wmax/2 seconds: it is Wmax

2/2. But we have 
assumed that there is one drop every 1/p packets. 
Therefore Wmax=√(2/p). Averaging over a period, the 
average transmission rate is (Wmax

2/2)/(RTT×Wmax/2), 
i.e.  √2 / RTT√p. A more careful calculation, 
accounting for random packet drops, gives the 
formula (1). 

More interesting is the justification for the use of a 
Poisson queueing model (especially given the 
empirical evidence for long range dependence in 
Internet traffic). There are several supporting pieces 
of evidence. First, the aggregate of many 
independent point processes converges to a Poisson 
process over very short timescales. Second, 
measurements of Internet traffic confirm this short-
timescale Poisson phenomenon. Third, classic 
queueing models show that a queue with a fast 
service rate and a small buffer size will most likely 
overflow over short timescales.  (These claims are 
justified in [12].) Fourth, the aggregate arrival rate 
only changes slowly, over several RTTs (in fact, it 
satisfies a differential equation [20]).  Over a short 
timescale we therefore expect the aggregate traffic to 
vary hardly at all, we expect the queue size to 

fluctuate rapidly, and we expect the queue size 
distribution to match that of a queue fed by a Poisson 
process. This argument is made in more detail in [5] 
[13]. 

This is not inconsistent with published results on long-
range dependence [14]. Over short timescales 
Internet traffic looks Poisson; over long timescales it 
looks long-range dependent. If buffers are small then 
small bursts in traffic are the likely cause of buffer 
overflow. Since small bursts occur over short 
timescales, long-range statistical characteristics are 
irrelevant. 

(There is one proviso about Poisson traffic modeling. 
Simulations show that, if access link speeds are very 
high, the packets from a single TCP flow tend to 
arrive in bursts—the  burst size being equal to the 
TCP window size [8]. If this is the case, a batch-
Poisson traffic model should be used instead, and 
equation (2) needs to be updated. The practical 
implication is that the buffer needs to be able to 
accommodate 20 bursts, not 20 packets.) 

The following plot (from a simulator by Mark Handley, 
UCL) clearly shows the separation of timescales. The 
queue size fluctuates so rapidly that, in a plot 
spanning 5 seconds of simulated time, all we see is a 
blur. 
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Five-second simulation trace for 2000 TCP flows 
with average round trip time 120ms and packet size 
1500Byte, sharing a single bottleneck link with 
capacity 1.6Mb/s. Even though the TCP flows are 
all following the sawtooth, and varying their rates by 
a factor of two, total utilization hardly changes. 
Queue size fluctuates very rapidly, emptying and 
filling again repeatedly every 1ms. 

It is natural to ask whether the utilization graph is 
always flat, or if it is possible that the TCP sawtooths 
can become synchronized, which would lead to large 



fluctuations in utilization. This is indeed possible. The 
theory for predicting synchronization is described in 
further detail in [3] [5]. We will come back to 
synchronization in the following sections. 

Design goals. From this model, we can see that 
small buffers do not satisfy exactly the design goals 
that we suggested in Section 2. There is no obvious 
way to set a certain target drop probability—TCP will 
adapt, and achieve the drop probability it wants. This 
reflects an early design goal of the Internet: that 
robustness is the most important design goal. TCP 
adapts to network conditions, and it will continue to 
function even if the network is hopelessly 
underprovisioned. If that is the case, we have to 
expect the drop probability to be high. 

The network operator can control drop probability by 
providing enough capacity. For a given buffer size B, 
and for given traffic conditions (number of flows and 
their RTTs), it is easy to calculate the service rate C 
needed to achieve a certain target drop probability. 
(The answer depends on traffic conditions, so in fact 
C should be chosen based on the expected range of 
traffic conditions.) 

What is the effect of buffer size B, and why have we 
suggested B=20 packets? Equation (2) gives the 
tradeoff between buffer size, drop probability, and 
utilization. For B≥20 we get packet loss probability of 
less than 1% at 75% utilization. If we can build a 
small-buffer router which runs more than 33% faster 
than a standard large-buffer router, then it's worth 
sacrificing the 25% utilization in order to obtain higher 
throughput. 

There is in fact a deeper reason why B=20 packets is 
a good compromise. The synchronization analysis 
alluded to above shows that the system tends to 
become synchronized for B much larger than 20 
packets and much smaller than C×RTT packets. The 
consequences of synchronization are jitter, loss of 
utilization, and general unpredictability. Therefore 
buffers must either be very small or very large; they 
can't be in between. 

Note: one design goal which is automatically met with 
small buffers is the goal of keeping queueing delay 
and jitter small.  

4. Evolution of TCP 
TCP determines a relationship between drop 
probability and throughput and round trip time, 
specified by equation (1). For some users (e.g. 
particle physicists who want very high throughput for 
transatlantic file transfers) that equation is too 
restrictive. This has prompted work on modifying 
TCP's congestion control algorithm [16] [17]. For any 
new algorithm, one can write down a modified version 
of (1), solve the fixed point equations, and calculate 

the operating point. One can also analyse 
synchronization. The modified TCP described in [17] 
has in fact been proven to avoid synchronization, 
assuming small buffers, in an arbitrary network with 
heterogeneous round trip times [18]. Such general 
results are not known for networks with large buffers. 
For further discussion see [3] [19]. 

5. Conclusion 
Buffers in core routers can be very small, as small as 
25kByte. Such small buffers reduce queueing delay 
and jitter. They also lead to slightly reduced 
utilization—though the sacrifice is worth considering if 
it permits all-optical packet-switched routers. 
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