
Buffer Requirements for High-Speed Routers
Damon Wischik

Computer Science, UCL. D.Wischik@cs.ucl.ac.uk

Abstract A core Internet router can typically buffer 250ms worth of data (1.25GByte at 40Gb/s). This would be
challenging for an all-optical router. Happily, recent theory suggests that the optimal buffer size is around
30kByte.

1. Introduction
Today, the buffer size in core Internet routers is
typically chosen according to a rule of thumb which
says: provide at least one round trip time's worth of
buffering. The round trip time is often taken to be
around 250ms (it takes 134ms to send a packet half
way round the world and back, but queueing delay
may plausibly add 100ms). A 40Gb/s linecard
therefore needs 1.25GByte of memory.

Such large memories are hard to build in electronics.
(The problem is that data can arrive at line rate, so
the memory needs to be writeable at line rate. Such a
high memory bandwidth is hard to engineer—and
DRAM access speeds increases at only 7.5% a year
[6].) Such large memories are also wildly impractical
for any all-optical router that we can conceive of
today.

Recent theoretical work has challenged the rule of
thumb: it seems that a buffer of just 20 packets
should be sufficient. The modeling behind this deals
with TCP's algorithm for congestion control, with very
short-timescale traffic statistics, and with queueing
theory for Poisson traffic. (Long-range dependence
has no bearing on buffer size.) This article outlines
the theory.

Practical work has also challenged the rule of thumb.
A measurement study of a Sprint backbone router [1]
found that the queue size hardly ever exceeded 10
packets! (perhaps not surprising given that Sprint
aims to keep utilization below 20%). Preliminary
experiments on working routers [15] suggest that
buffers can be much smaller than they are now,
though the experimentation does not yet make clear
quite how much.

Small buffers have obvious practical benefits. In an
electronic router, the buffer could be on-chip, giving
much higher memory bandwidth. In an all-optical
router, 20-packet buffers might become feasible in the
coming few years.

There are various design goals on which to base a
decision about buffer size, beyond the practical
question of `how hard is it to build and how much
does it cost?' Section 2 outlines some of these goals,
and the mathematical models that have accompanied
them. Section 3 outlines a model for the behaviour of

a network with small buffers, and suggests a
refinement of the design goals.

The work described here is covered further in [2] [3]
[5]. There are other approaches to small buffer
theory. See especially [2] [6].

2. Design goals for buffer sizing
The buffer in an Internet router has several roles. It
accommodates transient bursts in traffic, without
having to drop packets. It keeps a reserve of packets,
so that the link doesn't go idle. It also introduces
queueing delay and jitter.

Delay and jitter. For real-time traffic, queueing delay
and jitter are bad. It's hard to find a universal model
for these two quantities; but at least with small buffers
it's easy to get useful bounds.

Example. Consider a 20-packet buffer, serving a
40Gb/s link, and assume a packet size of 1500Byte.
The maximum possible queueing delay is 6µs, which
is negligible compared to a propagation delay of say
10ms. Jitter is therefore also negligible.

Accommodate bursts. A classical queueing-
theoretic approach to buffer sizing might go like this.
The purpose of a buffer is to absorb transient bursts
in traffic. Given the service rate, the buffer size, and a
traffic model, we can estimate the probability of
packet loss. Choose a sufficiently large buffer size so
that the loss probability is less than some specified
threshold.

Example. Suppose we have a 40Gb/s queue, and we
aim to run it at 95% utilization. A widely accepted
Internet traffic model is fractional Brownian motion: if
A(t) is the amount of work arriving in an interval of
length t then A(t) has a Gaussian distribution with
mean µt and standard deviation σ t H . We're aiming
for 95% utilization, so let µ=38Gb/s. There are
numerous measurement studies of long-range
dependence in Internet traffic; a typical estimate of H
is H≈0.85. Traffic measurements on the link of
interest can be used to find σ; perhaps σ≈1Gb/s.
Queueing theory (for reference see [7]) says that the
packet loss probability p with a buffer of size B
satisfies

log(p) ≈ - inft≥0 (B+(C-µ)t)2 / 2 σ2 t2H

In order to guarantee a packet loss probability of less
than say 10-4 we'd need a buffer of B=19.4Gb.

This approach is that it is rather sensitive to the traffic
model. (Try changing σ and see how much B
changes.) It also assumes that traffic statistics do not
change over the time period of interest, which is hard
to judge.

TCP's congestion avoidance. One trouble with
naively using queueing theory to work out buffer size
is that it doesn't take account of TCP's feedback
control loop. How does this control loop work?

A TCP source attempts to limit congestion by using
windowed flow control. The standard behaviour is that
TCP sends a packet, the packet reaches the
destination, the destination sends an
acknowledgement back to the source. TCP limits the
number of not-yet-acknowledged packets it allows
into the network, and thereby limits its transmission
rate. Let W be the permitted number of not-yet-
acknowledged packets (the window size), and let RTT
be the round trip time. In one round trip time, a TCP
flow would send W packets and receive W
acknowledgements, so its transmission rate is
W/RTT.

By changing W, TCP can control its transmission rate.
TCP steadily increases W when it receives
acknowledgements (giving an average increase rate
of roughly 1 packet per RTT), and it cuts W by W/2
when it detects a loss, inferred from missing
acknowledgements. Therefore TCP will always
experience loss, even in the absence of transmission
errors, because it itself causes loss.

A plot of TCP window size [0-11 pkt] as a function
of time [0-8s] for a flow with RTT 220ms. This graph
is called the `TCP Sawtooth'.

Keep utilization high. The rule of thumb for buffer
sizing derives from the following goal: If capacity is
limited, it's desirable to make sure the link never goes
idle. Therefore there should always be some packets
in the buffer. By reasoning about how TCP responds
to loss, we can work out how big the buffer needs to
be.

Illustration. Consider a single bottleneck link with a
single TCP flow. TCP will gradually increase the
window size W, say to Wmax, until it detects a loss,
when W is cut to Wmax/2. But this still leaves Wmax
unacknowledged packets in the network, so TCP is
not allowed to send anything more until it has
received Wmax/2 acknowledgements. When it has, it
starts up again sending new packets. We want the
buffer never to empty, so packets reach the
destination at rate C, so this pause lasts for Wmax/2C.

The buffer needs to be at least Wmax/2 to avoid going
empty during the pause.

What is Wmax? Suppose the buffer is just big enough
to avoid emptying. When TCP starts sending packets
again, we want it to send at rate at least C, so the link
doesn't idle. But its window size after the drop is
Wmax/2, so we need Wmax/2RTT=C.

Putting these arguments together, the buffer needs to
have capacity at least C×RTT packets to avoid going
empty.

It is much harder to calculate the required buffer size
in this way when there are multiple flows and multiple
links. The trouble is that the flows may have different
RTTs, the TCP flows may halve their windows at
different times, etc. For some further work in this
direction see [6] [8] [9].

Discussion of design goals. The objectives and the
models discussed above should not be taken
separately. The queueing-theory model suggests that
loss can be reduced by making buffers large
enough—but TCP's design means it fills up any
buffer, no matter how large. It is good to have
reasonably high utilization of the output link—but
higher utilization generally means more loss and also
larger fluctuations in buffer size, i.e. jitter. The small-
buffer model in the next section marks a compromise
between the objectives we have described here.

3. Theory of small buffers
In this section, we present a model for networks with
small buffers and its justification. We also explain the
design goals that such a network meets.

Summary of model. The network model comprises
two parts: one part describing the dynamics of TCP,
another describing the dynamics of the queue. For
the first, consider a single long-lived TCP flow which
experiences packet drop probability p and has round
trip time RTT. According to the classic throughput
formula [10], it achieves average transmission rate

 x ≈ 0.87 / RTT √p. (1)

If the drop probabilities at the queues along the route
are q1,...,qn then p=1-Π(1-qi.) The drop probability q at
a given queue depends on the total incoming traffic
rate y: q is approximately the drop probability when
that queue is fed by Poisson traffic of rate y. All these
equations (for flow rates, and for drop probabilities)
should then be solved simultaneously.

This procedure, of setting up equations for link rates
and for drop probabilities and then solving them
simultaneously, is called the fixed point approach.
References are collected in [11].

Example. Consider a single link serving 100 flows
with common RTT of 200ms. The total load is

y ≈ 100×0.87 / 0.2 √p pkt/s.

Suppose the queue has service rate C=2000 pkt/s
(24Mb/s for packet size 1500Byte) and a buffer for
B=20 packets. We could set up a Markov chain model
to calculate the drop probability, but to save a tedious
calculation we will make the crude approximation

 p ≈ (y/C)B (2)

(i.e. pretend the queue has exponential service and
an infinite buffer, and calculate the probability that the
queue size exceeds B). Solving these two equations
simultaneously yields

p≈0.062, y≈1741 pkt/s.

Non-TCP traffic and short-lived TCP flows can be
incorporated into the model as an extra component to
the total traffic rate y.

Justification of model. The first part of the model,
giving the average transmission rate of a long-lived
TCP flow, is well-known. A simplistic model shows us
why x depends on RTT and p in the way it does.
Suppose that drops are periodic, once every 1/p
packets. Then the window size follows a precise
sawtooth, increasing from Wmin packets to Wmax
packets and then falling back to Wmin. Since the
window halves when there is a loss, Wmin=Wmax/2.
Since the window size increases at rate 1 packet per
RTT, and it increases by Wmax/2 packets in every
sawtooth, the period is RTT×Wmax/2. The number of
packets sent in any single sawtooth can then be
found by integrating the transmission rate, which
increases from Wmax/2RTT to Wmax/RTT pkt/s over
RTT×Wmax/2 seconds: it is Wmax

2/2. But we have
assumed that there is one drop every 1/p packets.
Therefore Wmax=√(2/p). Averaging over a period, the
average transmission rate is (Wmax

2/2)/(RTT×Wmax/2),
i.e. √2 / RTT√p. A more careful calculation,
accounting for random packet drops, gives the
formula (1).

More interesting is the justification for the use of a
Poisson queueing model (especially given the
empirical evidence for long range dependence in
Internet traffic). There are several supporting pieces
of evidence. First, the aggregate of many
independent point processes converges to a Poisson
process over very short timescales. Second,
measurements of Internet traffic confirm this short-
timescale Poisson phenomenon. Third, classic
queueing models show that a queue with a fast
service rate and a small buffer size will most likely
overflow over short timescales. (These claims are
justified in [12].) Fourth, the aggregate arrival rate
only changes slowly, over several RTTs (in fact, it
satisfies a differential equation [20]). Over a short
timescale we therefore expect the aggregate traffic to
vary hardly at all, we expect the queue size to

fluctuate rapidly, and we expect the queue size
distribution to match that of a queue fed by a Poisson
process. This argument is made in more detail in [5]
[13].

This is not inconsistent with published results on long-
range dependence [14]. Over short timescales
Internet traffic looks Poisson; over long timescales it
looks long-range dependent. If buffers are small then
small bursts in traffic are the likely cause of buffer
overflow. Since small bursts occur over short
timescales, long-range statistical characteristics are
irrelevant.

(There is one proviso about Poisson traffic modeling.
Simulations show that, if access link speeds are very
high, the packets from a single TCP flow tend to
arrive in bursts—the burst size being equal to the
TCP window size [8]. If this is the case, a batch-
Poisson traffic model should be used instead, and
equation (2) needs to be updated. The practical
implication is that the buffer needs to be able to
accommodate 20 bursts, not 20 packets.)

The following plot (from a simulator by Mark Handley,
UCL) clearly shows the separation of timescales. The
queue size fluctuates so rapidly that, in a plot
spanning 5 seconds of simulated time, all we see is a
blur.

40 41 42 43 44 45

0

5

10

15

20

queue size [pkt]
0
5

10
15
20
25
30

tcp window size [pkt]
0.0

0.2
0.4
0.6

0.8
1.0

utilization

Five-second simulation trace for 2000 TCP flows
with average round trip time 120ms and packet size
1500Byte, sharing a single bottleneck link with
capacity 1.6Mb/s. Even though the TCP flows are
all following the sawtooth, and varying their rates by
a factor of two, total utilization hardly changes.
Queue size fluctuates very rapidly, emptying and
filling again repeatedly every 1ms.

It is natural to ask whether the utilization graph is
always flat, or if it is possible that the TCP sawtooths
can become synchronized, which would lead to large

fluctuations in utilization. This is indeed possible. The
theory for predicting synchronization is described in
further detail in [3] [5]. We will come back to
synchronization in the following sections.

Design goals. From this model, we can see that
small buffers do not satisfy exactly the design goals
that we suggested in Section 2. There is no obvious
way to set a certain target drop probability—TCP will
adapt, and achieve the drop probability it wants. This
reflects an early design goal of the Internet: that
robustness is the most important design goal. TCP
adapts to network conditions, and it will continue to
function even if the network is hopelessly
underprovisioned. If that is the case, we have to
expect the drop probability to be high.

The network operator can control drop probability by
providing enough capacity. For a given buffer size B,
and for given traffic conditions (number of flows and
their RTTs), it is easy to calculate the service rate C
needed to achieve a certain target drop probability.
(The answer depends on traffic conditions, so in fact
C should be chosen based on the expected range of
traffic conditions.)

What is the effect of buffer size B, and why have we
suggested B=20 packets? Equation (2) gives the
tradeoff between buffer size, drop probability, and
utilization. For B≥20 we get packet loss probability of
less than 1% at 75% utilization. If we can build a
small-buffer router which runs more than 33% faster
than a standard large-buffer router, then it's worth
sacrificing the 25% utilization in order to obtain higher
throughput.

There is in fact a deeper reason why B=20 packets is
a good compromise. The synchronization analysis
alluded to above shows that the system tends to
become synchronized for B much larger than 20
packets and much smaller than C×RTT packets. The
consequences of synchronization are jitter, loss of
utilization, and general unpredictability. Therefore
buffers must either be very small or very large; they
can't be in between.

Note: one design goal which is automatically met with
small buffers is the goal of keeping queueing delay
and jitter small.

4. Evolution of TCP
TCP determines a relationship between drop
probability and throughput and round trip time,
specified by equation (1). For some users (e.g.
particle physicists who want very high throughput for
transatlantic file transfers) that equation is too
restrictive. This has prompted work on modifying
TCP's congestion control algorithm [16] [17]. For any
new algorithm, one can write down a modified version
of (1), solve the fixed point equations, and calculate

the operating point. One can also analyse
synchronization. The modified TCP described in [17]
has in fact been proven to avoid synchronization,
assuming small buffers, in an arbitrary network with
heterogeneous round trip times [18]. Such general
results are not known for networks with large buffers.
For further discussion see [3] [19].

5. Conclusion
Buffers in core routers can be very small, as small as
25kByte. Such small buffers reduce queueing delay
and jitter. They also lead to slightly reduced
utilization—though the sacrifice is worth considering if
it permits all-optical packet-switched routers.

References
1 N.Hohn et al., ACM Sigmetrics 2004, "Bridging
router performance and queuing theory"
2 D.Wischik et al., ACM CCR 2005, "Part I: Buffer
sizes for core routers"
3 G.Raina et al., ACM CCR 2005, "Part II: Control
theory for buffer sizing"
4 M.Enachescu et al., ACM CCR 2005, "Part III:
Routers with very small buffers"
5 G.Raina et al., EuroNGI 2005, "Buffer sizes for
large multiplexers: TCP queueing theory and
instability analysis"
6 G.Appenzeller et al., ACM SIGCOMM 2004,
"Sizing router buffers"
7 A.Ganesh et al., "Big Queues", Springer 2004
8 S.Shenker et al., ACM CCR 1990, "Some
observations on the dynamics of a congestion control
algorithm"
9 A.Dhamdhere et al., IEEE Infocom 2005, "Buffer
sizing for congested Internet links"
10 M.Mathis et al., ACM CCR 1997, "The
macroscopic behaviour of TCP congestion control"
11 V.Firoiu et al., Proc. IEEE 2002, "Theories and
models for Internet quality of service"
12 J.Cao et al., IEEE Infocom 2002, "A Poisson limit
for buffer overflow probabilities"
13 S.Dep et al., ACM Sigmetrics 2004, "Rate-based
versus queue-based models of congestion control"
14 V.Paxson et al., ACM CCR 1994, "Wide-area
traffic: the failure of Poisson modeling"
15 G.Appenzeller, PhD thesis, Stanford 2004
16 S.Floyd, RFC 3649, 2003.
17 T.Kelly, technical report CUED/ F-INFENG/
TR.435, Cambridge Univ. Eng. Dept., 2002
18 G.Vinnicombe, Proc. IFAC World Congress on
Automatic Control 2002, "On the stability of networks
operating TCP-like congestion control"
19 F.Kelly, Euro. J. Control 2003, "Fairness and
stability of end-to-end congestion control"
20 V.Misra et al., ACM CCR 2000, "Fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED"

