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Abstract— The input-queued switch architecture is widely used
in Internet routers, due to its ability to run at very high line
speeds. A central problem in designing an input-queued switch
is choosing the scheduling algorithm, i.e. deciding which packets
to transfer from ingress ports to egress ports in a given timeslot.
Important metrics for evaluating a scheduling algorithm are its
throughput and average delay.

The well-studied ‘Maximum-Weight’ algorithm has been
proved to have maximal throughput [1]; later work [2]–[4]
found a wider class of algorithms which also have maximal
throughput. The delay performance of these algorithms is less
well understood.

In this paper, we present a new technique for analysing
scheduling algorithms which can explain their delay perfor-
mance. In particular, we are able to explain the empirical
observations in [2] about the average delay in a parameterized
class of algorithms akin to Maximum-Weight. We also propose
an optimal scheduling algorithm. Our technique is based on
critically-balanced fluid model equations.

I. INTRODUCTION

Switching is an integral function in a packet-switched data
network. An Internet router has several input ports and several
output ports. Its function is to receive packets at input ports,
work out which output port to send them to, and then switch
them to the correct output port. There are a variety of possible
switch architectures; in this paper we are concerned with input-
queued (IQ) switches, which work as follows:

A. Input-queued switch

Figure 1 illustrates a 3× 3 IQ switch fabric. By ‘3× 3’ we
mean it has 3 input ports and 3 output ports. (Not all ports need
be used, so there is no loss in generality in assuming as many
input as output ports.) Packets arriving at input i destined for
output j are stored in Virtual Output Queue VOQ(i, j). In each
timeslot, the switch fabric can transmit a number of packets
from input ports to output ports, subject to the constraints:

i. each input can transmit at most one packet,
ii. each output can receive at most one packet.

Another way to express this is to say that, in each timeslot,
the switch can choose a matching from inputs to outputs. For
example, Figure 1 illustrates a matching in which one packet
is transmitted from input port 1 to output port 3, and one from
input port 2 to output port 1. The figure also shows a match
from input port 3 to output port 2, but since VOQ(3, 2) is
empty no packet is transmitted.
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Fig. 1. An input-queued switch, and a matching of inputs to outputs.

The constraints (i)&(ii) mean that the buffer memory needs
be accessed only twice per timeslot (once to write an incoming
packet, once to read a packet for transmission). This low
memory bandwidth means that IQ switches can operate at
very high speeds. The constraint (ii) means that no buffers are
required at the output ports. We have assumed here, and we
will assume throughout, that all packets are of equal size, and
that time is slotted so that at most one packet may arrive in any
timeslot. In practice, packets are not all the same size, but they
are broken up into equal-sized cells before being transmitted
across the switch fabric.

B. Scheduling algorithms

The matching of inputs to outputs is chosen by a scheduling
algorithm. It may take account of queue sizes, ages of packets,
or quality-of-service constraints.

For the purposes of this paper, one scheduling algorithm
is particularly interesting: the Maximum-Weight Matching
(MWM) algorithm. In every timeslot, this algorithm chooses a
matching as follows: Let Qij be the queue size at VOQ(i, j).
Given a matching which matches input i to output o(i),
define the weight of that matching to be

∑
i Qi o(i). Among

all possible matchings choose one with the greatest weight
(breaking ties randomly). Another interesting algorithm is
MWM-α, which among all matchings chooses one with the
greatest

∑
i Qα

i o(i), for a specified α > 0. Thus MWM is the
same as MWM-1.

There are two main metrics for evaluating scheduling algo-
rithms: throughput, and delay. Roughly speaking, an algorithm
is said to have 100% throughput if it can carry as much traffic
as an omniscient scheduling algorithm (i.e. one which knows
all future packet arrivals). This is formalized in Section III.
Delay performance is harder to define; we discuss it further
below.



C. Previous work

The IQ switch architecture has been studied for more than a
decade [5]–[8]. A good deal is now known about throughput.
MWM has been shown to have 100% throughput, under a
‘friendly’ arrival distribution [1]. A generalization of this result
in the context of radio-hop networks (under the same arrival
distribution) was shown earlier [9]. These results have been
generalized to arbitrary arrival distributions [10]. A class of
algorithms akin to MWM have also been shown to have 100%
throughput [2]–[4].

Less is known about the delay performance of scheduling
algorithms. Bounds on delay have been derived for MWM
and certain approximations to MWM, under ‘friendly’ arrival
distributions [4], [11]. A systematic simulation study of the
MWM-α algorithm led to the following conjecture [2]:

Conjecture 1 The average delay of the MWM-α algorithm
decreases as α decreases.

The delay performance of a generalized switch (of which
an IQ switch is a special case) under heavy traffic has been
studied. In the special case where exactly one port of the
switch is saturated, MWM has been shown to be optimal
[12]. However, in this setting all the MWM-α algorithms have
essentially the same performance, and so this theory does not
help us resolve Conjecture 1.

Though MWM and related algorithms provide maximal
throughput, they are too complex to be implementable in high-
speed switches. This has motivated the design of simpler high-
performance scheduling algorithms [6], [7], [13], [14]. In this
paper we do not address complexity. Nonetheless we hope
that the insights our analysis gives can be used to assist in the
design of good implementable algorithms.

D. Contribution

The work in this paper is motivated by a desire to prove
Conjecture 1. As in [12], we will look at systems which are
heavily loaded. The formalism we will use is that of heavy
traffic theory, a general body of theory which has been fully
developed in the setting of queueing networks [15].

The outline of this paper is as follows. In Section II we give
the fluid model equations for describing the behaviour of an
IQ scheduling algorithm. In Section III we define throughput,
and review the connection with fluid model equations.

The main contribution of the paper is in Sections IV & V.
In Section IV we characterize the steady-state behaviour of
the balanced fluid model equations, by studying combinatorial
properties of switches and matchings; in Section V we describe
the relationship between this steady-state behaviour and the
performance of a heavily-loaded switch. The key discovery
is that the n × n matrix of queue sizes Qij actually lives in
a 2n − 1 dimensional subspace of Rn2

(called the invariant
set), and the geometry of this subspace is determined by the
scheduling algorithm.

Finally in Section VI we use the idea of the invariant set to
resolve Conjecture 1, to conjecture an optimal algorithm, and
to suggest future directions for work on scheduling algorithms.

E. Notation

We first specify our notation. Let R+ = {x ∈ R : x ≥ 0}
and Z+ = {i ∈ Z : i ≥ 0}. Let 1X be the indicator function:
1true = 1 and 1false = 0.

Let M be the set of n × n real-valued matrices, and M+

the subset consisting of R+-valued matrices. Write matrices
as a = [aij ]. Let 1 = [1]. Let S ⊂ M+ be the set of matrices
whose row sums and column sums are all equal to 1, i.e. the set
of doubly stochastic matrices. The set of doubly substochastic
matrices is the subset of matrices in M+ whose row and
column sums are all bounded above by 1. Let P ⊂ S be the
set of matrices π for which πij ∈ {0, 1} for all i and j, i.e.
the set of permutation matrices. For a ∈ M write

ai⊕ =
∑

j

aij , a⊕j =
∑

i

aij , a⊕⊕ =
∑
i,j

aij .

When a is a matrix of queue sizes, we call these the workload
at input port i, the workload at output port j, and the total
workload respectively. Define the workload map

W (a) =
(
a1⊕, . . . , an⊕; a⊕1, . . . , a⊕n; a⊕⊕

)
and let W be the set of all possible workload vectors, W =
{W (a) : a ∈ M+}. Write a workload w ∈ W as w =
(w1·, . . . , wn·; w·1, . . . , w·n; w··). Note that W has dimension
2n − 1, since w⊕· = w·⊕ = w··.

For a, b ∈ M and f : R → R let

ab =
[
aijbij

] ∈ M, f(a) =
[
f(aij)

] ∈ M, and

a · b =
∑
i,j

aijbij ∈ R.

Let component-wise multiplication have precedence over ·, so
that a · bc = a · (bc). The · operator is commutative, and
distributive over addition so that a · (b + c) = a · b + a · c.

II. SWITCH DYNAMICS

In this section we describe fluid model equations, a natural
and intuitive way to describe the dynamics of a switch.
They are used rigorously in two ways, in the following
sections:

i. to show that a scheduling algorithm has 100% throughput
(Section III)

ii. to derive state space collapse (Section IV–V)
We will not give rigorous derivations of the fluid model
equations. This can be found in [10], [16]. Instead we will
give motivation.

We will first describe the general setup in Section II-A and
the fluid scaling in Section II-B. Then we give the fluid model
equations in two parts: the algorithm-independent equations in
Section II-C, and the algorithm-dependent equations in Section
II-D. Any solution to all these equations is called a fluid model
solution.



A. Queueing model

Let timeslots be indexed by τ ∈ Z+, starting at τ = 0.
Let Q(τ) = [Qij(τ)] ∈ M+ denote the matrix of the queue
sizes at the end of timeslot τ . Since work arrives in discrete
packets, Qij(τ) ∈ Z+ for all τ . We are interested in describing
the dynamics of Q(·), which depend on the initial conditions,
the arrival process and the scheduling algorithm.

First, the initial condition. For simplicity we make the
following assumption:

Assumption 2 We assume that the switch starts empty at time
0, i.e.

Q(0) = 0. (1)

Next, the dynamics. Let A(τ) be the cumulative arrival
process up to timeslot τ , i.e. Aij(τ) is the number of packets
that have arrived at input i destined for output j in the time
interval [0, τ ], with A(0) = 0. The arrivals in timeslot τ are
thus A(τ) −A(τ − 1). Similarly, let D(τ) be the cumulative
departure process from the virtual output queues. Then

Q(τ) = Q(0) + A(τ) − D(τ) = A(τ) − D(τ) (2)

(where the last equality uses Assumption 2). Now for the
scheduling algorithm. Let Sπ(τ) be the cumulative number
of timeslots that the scheduling algorithm has devoted to
matching π ∈ P in the time interval [0, τ ], with Sπ(0) = 0 for
all π. We will use the convention that departures in timeslot
τ happen at the beginning of the timeslot, and that arrivals
happen at the end, so that

Dij(τ) − Dij(τ − 1) =∑
π∈P

πij

[
Sπ(τ) − Sπ(τ − 1)

]
1Qij(τ−1)>0

(3)

In each time slot, exactly one matching is chosen. Thus∑
π∈P

Sπ(τ) = τ. (4)

The service process is completely described by S(·) =
{Sπ(·), π ∈ P}, and the tuple

X (·) =
(
Q(·),A(·),D(·), S(·))

completely describes the dynamics of the switch.

B. Fluid scaling

The fluid model equations describe the switch at the ‘rate’
level, rather than the packet level. Instead of looking at X (τ),
we now look at the limit

x(t) = lim
r→∞

1
r
X (rt), t ∈ R+ (5)

where for t �∈ Z+

X (t) = (1 − t − �t�)X (�t�) + (t − �t�)X (�t� + 1).

Let x(t) =
(
q(t),a(t),d(t), s(t)

)
. We make the following

assumption about x(·):

Assumption 3 Assume that the limit x(·) exists, and is abso-
lutely continuous.

An absolutely continuous function is differentiable almost
everywhere. Write ξ̇(t) for the derivative of ξ(t) at t, and
take any equations involving ξ̇(t) to hold only where ξ(t) is
differentiable.

Under mild probabilistic assumptions on the arrival process,
this assumption holds almost surely—see [10], [16]—though
the limit x(·) is in general random. We will also make an
assumption about the form of the limiting arrival process a(·),
the first part of which also holds under very mild probabilistic
assumptions.

Assumption 4 Assume that a(t) = λt for some λ ∈ M+,
called the matrix of mean arrival rates. Suppose that λ is
doubly substochastic, i.e.

λi⊕ ≤ 1 for all i, λ⊕j ≤ 1 for all j.

The assumption that λi⊕ ≤ 1 reflects the constraint that
at most one packet can be transmitted from input port i per
timeslot; the assumption that λ⊕j ≤ 1 reflects the constraint
that at most one packet can be received by output port j per
timeslot. If these constraints are not met then the queue sizes
will blow up. We say that λ is admissible if it is strictly doubly
substochastic, i.e.

λi⊕ < 1 for all i, λ⊕j < 1 for all j. (6)

If λi⊕ = 1 we say that input port i is critically loaded;
similarly for output ports.

C. Algorithm-independent dynamics

The fluid model equations corresponding to Assumption 4
and equations (2)–(4) are

a(t) = λt (7)

q(t) = a(t) − d(t) (8)

ḋij(t) =
∑
π∈P

πij ṡπ(t)1qij(t)>0. (9)

∑
π∈P

sπ(t) = t (10)

We have remarked that Assumption 3 can be proved under
mild probabilistic assumptions on the arrival process; it can
also be proved that the limit x(·) almost surely satisfies these
equations [10], [16].

Some further notation will be helpful for the rest of this
paper. The matrix of instantaneous service rates σ(t) is

σ(t) =
∑
π∈P

πṡπ(t).

Then equations (7)–(9) can be rewritten as

q̇ij(t) =

{
λij − σij(t) if qij > 0(
λij − σij(t)

)+
otherwise

We will write this in the following compact form:

q̇(t) =
(
λ − σ(t)

)+[q(t)=0]
. (11)



D. Algorithm-dependent dynamics

The scheduling algorithm decides which matching to use in
each timeslot, i.e. it specifies {Sπ(·), π ∈ P}. We will now
describe some different scheduling algorithms, and associated
fluid model equations: the basic Maximum-Weight matching
algorithm MWM (II-D.1); and Generalized Maximum-Weight
matching MWMf, which includes MWM-α as a subclass
(II-D.2).

As with the algorithm-independent fluid model equations,
it can be shown (under mild probabilistic assumptions on
the arrival process) that the limit process x(·) satisfies the
following fluid model equations almost surely [10], [16].

1) MWM: At time τ , MWM chooses a matching π∗ ∈ P

such that
π∗ = argmax

π∈P

π ·Q(τ − 1).

If there are several optimal matchings, π∗ is chosen randomly
among them. (Recall that under our convention departures
occur at the beginning of a timeslor, and so the matching at
time τ depends on the queue sizes at τ − 1.) Equivalently,

Sπ(τ) = Sπ(τ − 1) if π · Q(τ − 1) < max
ρ∈P

ρ ·Q(τ − 1).

The corresponding fluid model equation is

ṡπ(t) = 0 if π · q(t) < max
ρ∈P

ρ · q(t) (12)

2) MWMf: MWMf is a generalization of MWM. Let f be
some function R+ → R+. Then MWMf chooses a matching
π∗ in timeslot τ such that

π∗ · f(
Q(τ − 1)

)
= max

π∈P

π · f(
Q(τ − 1)

)
.

The fluid equation analogous to (12) is

ṡπ(t) = 0 if π · f(q(t)) < max
ρ∈P

ρ · f(q(t)). (13)

The special case of f(x) = xα, α > 0, is called MWM-α.
In this paper we will only consider functions f which satisfy

Assumption 5 Assume f is differentiable and strictly increas-
ing with f(0) = 0. Assume also that for any (x1, . . . , xn) and
(y1, . . . , yn) ∈ Rn

+

X

i

f(xi) >
X

i

f(yi) ⇒
X

i

f(rxi) >
X

i

f(ryi) ∀r > 0.

This is needed to ensure that the fluid limit exists [16, Section
4.2.2]. Clearly f(x) = xα satisfies this assumption.

III. THROUGHPUT ANALYSIS VIA FLUID MODEL

A very powerful use of fluid models is in analysing through-
put [10]. The general idea is this:

i. Take the arrival process A to be stochastic, and make some
mild assumptions on its distribution.

ii. Prove that any solution x(·) of the fluid model equations,
with initial queue size q(0) = 0, satisfies q(t) = 0 for
almost all t ≥ 0. This is called weak stability. (‘Almost
all’ is with respect to the Lebesgue measure.)

iii. It can be shown that (i)&(ii) together imply that Q(t) =
O(t) whenever λ is admissible. This is known as rate-
stability or having 100% throughput.

We will now demonstrate step (ii) for MWMf. The remain-
ing steps are fleshed out in [16]. The conclusion is that MWMf
has 100% throughput.

Theorem 1 Under any arrival process satisfying Assumption
4, with admissible rate-matrix λ, the switch operating under
the MWMf algorithm is rate-stable.

Proof. Assume λ is admissible. Let f be the weight function
for the MWMf algorithm. Define

L(q) = F (q) · 1, where F (x) =
∫ x

0

f(y) dy.

It can be shown that L is a Lyapunov function, i.e. that for
any fluid model solution, at any t such that q(t) �= 0,

d

dt
L

(
q(t)

)
< 0.

The proof is very similar to the proof of Theorem 5(i), so we
omit it.

It is shown in [10] that for any absolutely continuous
function f : R+ → R+ with f(0) = 0 and df(t)/dt ≤ 0
almost everywhere where f(t) > 0, f(t) = 0 for almost all
t ≥ 0.

This lets us conclude that L(q(t)) = 0 almost everywhere.�

IV. EQUILIBRIUM ANALYSIS OF FLUID MODEL

The analysis of stability in the previous section assumes
that the arrival rate matrix λ is admissible, i.e. that λi⊕ < 1
and λ⊕j < 1 for every i and j. By studying the behaviour
of the fluid model equations for admissible λ we showed that
MWMf has 100% throughput.

In this section we will use the fluid model equations in a
different way. We will analyse their behaviour when the switch
is critically loaded, i.e. when λi⊕ = 1 for some i, and/or
λ⊕j = 1 for some j. In particular, we will characterize the
invariant states.

Definition 6 (Invariant State) We say that a state q ∈ M+

is invariant (for a switch with given arrival rate matrix
and scheduling algorithm) if any solution to the fluid model
equations for that switch has queue size r(·) which satisfies

r(t) = q =⇒ r(s) = q for all s ≥ t.

In Theorem 1 we showed that for MWMf with admissible
λ the state 0 is invariant. In this section we will prove some
useful results about matchings (Section IV-A), characterize
invariant states of MWMf as the solutions to a certain op-
timization problem (Section IV-B), and find the time taken to
converge to an invariant state (Section IV-C).



A. Preliminary results about matchings

The well-known Birkhoff–von Neumann theorem states that
the set of all doubly stochastic matrices S is convex, and the
set of its extreme points is P. Thus any a ∈ S can be written

a =
∑
π∈P

γππ,
∑
π

γπ = 1, γπ ≥ 0 for all π.

Many of our results concern maximum weight matchings.
Given a ∈ M+, let m(a) be the weight of a maximum weight
matching m(a) = argmaxπ π · a, let M(a) be the set of
maximum weight matchings M(a) = {π : π · a = m(a)},
and let M(a) be the matrix which indicates which entries are
involved in a maximum weight matching:

M(a)ij =

{
1 if πij = 1 for some π ∈ M(a)
0 otherwise

The set M(a) exhibits an important closure property:

Lemma 2 Let π ∈ P, and suppose M(a)ij = 1 whenever
πij = 1. Then π ∈ M(a).

Proof. Define the matrix b by

b =
∑

ρ∈M(a)

ρ. (14)

It is easy to see that b−π has non-negative entries, and that
its row and column sums are all equal, so by the Birkhoff–von
Neuman decomposition

b = π +
∑
ρ∈P

γρρ (15)

where each γρ ≥ 0 and
∑

γρ = |M(a) − 1|.
Let m = m(a) be the weight of a maximum weight

matching. By (14), a · b = |M(a)|m. On the other hand,
by maximality and (15), it must be that a · π ≤ m and
a ·(b−π) ≤ |M(q)−1|m. If either of these inequalities were
strict we would obtain |M(q)|m < |M(q)|m, a contradiction.
Hence a · π = m, and so π ∈ M(a). �

Let λ ∈ M+ be doubly sub-stochastic. It can be augmented
to form a doubly stochastic matrix λ + δ, where the matrix δ
satisfies

δij > 0 if λi⊕ < 1 and λ⊕j < 1.

We will say that such a δ is complementary to λ, and that
λ + δ is an augmentation of λ. (One way to obtain such a δ
is to start with δij = ε for the entries specified above, where
ε = n−1 mini(1 − λi⊕)∧minj(1− λ⊕j), and then to add the
‘deficit’ amount according to the transport algorithm.)

The next lemma gives a useful description of which switch
states may be reached from other switch states.

Lemma 3 Let λ be doubly substochastic. Let q, r ∈ M+ be
such that qij = rij = 0 whenever λij = 0. Suppose that

ri⊕ ≥ qi⊕ if λi⊕ = 1, for all i,

r⊕j ≥ q⊕j if λ⊕j = 1, for all j.

Then there exists a doubly stochastic matrix σ ∈ S, a positive
matrix ε ∈ M+, and a duration t > 0 such that

r = q + t(λ − σ) + ε. (16)

Suppose that in addition

ri⊕ ≥ qi⊕ for all i and r⊕j ≥ q⊕j for all j.

Then for any augmentation λ+ of λ there exist σ, ε and t as
above such that

r = q + t(λ+ − σ) + ε. (17)

Proof. Let ρ = λ − δ(r − q) for sufficiently small δ > 0.
We will show that ρ is a doubly sub-stochastic matrix with
non-negative entries.

First we show that all entries of ρ are non-negative, that is,
ρij ≥ 0. Now, if λij > 0, then by choosing δ small enough,
ρij can be made positive; else if λij = 0 then trivially by
constraints on q and r we obtain ρij = 0. Thus, ρ ∈ M+.

Next, we show that ρ is doubly substochastic, that is, ρi⊕ ≤
1 and ρ⊕j ≤ 1 for all i and j. Consider ρi⊕: either λi⊕ < 1,
in which case ρi⊕ < 1 for sufficiently small δ; or λi⊕ = 1, in
which case ri⊕ ≥ qi⊕ and ρi⊕ ≤ 1. Similarly, ρ⊕j ≤ 1 for all
j.

Thus ρ is doubly substochastic non-negative matrix. Hence
there exists an augmentation of ρ, i.e. there exists a doubly
stochastic matrix σ for which ρ ≤ σ componentwise. Then

q + δ−1(λ − σ) ≤ q + δ−1(λ − ρ) = r.

This proves (16).
The proof of (17) is similar, with ρ = λ+ − δ(r − q). It

makes use of the fact that λ+
ij = 0 implies λij = 0. �

B. Invariant states of MWMf

In this section we study the invariant states of fluid model
solutions of MWMf, in a critically loaded switch. We exhibit
a Lyapunov function for the system state, and we characterize
invariant states as the solution to an optimization problem
whose objective is the Lyapunov function.

Let f be the weight function, which we take to satisfy
Assumption 5. Recall the Lyapunov function L(q) = F (q) ·1
where F (x) =

∫ x

0 f(y) dy. Let λ be the doubly stochastic
matrix of mean arrival rates. For a workload vector w ∈ W,
define the convex optimization problem MWMf-CP(w) to be

minimize L(q) over q ∈ M+

such that qi⊕ ≥ wi· if λi⊕ = 1
q⊕j ≥ w·j if λ⊕j = 1
qij = 0 if λij = 0

Note that we may as well take the optimum over {q : qij ≤
w·· ∀i, j}, which is a bounded set. Note also that the objective
function is strictly convex, since f is a strictly increasing
function on R+. Thus the optimization problem has a unique
solution. Accordingly we define



Definition 7 (Lifting Map) The lifting map Δ : W → M+

maps w to the unique solution of optimization problem MWMf-
CP(w).

Lemma 4 The lifting map is continuous.

Proof. Let wn → w in W. Let qn = Δwn and q = Δw.
As we noted above, qn lies in the bounded set {r : rij ≤
wn

·· ∀i, j}. Thus there is a convergent subsequence qm(n) →
q∗. By continuity of the constraints in MWMf-CP(wn), q∗

satisfies the constraints in MWMf-CP(w). By optimality of q
for MWMf-CP(w), it must be that L(q∗) ≥ L(q). We will
now show that L(q∗) ≤ L(q); then q∗ = q by uniqueness of
the optimum, and hence Δ is continuous.

Let εm = (maxi wm
i· −wi·)∨(maxj wm

·j −w·j). Since wm →
w, εm → 0. Now consider q + εm1 as a candidate solution
to MWMf-CP(wm). By choice of εm it is a feasible solution.
By optimality of qm,

L(qm) ≤ L(q + εm1).

Since L is continuous and qm → q∗, we find L(q∗) ≤ L(q).
This completes the proof. �

The following two theorems give two equivalent character-
izations of invariant states, one of them in terms of Δ. Recall
that W (q) gives the vector of workloads for q.

Theorem 5 For a switch operating under the MWMf algo-
rithm,
i. For any fluid model solution r(·), dL(r(t))/dt ≤ 0;
ii. q is an invariant state ⇔ q = ΔW (q);
iii. q is an invariant state ⇔ dL(r(t))/dt = 0 for any fluid

model solution r(·) starting at r(0) = q.

Proof. Proof of (i). Recall that r(t) is absolutely continuous
(Assumption 3), and note that L(·) is continuous; thus the
derivative of L(r(t)) exists for almost all t. At such points,
the fluid model equations tell us

d

dt
L(r(t)) = f(r(t)) · (λ − σ(t))+[r(t)=0]

= f(r(t)) · (λ − σ(t)) since f(0) = 0

≤ f(r(t)) · (λ+ − σ(t)) since λ ≤ λ+ (18)

= f(r(t)) · λ+ − m(f(r(t))) by (13)

=
∑
π∈P

γπf(r(t)) · π − m(f(r(t))) decomposing λ+

≤ m(f(r(t))) − m(f(r(t))) (19)

= 0.

Proof of (ii,⇐). Let w = W (q), and suppose that q solves
MWMf-CP(w). Let r(t) be any fluid model solution with
r(0) = q. Now dL(r(t))/dt ≤ 0 by (i). We will shortly show
that r(t) is a feasible solution to MWMf-CP(w) for all t. Then
dL(r(t))/dt = 0 by optimality of q, and each r(t) is also an
optimal solution. But since the optimum is unique, it must be
that r(t) = q for all t, i.e. q is invariant.

It remains to show that r(t) is feasible for all t. According
to the fluid equations,

ṙ(t) =
(
λ − σ(t)

)+[r(t)=0]

If λi⊕ = 1 then

ṙi⊕(t) ≥ λi⊕ − σi⊕(t) = 0

and so ri⊕(t) ≥ ri⊕(0) = wi·. Similarly for r⊕j(t). Also, if
λij = 0 then

ṙij(t) ≤ 0

and by assumption rij = 0; thus rij(t) = 0. Therefore r(t) is
a feasible solution to MWMf-CP(w) for all t ≥ 0.

Proof of (ii,⇒). Let q be an invariant state. Consider any
fluid model solution r(·) with r(0) = q. Since q is invariant,
dL(r(t))/dt = 0. Hence (18) and (19) must be equalities,
which implies

f(q) · λ = m
(
f(q)

)
. (20)

Now let w = W (q) and let r be any feasible solution to
MWMf-CP(w), and suppose r �= q. By Lemma 3, we can
write

r = r′ + ε where r′ = q + t(λ − σ)

for some doubly-stochastic σ, some t > 0, and some ε ≥ 0
componentwise; and either λ �= σ or ε > 0 in some
component. Now consider the family of states

s(u) = q + u(λ − σ), u ∈ [0, t]

giving s(0) = q and s(t) = r′. It is the case that

d

du
L(s(u))

∣∣∣
u=0

= f(q) · (λ − σ)

= f(q) · λ − f(q) · σ
= m(f(q)) − f(q) · σ by (20)

≥ m(f(q)) − m(f(q)) decomposing σ

= 0.

Now L(s(u)) is strictly convex as a function of u; thus if
λ �= σ then L(r′) = L(s(t)) > L(s(0)) = L(q), and since L
is increasing, L(r) = L(r′+ε) > L(q). Otherwise λ = σ and
ε > 0 in some component, so again L(r) = L(r′+ε) > L(q).
Either way, we have shown that if r �= q then m(f(r)) >
m(f(q)), i.e. that q solves MWMf-CP(W (q)).

Proof of (iii,⇒). If q is an invariant state then any fluid
model solution r(·) starting at r(0) = q satisfies ṙ(t) = 0;
hence dL(r(t))/dt = 0.

Proof of (iii,⇐). If dL(r(t))/dt = 0 then (20) holds and as
argued in (ii,⇒) q solves MWMf-CP(q). By (ii,⇐) q is an
invariant state. �

Next we present an alternative characterization of invariant
states.

Definition 8 (MWMf-endstate) A state q is an MWMf-
endstate if
i. M(f(q))ij = 1 if λij > 0,
ii. M(f(q))ij = 1 if both λi⊕ < 1 and λ⊕j < 1,



iii. qij = 0 if both λi⊕ < 1 and λ⊕j < 1.

Theorem 6 A state q is an MWMf-endstate if and only if it
is an invariant state.

Proof. From Theorem 5, q is invariant if and only if
dL(r(t))/dt = 0 for any fluid model solution r(·) with
r(0) = q. Hence, from (18) and (19), q is invariant if and
only if f(q) · λ = m(f(q)). So we will now prove that

q an MWMf-endstate ⇔ f(q) · λ = m(f(q)). (21)

Proof of (21,⇒). First write

f(q) · λ = f(q) · λ+ − f(q) · δ

where λ+ is an augmentation of λ. Since δ is a complemen-
tary matrix, δij > 0 only if λi⊕ ∨ λ⊕j < 1; by property (iii)
of an MWMf-endstate we see that f(q) ·δ = 0. So it remains
to prove that f(q) · λ+ = m(f(q)).

Since λ+ is doubly stochastic it has a decomposition λ+ =∑
γππ over π ∈ P, with γπ ≥ 0 and

∑
γπ = 1. Suppose

that γπ > 0 for some π. Then, whenever πij > 0, λ+
ij > 0.

There are then two possibilities:
i. either λ+

ij = λij , in which case M(f(q))ij = 1 by
property (i) of an MWMf-endstate;

ii. or λ+
ij > λij , in which case δij > 0 and so M(f(q))ij = 1

by property (ii) of an MWMf-endstate.
Either way, M(f(q))ij = 1. By Lemma 2, π is a maximum
weight matching, i.e. f(q) · π = m(f(q)). Therefore

f(q) · λ+ =
∑
π∈P

γπf(q) · π = m(f(q)).

Thus, if q is an MWMf-endstate then f(q) · λ = m(f(q)).
Proof of (21,⇐). If q is not an MWMf-endstate then at

least one of the three properties of an MWMf-endstate does
not hold.

i. If property (i) fails, then M(f(q))ij = 0 and λij > 0
for some i, j. Thus λ+

ij > 0, and so in the decomposition
λ+ =

∑
γππ there must be some π �∈ M(f(q)) with

γπ > 0. Since this π is not a maximum weight matching,
f(q) · π < m(f(q)) and so

f(q) · λ ≤ f(q) · λ+ < m(f(q)).

ii. If property (ii) of MWMf-endstate fails, then M(f(q)) ij =
0 and δij > 0 for some i, j. Thus, λ+

ij > 0 with the same
consequences as above.

iii. If property (iii) of MWMf-endstate fails, then q ij > 0
and δij > 0 for some i, j. Thus f(q) · δ > 0. Also, by
decomposing λ+ into permutations, f(q)·λ+ ≤ m(f(q)).
Hence

f(q) · λ ≤ m(f(q)) − f(q) · δ < m(f(q)).

Thus, if q is not an MWMf-endstate then f(q) · λ <
m(f(q)). �

C. Time to convergence

The last result of this section concerns the speed of con-
vergence. Intuitively, if any fluid model solution converges
quickly to an invariant state, then the switch spends most of
its time in or close to an invariant state. This will be made
rigorous in Section V; for now we simply prove the lemma.

First some definitions. Let D = {q ∈ M+ : L(q) ≤ L(1)}.
Note that since L is a Lyapunov function, if q(0) ∈ D then
q(t) ∈ D for all t ≥ 0. Clearly D is closed and bounded, and
hence compact. Now let

I =
{
q ∈ D : ΔW (q) = q

}
Iδ =

{
r ∈ D : ‖r− q‖ < δ for some q ∈ I}

.

Since Δ and W are continuous, I is closed; clearly Iδ is open.
We saw in the proof of Theorem 5 that for any fluid model

solution

d

dt
L(q(t)) = g(q(t)) where g(q) = f(q) · λ − m(f(q)).

Since g is continuous, it attains its supremum inside the closed
and bounded set D ∩ I c

δ; from Theorem 5 this supremum is
strictly negative. Let ηδ be the value of the supremum. Finally
we can state the result:

Lemma 7 Given ε, and any fluid model solution q(·) with
q(0) ∈ D, let

Tε = inf
{
t ≥ 0 : ‖q(t) − ΔW (q(t))‖ ≤ ε

}
.

Then there exists some δ > 0 which does not depend on q(·)
such that

Tε ≤ L(1)
|ηδ| . (22)

Proof. First we will argue that if q ∈ Iδ then ‖q−ΔW (q)‖ <
ε, for δ sufficiently small. Suppose that q ∈ Iδ ⊂ D; then
‖q − r‖ < δ for some r ∈ D such that r = ΔW (r). The
map ΔW (·) is continuous, hence it is uniformly continuous
on the closed and bounded set D. Hence for any ε there exists
a δ > 0 such that

‖q − r‖ < δ ⇒ ‖ΔW (q) − ΔW (r)‖ < ε/2.

Hence

‖q− ΔW (q)‖ ≤ ‖q − r‖ + ‖r− ΔW (r)‖ + ‖ΔW (r) − ΔW (q)‖
≤ δ + ε/2.

Simply choose δ < ε/2; then ‖q− ΔW (q)‖ < ε.
Now all we need to do is to bound the time it takes q(·)

to reach Iδ . If q(0) ∈ Iδ then (22) holds trivially. If not, then
until q(t) ∈ Iδ,

d

dt
L(q(t)) = g(q(t)) ≤ ηδ < 0.

Since L(q(0)) ≤ L(1) and L(q(t)) ≥ 0, we obtain (22). �



V. HEAVY TRAFFIC AND STATE SPACE COLLAPSE

In Section III we described how the fluid model equations
can be used to reason about the throughput of a switch. In
this section we will describe what the balanced fluid model
equations can tell us about the behaviour of the switch. The
conclusion is that the switch spends most of its time at or near
an invariant state.

To make this statement precise, we need to introduce the
heavy traffic limiting regime. Consider a sequence of MWMf
switches indexed by r, satisfying Assumptions (2)–(5), where
the matrix of mean arrival rates for the rth system is

λr = λ − 1
r
φ

where φ is a fixed constant matrix in M+. Assume further
that λ is such that one or more of the input and/or output
ports is critically loaded. Let X r(·) be the tuple describing
the dynamics of the rth system. In the heavy traffic scaling,
we are interested in

x̂r(t) =
1
r
X r(r2t).

By contrast, in the fluid scaling (Section II-B) we considered
xr(t) = r−1X r(rt).

The main result, which is proved in [16, Theorem 16], is
the following. It holds under mild probabilistic assumptions
on the arrival process. The proof is along the lines of [15].

Theorem 8 For any finite T ≥ 0, where q̂r(t) is the first
component of x̂r(t),∣∣q̂r(·) − ΔW (q̂r(·))∣∣

T∣∣q̂r(·)∣∣
T
∨ 1

→ 0 as r → ∞

in probability.

Here, | · |T is the supremum norm of a function defined on
[0, T ].

This is called weak state space collapse, weak because we
do not have control of |q̂r(·)|T .

Figure 2 illustrates state space collapse for a 3 × 3 switch
running MWM. Each cell shows one of the nine queues; it
plots the queue size as a function of time. The horizontal axis
runs for 5000 time steps; the vertical axis runs from 0 to
65 packets. Arrivals are Bernoulli, with arrival rate matrix λ
chosen so that all ports are nearly critically loaded:

λ =

⎛
⎝ 0.143 0.435 0.417

0.435 0.002 0.558
0.417 0.558 0.020

⎞
⎠

The lifted queue sizes ΔW (Q(t)) match very closely the
actual queue sizes, except for Q22 where the arrival rate is
so slow that the queue ‘can’t keep up’. If we had run the
simulation for longer, the match would be closer.

queue size process Q(t)

ΔW (Q(t))

Fig. 2. Evolution of queue sizes in a 3×3 switch running MWM. The actual
queue sizes Q(t) are very close to the projected queue sizes ΔW (Q(t)).

VI. INFERRING PERFORMANCE VIA

STATE SPACE COLLAPSE

The results of the last section show that, when a n×n switch
running MWMf is heavily loaded, the n2 queue sizes are
essentially determined by the (2n− 1)-dimensional workload
vector, via the lifting map. In other words, to understand the
behaviour of the switching algorithm it is sufficient to reason
about what it does to the workload vector. Since the workload
vector is (2n − 1)-dimensional rather than n2-dimensional it
can sometimes be simpler to reason about the workload vector.

In fact, state space collapse tells us something more. The
queue size matrix q is usually very close to ΔW (q) (it is
exactly equal to ΔW (q) in the heavy traffic limit). Therefore
the queue size matrix is restricted to the set I = {q ∈ M+ :
q = ΔW (q)}. Call this the invariant set.

Of course, we don’t need to keep track of the queue size
matrix; it is sufficient to keep track of the workload vector. The
workload vector always lies in the set W = {W (q) : q ∈ I}.
Call this the collapsed invariant set.

The workload vector therefore roams inside W . It cannot
leave W ; whenever it hits a boundary the scheduling algorithm
chooses matchings so that the workload vector remains inside
W . Typically this is achieved by idling on some port. For
MWM-α, which we study in depth here, Δ(w) > 0 com-
ponentwise for w in the interior of W , which means that
no queue is empty, and so any matching that the scheduler
chooses is work-conserving.

A natural goal is to choose a scheduling algorithm which
makes W as large as possible, so that idling is avoided as
much as possible. In the rest of this section we compare
scheduling algorithms by reasoning about the geometry of W .
The geometry can be complicated, and so in many cases we
still only have partial results.

A more rigorous line of argument would be to calculate
the stationary distribution of the workload process, or use
large deviations theory to estimate the probability of large
workloads, under reasonable probabilistic assumptions on the
arrival process. This stationary distribution would depend on
the scheduling algorithm both through the geometry of W and



through its behaviour at the boundary of W . This approach
has been developed for standard queueing networks [17]; it
seems very challenging, and we leave it as a topic for further
research.

A. Example: state space collapse of 2 × 2 MWM-α

Consider a 2×2 switch running MWM-α, and suppose that
the arrival rate matrix λ is > 0 componentwise. To find I,
use the characterization of MWM-endstates which says that
all matchings must have the same (maximum) weight, i.e.

I =
{
q ∈ M+ : qα

11 + qα
22 = qα

12 + qα
21

}
.

To find W : Suppose w = W (q) for some q ∈ I. Solving
the equations which correspond to these two conditions (i.e.
q11 + q12 = w1· etc., qα

11 + qα
22 = qα

12 + qα
21) we can find q.

To be concrete, qij solves

qα
ij + (w·· − wi· − w·j)α = (wi· − qij)α + (w·j − qij)α.

This is soluble (for qij ≥ 0) if and only if

w·· ≤ wi· + w·j +
(
wα

i· + wα
·j
)1/α

. (23)

In other words, w ∈ W if and only if (23) is satisfied for all
i and j.

Note that the boundaries of W correspond to regions where
(23) is tight, i.e. where qij = 0 for some i and j. In the
interior of W , q > 0 componentwise, and so there cannot
be any idling. At the boundary of W , some queues are empty
and so the scheduling algorithm may choose a matching which
results in wasted service.

Now, it is a standard inequality that for any a,b ∈ R+, and
any 0 < α < β,

(aα + bα)1/α ≥ (aβ + bβ)1/β .

Applying this inequality to (23), we see that the collapsed
invariant set W is decreasing as α increases. Note that W
becomes arbitrarily small as α increases, which indicates that
delays get arbitrarily bad.

We conjecture that for an n × n switch running MWM-α,
the set W is decreasing in α (though the above proof only
works for n = 2). If this is so, we have an explanation for
Conjecture 1: when α is larger, the set W is smaller, so the
workload process hits the boundaries more often, so there is
more wasted service, so the average queue sizes are larger, so
the average delay is bigger.

B. Limiting state space collapse for MWM-α as α → 0

Write W(α) for the collapsed invariant set for MWM-α.
We have just seen that W(α) is increasing as α → 0 for a
2 × 2 switch. Does it tend to a limit? Clearly, the collapsed
invariant set W for any scheduling algorithm is a subset of

Wmax = W =
{
w : w⊕· = w·⊕ = w··

}
i.e. the set of workload vectors where the row and column
sums add up to give the same total workload; so W(α) is
certainly constrained. For an n×n switch, we do not know if

W(α) is increasing as α → 0, but we do have the following
partial result:

Lemma 9 Suppose that the arrival rate matrix λ is > 0
componentwise. For any w in the interior of Wmax, w ∈ W(α)
for α sufficiently small.

Proof. Suppose not, i.e. suppose there exist arbitrarily small
α with w �∈ W(α). Write Δα for the lifting map for MWM-
α. Consider a sequence of q(α) = Δα(w) taken along α →
0 such that w �∈ W(α). We will prove that q(α) is not an
MWMf-endstate, which means that q(α) �= Δα(q(α)). But
if q(α) = Δα(w) then from the definition of the lifting map
q(α) = Δα(q(α)), a contradiction. This contradiction falsifies
our supposition about w.

We next note some properties of q = Δ(w), for any fixed
α with w �∈ W(α). Since w �∈ W(α), W (q) �= w. By the
definition of the lifting map (and in particular the requirement
of feasibility for the optimization problem), W (q) ≥ w. This
means that there is some i or j such that qi⊕ > wi· or
q⊕j > w·j . Indeed, there must be both such an i and a
j, since otherwise the sum of row workloads and column
workloads would not be equal. Now, q ij = 0, since if qij > 0
we could reduce qij and still have a feasible solution to the
optimization problem but with smaller L(q). There must also
be a qi′j > 0 since if qi′j = 0 for all i′ then w·j = 0, which
by assumption is not the case. Similarly there must be some
qij′ > 0. Furthermore we can bound these away from zero:
qi′j > w·j/n and similarly for qij′ .

Now return to the sequence q(α). For each α along this
sequence, we can find indices i(α), j(α) etc. as above. Some
set of indices (i, j, i′, j′) must be repeated infinitely often
(since there are only finitely many choices). Consider the
subsequence of α for which i(α) = i etc. The subsequence
q(α) is bounded (by the remark before the definition of lifting
map), and so it has a convergent subsequence. Let q∗ be
the limit of the convergent subsequence. By our choice of
subsequence, q∗ij = 0 and q∗i′j ≥ w·j/n and q∗ij′ ≥ wi·/n.

Finally we can return to matchings. By our assumption that
λ > 0 componentwise, using the characterization of MWMf-
endstates, all matchings are maximum-weight matchings for
q(α). Let π be any matching with πij = πi′j′ = 1, and let ρ
be like π but with ρij′ = ρi′j = 1 and ρij = ρi′j′ = 0. Thus
π and ρ differ simply by a transposition. The difference in
weight is

ρ · q(α) − π · q(α) = qi′j(α)α + qij′ (α)α − qi′j′ (α)α. (24)

Recall that along the subsequence we have chosen q i′j(α) →
q∗i′j etc. Since these limits exist, the limit of (24) as α → 0
is strictly positive. This means that not all matchings have the
same weight. Therefore q(α) is not an MWMf-endstate, for
α sufficiently small. �

C. Non-idling in the interior of W
As we discussed earlier, for w in the interior of W all the

VOQs are non-empty and so the switch is work-conserving.
In the notation of the last section,



Lemma 10 Suppose λ > 0 componentwise. For w in the
interior of W(α), Δα(w) > 0 componentwise.

Proof. Let q = Δα(w). Consider any 2 × 2 submatrix(
qij qij′

qi′j qi′j′

)

Since q is an MWM-endstate, and λ > 0 componentwise,
both matchings of this 2× 2 submatrix have the same weight.

Suppose qij = 0. Since w is in the interior of W(α) ⊂
Wmax, w > 0 componentwise, which means we can choose i ′

and j ′ such that qij′ > 0 and qi′j > 0. Thus we can choose
this 2×2 submatrix so that its row and column workloads are
strictly positive.

From our calculations for the 2 × 2 switch with MWM-α,
we know that the optimal configuration of queue sizes (i.e.
the configuration that minimizes L(q)) has each of these four
queues non-empty. This contradicts our assumption that q ij =
0. We conclude that all queues are non-empty. �

D. An optimal scheduling algorithm

We saw in the previous section that the collapsed invariant
set W for MWM-α becomes as large as it can be as α → 0
(and is smaller than it need be when α is large—hence MWM
is not optimal). We have explained why it is desirable to make
W as large as possible: it leads to less wasted service. It is
natural to wonder if there is a single scheduling algorithm
which achieves the maximum possible W , without having to
take a limit.

A sensible guess would be to take the formal limit of
MWM-α as α → 0, in the following sense. MWM-α chooses
a matching π which maximizes

∑
i,j πijq

α
ij . Now, as α → 0,

xα ≈
{

1 + α log x if x > 0
0 if x = 0.

So the weight of matching π is roughly∑
i,j

πij1qij>0 + α
∑

i,j:qij>0

πij log qij .

This suggests the formal limit algorithm:

Definition 9 (MWM-0+ algorithm) At each timeslot, con-
sider all matchings which have maximal size, i.e. all matchings
π such that

∑
i,j πij1qij>0 is maximal. Among these choose

one which has maximum weight, with weight function log.
Break ties arbitrarily.

Interestingly, this is very similar to the Longest Port First
algorithm proposed by [18].

We have not been able to obtain useful fluid model equations
for MWM-0+, and so we have not been able to find the
collapsed invariant set. The difficulty is the discontinuity at
qij = 0. We leave this as a topic for further work.

E. Example: MWMw

As a further illustration of the general technique we have
described, we now consider a different scheduling algorithm,
weighted maximum weight matching, or MWMw. Think of
it as a way of understanding the impact of giving priority to
some virtual output queue.

The algorithm (which was pointed out to us by Dan C.
O’Neill) is as follows. Let w ∈ M+ be a weight matrix with
w > 0 componentwise. Suppose the queue size matrix is Q.
Then MWMw chooses a matching π such that

π · wQ = argmax
ρ∈P

ρ · wQ.

The natural fluid model equation is

ṡπ(t) = 0 if π ·wq(t) < max
ρ∈P

ρ ·wq(t).

The next step is to find the invariant states. Using similar
arguments to those in Section IV, a suitable Lyapunov function
is Lw(q) = wq2 ·1, the lifting map Δ is like that for MWMf
but with this new Lyapunov function Lw, and q is an invariant
state if and only if all matchings π yield the same value of
wq · π.

To begin to understand the implications for performance,
consider the simple case of a 2 × 2 switch where wij = 1
except for w11 = ω. As ω increases, greater priority is given
to queue q11. How does this impact the configuration of queue
sizes?

First calculate I. Suppose q ∈ I, i.e. that q is invariant,
so that both matchings have the same w-weighted weight, i.e.
ωq11 + q22 = q12 + q21. Let w = W (q), i.e. q1⊕ = w1· etc.
Solving these together,

q11 =
2(w1· + w·1) − w··

3 + ω
q12 = w1· − q11 etc.

The space W is the space of all w such that the above is a
proper solution, i.e. such that q ≥ 0. The space I is the space
of all proper solutions q.

As ω increases, q11 decreases (for fixed w). This is as we
expect: the higher the priority given to q11, the smaller the
queue size. The space W also changes, although not in a
simple monotonic way. As ω → ∞, the space W converges
to

W =
{
w ∈ Wmax : w··/2 ≤ w1· + w·1 ≤ w··

}
Since W converges to a non-empty space, we know that
giving absolute priority to q11 will not make the other queue
sizes arbitrarily big. (Compare this to MWM-α, which gives
arbitrarily bad delays as α → ∞.)

VII. CONCLUSION

In this paper we have described a new technique for
analysing scheduling algorithms for input-queued switches.
The technique consists in writing down fluid model equations,
then analysing the invariant states of those equations. Previous
work [10] has used fluid model equations to analyse the



throughput attainable by scheduling algorithms; our technique
lets us reason about the queue size distribution.

The basic idea is that, when one or more ports of the switch
is heavily loaded, the switch spends most of its time in or
near the invariant states. (This can be made formal in the
heavy traffic limit). By analysing the geometry of the set of
invariant states, we can make inferences about the performance
of scheduling algorithms. This has allowed us to explain the
conjecture raised in [2] about delay performance of MWM-
α as α → 0. It has also led us to conjecture an optimal
scheduling algorithm.

We believe that this technique is quite general. In particular,
we believe that it can be extended to a large class of scheduling
problems where ‘MWM-type’ algorithms have 100% through-
put, e.g. radio-hop networks [9].

There are several lines of further work which would be use-
ful to develop the technique. We have not yet been able to find
useful fluid model equations for scheduling algorithms with
discontinuities, such as our conjectured optimal algorithm.
It would be desirable to be able to calculate the stationary
distribution of queue size in the heavy traffic limit, along the
lines of [17], in order to make more rigorous our analysis
of performance. Finally, it would be fascinating to apply the
technique to a wide range of other interesting scheduling
algorithms.

VIII. ACKNOWLEDGEMENTS

We would like to thank Mike Harrison, Frank Kelly, Balaji
Prabhakar and Ruth Williams for helpful discussions. DJW is
supported by a Royal Society university research fellowship.

REFERENCES

[1] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proceedings of IEEE Infocom,
1996, pp. 296–302.

[2] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches,” in Proceedings of
Allerton Conference on Communication, Control and Computing, 2001.

[3] D. Shah, “Stable algorithms for input queued switches,” in Proceedings
of Allerton Conference on Communication, Control and Computing,
2001. [Online]. Available: http://www.stanford.edu/∼devavrat/ilqf.ps

[4] D. Shah and M. Kopikare, “Delay bounds for the approximate Maximum
Weight matching algorithm for input queued switches,” in Proceedings
of IEEE Infocom, 2002.

[5] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space division packet switch,” IEEE Transactions on Communications,
vol. 35, no. 12, pp. 1347–1356, 1987.

[6] Y. Tamir and H. Chi, “Symmetric crossbar arbiters for vlsi communica-
tion switches,” IEEE Transaction on Parallel and Distributed Systems,
vol. 4, no. 1, pp. 13–27, 1993.

[7] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,” ACM Transactions on Computer
Systems, vol. 11, pp. 319–351, 1993.

[8] M. Karol, K. Eng, and H. Obara, “Improving the performance of input-
queued atm packet switch,” in IEEE INFOCOM, 1992, pp. 110–115.

[9] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, pp. 1936–1948, 1992.

[10] J. Dai and B. Prabhakar, “The throughput of switches with and without
speed-up,” in Proceedings of IEEE Infocom, 2000, pp. 556–564.

[11] M. A. Marsan, P. Giaccone, E. Leonardi, and F. Neri, “On the stabil-
ity of local scheduling policies in networks of packet switches with
input queues,” IEEE Journal on Selected Areas in Communications
”High-performance electronic switches/routers for high-speed internet”,
vol. 21, no. 4, pp. 642–655, 2003.

[12] A. L. Stolyar, “MaxWeight scheduling in a generalized switch: State
space collapse and workload minimization in heavy traffic,” Annals of
Applied Probability, vol. 14, no. 1, pp. 1–53, 2004.

[13] N. McKeown, “iSLIP: a scheduling algorithm for input-queued
switches,” IEEE Transaction on Networking, vol. 7, no. 2, pp. 188–201,
1999.

[14] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling
algorithms for high-aggregate bandwidth switches,” IEEE Journal
on Selected Areas in Communications High-performance electronic
switches/routers for high-speed internet, vol. 21, no. 4, pp. 546–559,
2003.

[15] M. Bramson, “State space collapse with application to heavy traffic
limits for multiclass queueing networks,” Queueing Systems, vol. 30,
pp. 89–148, 1998.

[16] D. Shah, “Randomization and heavy traffic theory: New approaches
to the design and analysis of switch algorithms,” Ph.D. dissertation,
Computer Science, Stanford University, October, 2004.

[17] R. Williams, “Diffusion approximations for open multiclass queueing
networks: sufficient conditions involving state space collapse,” Queueing
Systems, vol. 30, pp. 27–88, 1998.

[18] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to
achieve 100% throughput in input-queued switches,” in IEEE INFO-
COM, 1998, pp. 792–799.


