
Improving datacenter performance and robustness with multipath TCP
Paper #273, 14 pages

ABSTRACT
The latest large-scale data centers offer higher aggregateband-
width and robustness by creating multiple paths in the core
of the network. To utilize this bandwidth requires different
flows take different paths, which poses a challenge. In short,
a single-path transport seems ill-suited to such networks.

We propose using Multipath TCP as a replacement for
TCP in such data centers, as it can effectively and seam-
lessly use available bandwidth, giving improved throughput
and better fairness on many topologies. We investigate the
reasons behind these benefits, teasing apart the contribution
of each of the mechanisms used by MPTCP.

Using MPTCP allows us to rethink datacenter networks,
with a different mindset as to the relationship between trans-
port protocols, routing and topology. MPTCP enables better
topologies that single path TCP just can’t use. As a proof-
of-concept, we present a dual-homed variant of the FatTree
topology. Using MPTCP, this outperforms FatTree for a
wide range of workloads, but costs the same.

In existing data center networks, MPTCP is readily de-
ployable as it can leverage widely deployed technologies
such as ECMP. We have run MPTCP on Amazon EC2 and
found that it commonly outperforms TCP by a factor of three.
But the biggest benefits will come when data centers are de-
signed around the use of multipath transports.

1. INTRODUCTION
During the last decade, data centers have risen to dominate

the computing landscape. Today’s largest data centers have
hundreds of thousands of servers, and run distributed ap-
plications that spread computation and storage across many
thousands of machines. With so many hosts, it is impracti-
cal to manually manage the allocation of tasks to machines.
While applications may be written to take advantage of lo-
cality within the data center, large distributed computations
inevitably are spread across many racks of machines, with
the result that the network can often be the bottleneck.

The research literature has proposed a number of data cen-
ter topologies[1, 7, 8, 2] that attempt to remedy this bot-
tleneck by providing a dense interconnect structure such as
those shown in Fig. 1. Topologies like these have started
to be deployed; Amazon’s latest EC2 data center has such a
structure - between any pair of hosts there are many alterna-
tive parallel paths. Typically switches run a variant of ECMP
routing, randomly hashing flows to equal cost paths to bal-
ance load across the topology. However, with most such
topologies it takes many simultaneous TCP connections per
host to generate sufficient flows to come close to balancing
traffic. With more typical load levels, using ECMP on these

multi-stage topologies causes flows to collide on at least one
link with high probability. In traffic patterns that should be
able to fill the network, we have observed flows that only
manage 10% of the throughput they might expect and total
network utilization below 50%.

In this paper we examine the use of Multipath TCP[5]
within large data centers. Our intuition is that by exploring
multiple paths simultaneously and by linking the congestion
response of subflows on different paths so as to move traf-
fic away from congestion, MPTCP will lead to both higher
network utilization and fairer allocation of capacity to flows.

From a high-level perspective, there are four main com-
ponents to a data center networking architecture:
• Physical topology
• Routing over the topology
• Selection between multiple paths supplied by routing
• Congestion control of traffic on the selected paths

These are not independent; the performance of one will
depend on the choices made by those preceding it in the list,
and in some cases by those after it in the list. The insight
that we evaluate in this paper is that MPTCP’s ability to bal-
ance load spans both path selection and congestion control,
and fundamentally changes the dynamics of data center traf-
fic management. Further, by exploring many paths and only
utilizing the effective ones, it enables the use of network
topologies that would be inefficient with single-path TCP.
Thus we set out to answer two key questions:

• MPTCP can greatly improve performance intoday’sdata
centers. Under which circumstances does it do so, how
big are the benefits, and on what do they depend?

• If MPTCP is successful and is deployed, would it make
sense to design data centers differentlyin the futureto
take advantage of its capabilities?

We have examined many topologies and traffic patterns, and
in almost all of them MPTCP provides significant advan-
tages over regular single-path TCP. Where it provides no
benefit, the flows were always limited at the sending or re-
ceiving host. We found no case where MPTCP performed
significantly worse than single-path TCP.

We also looked at new network topologies designed to
take advantage of MPTCP’s end-host load-balancing mech-
anisms. For example, a dual-homed FatTree running MPTCP
can, for the same cost, provide twice the throughput of a
single-homed FatTree running MPTCP for a wide range of
likely workloads. Without MPTCP, such a topology makes
little sense, as the capacity is rarely usable.

Finally we have validated the results on Amazon’s EC2
cloud using our Linux kernel implementation. Our measure-
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Fig. 1: Two proposed data center topologies. The bold lines show multiple paths between the source and destination.

ments show that in the EC2 datacenter, the2/3 of flows that
have access to multiple paths achieve approximately three
times the throughput using MPTCP than with regular TCP.
As MPTCP is no more aggressive than TCP, this indicates
that MPTCP is very effective at finding unused capacity. ng

2. DATA CENTER NETWORKING
Before examining how MPTCP changes the datacenter

landscape, we will briefly discuss the components that com-
prise the datacenter architecture.

2.1 Topology
Traditionally data centers have been built using hierar-

chical topologies: racks of hosts connect to a top-of-rack
switch; these switches connect to aggregation switches; in
turn these are connected to a core switch. Such topologies
make sense if most of the traffic flows into or out of the data
center. However, if most of the traffic is intra-datacenter,as
is increasingly the trend, then there is a very uneven distri-
bution of bandwidth. Unless traffic is localized to racks, the
higher levels of the topology become a serious bottleneck.

Recent proposals address these limitations. VL2[7] and
FatTree (Fig. 1(a)) are Clos[3] topologies that use multiple
core switches to provide full bandwidth between any pair of
hosts in the network. They differ in that FatTree uses larger
quantities of lower speed (1Gb/s) links between switches,
whereas VL2 uses fewer faster (10Gb/s) links. In contrast,
BCube[8] abandons the hierarchy in favor of a hypercube-
like topology, using hosts themselves to relay traffic (Fig.1(b)).

All three proposals solve the traffic concentration prob-
lem at the physical level — there is enough capacity for ev-
ery host to be able to transmit flat-out to another randomly
chosen host. However the denseness of interconnection they
provide poses its own problems when it comes to determin-
ing how traffic should be routed.

2.2 Routing
Dense interconnection topologies provide many possible

parallel paths between each pair of hosts. We cannot ex-
pect the host itself to know which of these paths is the least
loaded, so the routing system must spread traffic across these
paths. The simplest solution is to use randomized load bal-
ancing, where each flow is assigned a random path from the
set of possible paths.

In practice there are multiple ways to implement random-

ized load balancing in today’s switches. For example, if each
switch uses a link-state routing protocol to provide ECMP
forwarding then, based on a hash of the five-tuple in each
packet, flows will be split roughly equally across equal length
paths. VL2 provides just such a mechanism over a virtual
layer 2 infrastructure.

However, in topologies such as BCube, paths vary in length,
and simple ECMP cannot access many of these paths be-
cause it only hashes between the shortest paths. A simple
alternative is to use multiple static VLANs to provide mul-
tiple paths that expose all the underlying network paths[11].
Either the host or the first hop switch can then hash the five-
tuple to determine which path is used.

2.3 Path Selection
Solutions such as ECMP or multiple VLANs provide the

basis for randomized load balancing as the default path se-
lection mechanism. However, as others have shown, ran-
domized load balancing cannot achieve the full bisectional
bandwidth in most topologies, nor is it especially fair. The
problem, quite simply, is that often a random selection causes
hot-spots to develop, where an unlucky combination of ran-
dom path selections cause a few links to be overloaded and
links elsewhere to have little or no load.

To address these issues, the use of a centralized flow sched-
uler has been proposed. Large flows are assigned to lightly
loaded paths and existing flows may be reassigned to maxi-
mize overall throughput[2]. The scheduler does a good job
if flows are network-limited, with exponentially distributed
sizes and Poisson arrivals, as shown in Hedera [2]. The in-
tuition is that if we only schedule the big flows we can fully
utilize all the bandwidth, and yet have a small scheduling
cost, as dictated by the small number of flows.

However, data center traffic analysis shows that flow dis-
tributions are not Pareto distributed [7]. In such cases, the
scheduler has to run frequently (100ms or faster) to keep up
with the flow arrivals. Yet, the scheduler is fundamentally
limited in its reaction time as it has to retrieve statistics, com-
pute placements and instantiate them, all in this scheduling
period. We show later through simulation that a scheduler
running every 500ms has similar performance to random-
ized load balancing when these assumptions do not hold.

2.4 Congestion Control
Most applications use singlepath TCP, and inherit TCP’s

congestion control mechanism which does a fair job of match-
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ing offered load to available capacity on whichever path was
selected. Recent research has shown there are benefits from
tuning TCP for data center use, such as by reducing the min-
imum retransmit timeout[16], but the problem TCP solves
remains unchanged.

In proposing the use of MPTCP, we change the partition-
ing of the problem. MPTCP can establish multiple subflows
on different paths between the same pair of endpointsfor
a single TCP connection. The key point is that by linking
the congestion control dynamics on these multiple subflows,
MPTCP can explicitly move traffic off the more congested
paths and place it on less congested paths.

Our hypothesis is that given sufficiently many randomly
chosen paths, MPTCP will find at least one good unloaded
path, and move most of its traffic that way. In so doing it
will relieve congestion on links that got more than their fair
share of ECMP balanced flows. This in turn will allow those
competing flows to achieve their full potential, maximizing
the bisectional bandwidth of the network and also improv-
ing fairness. Fairness is not an abstract concept for many
distributed applications; for example, when a search appli-
cation is distributed across many machines, the overall com-
pletion time is determined by the slowest machine. Hence
worst-case performance matters significantly.

3. MULTIPATH TCP IN SUMMARY
Multipath TCP[5] extends the TCP protocol so a single

connection can be striped across multiple network paths.
MPTCP support is negotiated in the initial SYN exchange
and the client learns any additional IP addresses the server
may have. Additional subflows can then be opened. An
additional subflow can be between the same pair of IP ad-
dresses as the first subflow, but using different ports, or it
can use any additional IP addresses the client or server may
have. In the former case, MPTCP relies on ECMP routing
to hash subflows to different paths; in the latter the paths
are implicitly identified by the source and destination IP ad-
dresses. Both techniques may be used, depending on the
routing scheme used in a particular data center.

Once multiple subflows have been established, the send-
ing host’s TCP stack stripes data across the subflows. Ad-
ditional TCP options allow the receiver to reconstruct the
received data in the original order. There is no requirement
for an application to be aware that MPTCP is being used in
place of TCP - in our experiments we have used unmodified
applications running on our MPTCP-capable Linux kernel.
However enhanced applications may themselves wish to use
an extended sockets API to influence which subflows are set
up and how data is striped between them.

Each MPTCP subflow has its own sequence space and
maintains its own congestion window so that it can adapt
to conditions along the path. Although each subflow per-
forms TCP-like additive-increase on acks and multiplicative
decrease on losses, MPTCP links the behaviour of subflows
by adapting the additive increase constant. The algorithm is:

• For each ACK on subflowr, increase the windowwr by
min(a/wtotal, 1/wr).

• Each loss on subflowr, decrease the windowwr bywr/2.

wtotal is the sum of the windows on all subflows.a deter-
mines the aggressiveness of all the subflows; it is calculated
as described in the IETF draft specification[14].

Broadly speaking, there are two key parts to this algo-
rithm. First, by making the window increase depend on
the total window size, subflows that have large windows in-
crease faster than subflows that have small windows. This
serves to actively move traffic from more congested paths to
less congested ones, load-balancing the network.

Second, by adaptinga, MPTCP can compensate for dif-
ferent RTTs and can ensure that if all the subflows of a con-
nection traverse the same bottleneck, they will compete fairly
with a regular TCP flow. However, if the subflows encounter
multiple unloaded paths, one connection can fill them all.

4. MPTCP IN DATACENTERS
It seems there might be three main benefits from deploy-

ing MPTCP in today’s redundant datacenter networks:

• Better aggregate throughput, as exploring more paths and
load-balancing them properly should reduce the number
of underutilized and idle links.

• Better fairness; different MPTCP connections should have
more similar throughputs than they would if TCP were
used, as congestion on links in the network core should
be less unevenly distributed.

• Better robustness. If a link or switch fails, routing will
route around it, even without MPTCP, but this takes time.
MPTCP uses many paths; if one fails the others can con-
tinue without pausing. Worse are failures that are not
bad enough to trigger re-routing, but which cause link
autonegotiation to fall back to a low link speed, or which
cause very high packet loss rates. Single-path TCP has
no choice but to trickle data through the slow path; MPTCP
can simply avoid sending traffic on a very congested path.

In this section we will examine the extent to which each
of these potential benefits can be realized. As we will see,
the actual benefits depend on:

• The congestion control scheme used.

• The physical topology.

• The traffic matrix generated by the applications.

• The level of load in the network.

Although we cannot predict what future datacenter appli-
cations will look like, we can at least map out broad areas
where MPTCP gives considerable benefits and other areas
where the bottleneck is elsewhere and MPTCP cannot help.

4.1 A Note on Simulation
In section 6, we give results from running our Linux
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MPTCP implementation on a small cluster in our lab, and
on Amazon EC2. But most of the results in this paper come
from simulation for two reasons. First, we do not have ac-
cess to a large enough data center to examine issues of scale.
But perhaps more importantly, simulation lets us tease apart
the causes of complex behaviors.

For this paper, we wrote two simulators. The first,ht-
sim, is a full packet level simulator that models TCP and
MPTCP in similar detail to ns2, but which is optimized for
large scale and high speeds. Even with this simulator, there
are limits to what we can model. For example, simulating the
576-node Dual-homed FatTree in Section 5 with 100Mb/s
links requires simulating 46,000 MPTCP subflows gener-
ating 115 Gb/s of traffic. Even a fairly small data center
topology stresses the limits of simulation.

Today’s larger data-centers don’t have hundreds of hosts.
They have tens of thousands1. To examine these scales we
must sacrifice some accuracy and the ability to model flow
arrivals, and resort to flow-level simulation. Our second sim-
ulator models TCP and MPTCP throughput as a function of
loss rate, and uses an iterative approach to find the equilib-
rium traffic pattern for a fixed set of arbitrary duration flows.

Comparing the two approaches on the same topology shows
the flow-level simulator is a fairly good predictor of packet-
level performance for long flows. Its main limitation is at
high congestion levels, where it fails to model timeouts, and
so predicts higher congestion levels than we see in reality.
We mostly use packet-level simulation, but resort to flow-
level to extrapolate to larger scales.

4.2 Examples of Benefits

Throughput

Fig. 2 shows the aggregate throughput achieved by long-
lived TCP and MPTCP flows in a FatTree network. We
show three sets of results; the left histogram shows through-
put in a FatTree with 128 hosts, 80 eight-port switches, and
100Mb/s links. The grey bars are from a detailed packet-
level simulation, and the black bars are from the flow-level
simulator. The right histogram scales up the topology to
8192 hosts, and shows only flow-level results. The traffic
pattern is a permutation matrix; every host sends to one other
host chosen at random, but with the constraint that no host
receives more than one flow. This is a simple randomized
traffic pattern that has the potential to saturate the FatTree.
Of the multiple shortest paths, one is chosen at random for
each subflow, simulating flow-based ECMP routing.

The bars show the number of MPTCP subflows used, or
in the case of single subflow, shows the behavior with regular
single-path TCP. The figure illustrates several points. Single-
path TCP performs rather poorly, achieving less then half of
the available capacity. The reason is simple - the full capac-
ity is only available if no two flows share the same link. If

1Microsoft’s Chicago data center reputedly has the potential to hold
as many as 300,000 hosts
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Fig. 3: Distribution of throughput in FatTree

n flows share a link, each only achieves1/n of the capacity
it should achieve. ECMP’s random hashing of a flow onto a
path results in sufficiently many collisions that total through-
put is less than 50% of the full bisectional bandwidth, while
many links go idle.

MPTCP explores more paths. With the same ECMP hash-
ing, fewer links go idle, and so total throughput increases.
Interestingly, it takes around eight subflows per MPTCP
connection to properly utilize the network.

Comparing the left and right histograms, we can see that
the behavior is largely scale-invariant. In this and other ex-
periments we find that increasing the size of the network by
two orders of magnitude slightly reduces the overall perfor-
mance for both TCP and MPTCP.

Comparing the grey and black histograms, we see that the
packet and flow level simulations are in agreement about the
performance benefits and the number of subflows required.
The flow-level simulator slightly underestimates throughput
in the single-path TCP and two-subflow cases.

Fairness

Fig. 3 shows the throughput of individual connections from
the 128 host packet level simulation and the 8,192 host flow-
level simulation in Fig. 2, comparing the single-path TCP
case with the eight subflow MPTCP case. Every host’s
throughput is shown ranked in order of increasing through-
put. Is is clear that not only did the utilization improve
with MPTCP, but also the fairness improved. With single-
path TCP, some flows perform very well, but many perform
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poorly, and some get less than 10% of the potential through-
put. With eight subflows, most MPTCP flows get at least
90% of the available capacity, and none get less than 50%.
For applications that farm work out to many workers and fin-
ish when the last worker finishes, such fairness can greatly
improve overall performance.

The subtle difference between packet-level and flow-level
simulation is also visible in these curves. In flow-level sim-
ulations, flows that traverse multiple congested links get a
little more throughput than they should due to the flow-level
simulator not modelling timeouts. These flows degrade the
performance of competing flows that do not traverse multi-
ple congested links, so reducing overall performance a little.

4.3 Analysis
The permutation traffic matrix used above is rather artifi-

cial, but it serves to demonstrate that MPTCP can provide
substantial gains over single-path TCP in today’s datacen-
ters that are engineered to provide high bisectional band-
width using commodity technology such as cheap gigabit
switches. We will investigate where these gains come from,
under which circumstances MPTCP provides large gains,
and when it does not. In particular:

• How does the topology influence the performance of single-
path vs MPTCP?

• How does the traffic matrix and load affect performance?

• How many subflows does MPTCP require? On what
does this depend?

• Can these same benefits be provided using an application
that simply opens multiple regular TCP flows?

4.3.1 Influence of Topology

We start by examining the effect that the network topol-
ogy has on performance. The research literature proposes a
number of different topologies for datacenters, with the aim
of providing high bisectional bandwidth. Two that are par-
ticularly enlightening are VL2[7] and BCube[8].

Like FatTree, VL2 is a Clos[3] topology - essentially a
multi-routed tree using multiple core switches to provide full
bandwidth between any pair of hosts in the network. Unlike
FatTree where every link is cheap gigabit ethernet, VL2 uses
ten times fewer links in the upper layers, but uses 10-gigabit
ethernet for these links. With current prices, a VL2 topology
is considerably more expensive than a FatTree topology.

The BCube topology shown in Fig. 1(b) is completely dif-
ferent; instead of using ethernet switches to perform all the
switching, it uses a hybrid of host switching and hardware
switching. To route between nodes on the same ethernet
switch, a direct switched path is used, but to route between
nodes that do not share an ethernet switch, an intermediate
host relays the traffic. This provides a very large number of
possible paths between any two hosts, but some of the host’s
resources are used for packet forwarding.

Fig. 4 shows the throughput of VL2 and BCube, using

(a) VL2 (11520) (b) BCube(1024)

Fig. 4: VL2 and BCube throughput against number of
flows, using a permutation traffic matrix.

 0

 20

 40

 60

 80

 100

 120

 140

 0  3000  6000  9000
T

hr
ou

gh
pu

t (
M

b/
s)

Rank of Flow

VL2, 11520 Nodes

Single Path TCP
MPTCP, 2 subflows
MPTCP, 4 subflows

 0  200  400  600  800  1000

Rank of Flow

BCube, 1024 Nodes

Fig. 5: Flow rates with VL2 and BCube. With BCube,
multipath flows are not limited to a single interface.

the permutation traffic matrix for single-path TCP and vary-
ing numbers of MPTCP flows. BCube shows similar per-
formance gains to FatTree when using MPTCP, and also
requires a large number of subflows to realize these gains.
With VL2, the performance gains are smaller, and most of
the gains are achieved with only two subflows.

Intuitively, BCube suffers from the same problem with
collisions that FatTree does - whenn flows share a link,
each achieves approximately1/n of the capacity (unless it
is constrained elsewhere). With the permutation traffic ma-
trix, the mean number of flows on a core VL2 link should
be 10. However, when ECMP randomly putsn flows on
such a VL2 core link, each of those flows either achieves 1
Gb/s if n < 10, or 10/n Gb/s if n > 10 (unless the flow is
contained elsewhere). Thus the impact of uneven flow allo-
cations to links is smoothed out across many more flows, and
few links are severely underutilized. The result is that while
FatTree and BCube need eight MPTCP subflows to achieve
90% throughput, on VL2 only two subflows are needed per
MPTCP connection.

The aggregate throughput does not tell the whole story.
Fig. 5 shows the rates achieved by individual flows. Single-
path TCP is compared with MPTCP using two subflows on
VL2 and eight subflows on BCube. Although the total VL2
throughput is fairly high using single-path TCP, the fairness
is relatively low. While two MPTCP subflows bring most
of the throughput gains, adding more subflows continues to
improve fairness. The distribution with BCube is similar to
FatTree, except that as each BCube host has more than one
interface, so hosts are not limited to the interface speed.
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4.3.2 Number of Subflows

When we first started to examine MPTCP on FatTree, we
were surprised that eight subflows were needed to achieve
90% throughput. Why eight, and on what does this depend?
A simple analytical model casts some light on the issue.

In m-way multipath on ak-ary FatTree, let each path con-
tribute weight1/m. Assume a permutation traffic matrix,
with random (independent) routing. The total weight on an
access link is always 1. To calculate the expected number
of flows on intra-pod links and pod-core links, we need to
factor in that some flows stay local to the rack and some stay
local to the pod. The total weight on a within-pod link is ran-
dom, with an expected valueEp and varianceVp. Similarly,
Ec andVc for the pod-core links:
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Fig. 6 shows how varianceVp changes as we add subflows
for varying sizes of network.Vc is very similar. Almost inde-
pendent of the size of the network, the variance settles down
above eight subflows. Although this model is too simplistic
to predict throughput (it cannot factor in how congestion on
one path can free capacity on another), it does appear to cap-
ture the dominant effect that determines how many subflows
are required, at least for the permutation traffic matrix.

4.3.3 Oversubscribed Topologies

The FatTree, VL2 and BCube topologies above all aim
to provide full bisectional bandwidth; the goal is that every
host should be able to transmit at the full interface speed, re-
gardless of the location of the destination. This would allow
applications to be deployed across any set of nodes without
regard to the limitations of the network topology. We have

seen that even with such topologies, it is hard to actually use
all the network capacity with single-path transport protocols
routed using flow-based ECMP routing. But in fact the goal
itself may be misleading. Such topologies are expensive,
and no data center application we know of sends at its full
interface rate constantly.

For example, we have run Hadoop[9] running MapRe-
duce[4] jobs on a cluster, computing the web-index for a
large crawled dataset. While there are bursts of high net-
work activity, even during these bursts it is rare to saturate a
gigabit path; in the map phase the CPU was the bottleneck,
and in the reduce phase it was the disk. The shuffle phase has
an all-to-all communication pattern and the potential to fill
the network, but it copies data during the whole map phase.
Unless the map phase is short, shuffle was not a bottleneck;
only large sort jobs seem to have this pattern.

In a large data center, running many simultaneous appli-
cations, it is extremely unlikely that all will burst simultane-
ously. Thus these topologies seem to be overkill for the task
at hand - they are much more expensive than is necessary.

In examining the benefits and limitations of multipath trans-
port, we must therefore consider topologies that oversub-
scribe the network core (at least in terms of potential load,
not necessarily actual load). To do this, we created a FatTree-
style network, but oversubscribed the capacity of the uplinks
from the top-of-rack switches by 4:1 (for every four links
from the hosts in the rack, one uplink is provided). Again
we use a permutation matrix as a baseline, but now we also
need to examine what happens when the oversubscribed net-
work is overloaded (and underloaded).

Fig. 7 shows what happens as we increase the number
of connections per host; the y-axis shows the total through-
put achieved by MPTCP connections using four subflows,
as a multiple of the total throughput achieved by single-path
TCP using the same traffic pattern. At very low load levels,
the few flows that exist almost never share a link with an-
other flow, so they saturate the host NIC with both TCP and
MPTCP. At very high load levels, the core is severely con-
gested with high packet loss, and there are sufficient flows
to saturate all the links in the core, irrespective of whether
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MPTCP is used. For a very wide range of load in between,
MPTCP provides significant improvements in throughput,
with the maximum improvement occuring at 0.25 connec-
tions per host, which is the perfect load level to saturate a
4:1 oversubscribed topology. Whether a permutation or a
random traffic matrix (which does not limit flows per host)
is used makes no difference.

Irrespective of whether MPTCP is used, we believe data
center designers will be likely to attempt to engineer their
networks so that the core is neither underloaded nor over-
loaded. An overloaded core is a performance bottleneck; an
underloaded core costs money that would have been better
spent elsewhere. So it appears likely that the sweet-spot for
MPTCP is close to the load level for which the data-center
designer would provision.

Some anecdotal evidence lends support to this assertion.
We bought capacity on Amazon’s EC2 cloud, and tested both
the paths and throughput available between nodes in each of
Amazon’s data centers. In their older data centers, only one
path is available between nodes. However, in their newest
data center, there are many different paths between every
pair of nodes. The typical throughput available between two
nodes is about 200-300Mb/s, which is consistent with a 4:1
oversubscribed network operating at close to its design load.

4.3.4 Influence of the Traffic Matrix

The permutation traffic matrix is useful as a baseline for
comparison because it is easy to reason about how much
throughput should be available from the network. With a
topology that provides full bisectional bandwidth, the load
is just sufficient to fully load the network. It is however, not
terribly realistic.

Fig. 7 showed that MPTCP improves performance for
a wide range of load levels, and that with a oversubscribed
FatTree, a permutation traffic matrix and a random traffic
matrix show the same benefits of using MPTCP2. This is
also the case for an oversubscribed VL2 topology, but not so
for the full VL2 topology.

With a VL2 topology giving full bisectional bandwidth,
if we use a random traffic matrix, MPTCP and single-path
TCP perform almost identically for almost all load levels.
The reason is that randomly placed flows collide with an-
other flow at either the sender or the receiver with quite high
probability. If we randomly allocaten flows ton hosts, the
probability that a host does not send a flow is:

p[no flow] =

(

1 −

1

n

)n

→

1

e

The number of hosts that do not send are thenn

e
; this bounds

the total throughput. In fact the throughput is lower. For ex-
ample, of the hosts that send only one flow, many of these
will be received by a host receiving more than one flow, so

2Although the relative benefits are the same, in absolute terms the
permutation traffic matrix achieves higher throughput thanthe ran-
dom one because flows don’t collide on the hosts themselves

the sender will be unable to send at its full speed. Numeri-
cal analysis shows that when this is taken into account, the
maximum achievable throughput byany load-balancing al-
gorithm with random traffic is limited by colliding flows on
the sending and receiving hosts to less than1

2
of the bisec-

tional bandwidth. With such a workload, none of the 10Gb/s
core links is ever saturated, so it makes no difference if TCP
or MPTCP is used.

Locality of Traffic

The random and permutation traffic matrices provide no lo-
cality of traffic. With a topology that provides full bisec-
tional bandwidth, it should in principle not be necessary for
applications to localize traffic, although as we have seen, this
is only really true under very light or heavy loads, or when
multipath transport uses sufficiently many paths. However,
with oversubscribed topologies, applications can always get
better performance if they can localize traffic to the sender’s
rack, because that part of the topology is not oversubscribed.
MPTCP provides no performance improvement within the
rack, because such flows are limited by their link to the top-
of-rack switch. Just how good does application-based traffic
localization have to be for the advantages of MPTCP to be
nullified?

We simulated a 4:1 oversubscribed FatTree and generated
a random traffic matrix, with the constraint that a fraction of
the flows were destined for a random host with the sender’s
rack, while the rest were destined for an unconstrained ran-
dom host. Every host sends one flow, so without local-
ity this corresponds to the 1 flow-per-host data point from
Fig. 7 - a rather heavily loaded network.3 Fig. 8 shows
the aggregate throughput as locality is increased. Unsur-
prisingly, as traffic moves from the oversubscribed core to
the non-oversubscribed local hosts, aggregate performance
increases. However, MPTCP continues to provide approx-
imately the same performance benefits until around 75% of
the flows are rack-local. Above this point the network core
is lightly loaded, and all flows are limited by the sending or
receiving hosts, so MPTCP provides no improvement.

We see similar benefit with a localized permutation traffic
matrix, though the absolute throughput values are higher.

Finally, we examined many-to-one traffic patterns; there
the access links are heavily congested, no alternative paths
are available, and so MPTCP and TCP behave similarly.

4.3.5 Influence of Congestion Control

Do we need all of MPTCP’s mechanisms to get the per-
formance and fairness benefits above? MPTCP establishes
multiple subflows per connection, and links the congestion
control behavior of these subflows to achieve two goals:

• It is fair to single-path TCP flows, even when multiple
subflows of a connection traverse the same bottleneck.

• It explicitly moves traffic from the more congested sub-

3With a lightly loaded network, there is no need to localize traffic.
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flows to the less congested subflows.

To understand what is going on, we must tease apart the
mechanisms. We compare MPTCP with these algorithms:

Uncoupled TCP. Each subflow behaves independently, ex-
actly as if an application had opened multiple TCP
connections and striped data across them. An UNCOU-
PLED flow will be unfair to regular TCP; if it hasn
subflows through a bottleneck, it will achieve approxi-
matelyn times the throughput of a competing TCP.

Equally-Weighted TCP (EWTCP). Each subflow runs TCP’s
additive increase, multiplicative decrease algorithm, but
the increase constant is decreased depending on the
number of active subflows. An EWTCP flow will be
fair to regular TCP at a bottleneck, even if all the EWTCP
subflows traverse that bottleneck. However, it will not
actively move traffic away from congested paths.

A rather different multipath solution would be to deploy
per-packetECMP multipath routing, spreading the packets
of a single flow across multiple paths, as opposed to per-flow
ECMP which hashes the five-tuple to maintain a consistent
path for each flow. For this to work, a single-path TCP end-
point must be modified to avoid unintentionally treating re-
ordering as an indicator of packet loss. Thus we also tested:

PACKET SCATTER . The switches perform per-packet load
balancing across all the available alternative paths. The
TCP sender runs a more robust fast-retransmit algo-
rithm, but retains a single congestion window as it is
unaware of the multiple paths.

Fig. 9 shows the throughputs of individual connections for
each algorithm. This is a packet-level simulation with 128
nodes in a FatTree topology, running a permutation traffic
matrix of long flows. The result sugegsts that it does not mat-
ter whether multipath transport is performed within TCP, or
at the application level, and that the load balancing aspects
of MPTCP’s linked congestion control do not greatly affect
throughput. In fact the best performance is given by PACK-
ETSCATTER, which spreads over all possible paths, but as

we shall see, this result is fragile and only applies to over-
provisioned networks with no hot spots.

It is clear that many of the performance benefits seen so
far are the results of spreading load over many paths. Given
this result, is there any reason to deploy MPTCP, as opposed
to multipath-capable applications running over regular TCP?

To understand the differences between these algorithms,
we have to look more closely. Fig. 10 shows the loss rates for
all the links of the FatTree topology used in Fig. 9. We show
core links separately from access links because congesting
the core is qualitatively different from self-congestion at the
host’s own NIC.

UNCOUPLED TCP is clearly much more aggressive than
single-path TCP, resulting in much higher packet loss rates,
both in the core and access links. Although this does not
directly impact performance for long-running UNCOUPLED

flows, it does affect competing traffic.
MPTCP, EWTCP and Single-path TCP are equally ag-

gressive overall, and so congest the access links equally4. In
the core, MPTCP performs as expected, and moves traffic
from the more congested to the less congested paths, reliev-
ing congestion at hot spots. EWTCP lacks this active load re-
distribution, so although it does not increase loss at hot spots,
it doesn’t effectively relieve it either. EWTCP is also not as
aggressive as MPTCP on the less loaded paths, so it misses
sending opportunities and gets slightly lower throughput.

Short Flows

Fig. 12 examines how the algorithms affect competing short
flows. The topology is the 4:1 oversubscribed FatTree; each
host sends to one other host; 33% send a continuous flow
using either TCP or one of the multipath algorithms, provid-
ing enough traffic to congest the core. The remaining hosts
send one 70 Kbyte file on average every 200ms (poisson ar-
rivals) using single-path TCP (ECMP sends each via a new
path), and we measure how long these flows take to com-
plete. It is clear that UNCOUPLEDsignificant hurts the short
4PACKETSCATTER is not directly comparable here, because to be
robust to reordering, it runs a much more aggressive retransmit
timeout algorithm.
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flows. Single-path TCP fails to spread load within the core,
so while many short flows complete faster, some encounter
more congestion and finish slower. MPTCP falls between
these extremes - it fills the core, but isn’t overly aggressive,
so has much less impact than uncoupled. EWTCP has less
impact on short flows than MPTCP, which should not be
surprising - while it does use multiple paths, it does not load-
balance as effectively as MPTCP; its load balancing ability
is somewhere between single-path TCP and MPTCP and so
fewer short flows see underloaded paths. The mean through-
puts of the long flows in these experiments are:

SINGLE-PATH TCP 28 Mb/s
EWTCP 43 Mb/s
MPTCP 47 Mb/s
UNCOUPLED 49 Mb/s

MPTCP achieves almost all of the performance that UN-
COUPLEDcan manage, but its lower aggressiveness and bet-
ter load balancing greatly reduce impact on competing traf-
fic. The maximum theoretical mean throughput would be
65Mb/s if all core links were 100% saturated.

Robustness

What happens when there is a hot spot in the network? We
drop a single link in the core network from 1Gb/s to 100Mb/s.
Such a failure is quite common: Gigabit ethernet requires
two copper pairs in a Cat-5e cable; if one RJ45 conductor
fails to seat properly, it can fall back to 100Mb/s which only
requires a single pair. Similar results would be seen if a sin-
gle unresponsive flow saturated one link.

Results, shown in Fig. 11, show that MPTCP does what
it designed to do, moving traffic off the hot link onto alter-
native paths; other flows then move some of their traffic off
these alternative paths, and so on, so the effect of the failure
is negligible. EWTCP and UNCOUPLEDdo not shift traffic
away from congestion, giving less throughput to the flows
that pass through the bottleneck. PACKETSCATTER behaves
worst: it has no way to separate the bad link from the good
ones. It just observes a high loss rate, and backs off. Every
single connection that has any available path through the bad
link achieves about 10% of the throughput it should achieve.

Network Efficiency

The example above shows another difference between EWTCP
and MPTCP, and is taken from [17]. If there are multi-
ple different length paths to a destination, pathological traf-
fic matrices are possible where the network resources are
wasted. MPTCP will explicitly move traffic off the paths
that traverse multiple congested links, avoiding such patholo-
gies. Such examples do not occur in FatTree-style topolo-
gies, but they can occur with BCube.

To illustrate the issue, consider a many-to-one traffic ma-
trix, as in a distributed file system read from many servers.
Typically the distributed file systems store the data on hosts
close in the network, to allow higher throughput writes. In
our experiment each host reads from 12 other hosts, chosen
to be the host’s neighbors in the three levels in BCube(4,3).
The per-host total read throughputs are:

SINGLE-PATH 297 Mb/s
EWTCP 229 Mb/s
MPTCP 272 Mb/s
PACKETSCATTER 115 Mb/s

Due to the locality, single-path TCP can saturate all three
of the host’s 100 Mb/s NICs, and achieves maximum through-
put. EWTCP uses multiple paths and long paths congest
short ones. MPTCP’s linked congestion control mechanism
moves almost all of the traffic onto the shortest path, avoid-
ing paths that traverse multiple congested links, and so greatly
reduces the self-congestion.

PACKETSCATTER suffers particularly badly in this case.
It spreads traffic across both short and longer paths, and with
this regular traffic matrix it actually succeeds in equalizing
the loss rate across all paths. However, most of the traffic
takes multi-hop paths using the network very inefficiently.If
we wish to take advantage of multi-path in the cases where it
benefits flows and also avoid this scenario and that of Fig. 11,
it seems inevitable that each subflow must have its own se-
quence space and congestion window[13]. These choices
dictate the core design of MPTCP.

4.4 Scheduling and Dynamic Flow Arrivals
With single-path TCP is it clear that ECMP’s randomized

load balancing does not perform sufficiently well unless the
topology has been specifically tailored for it, as with VL2.
Even with VL2, MPTCP can increase fairness and perfor-
mance significantly.

ECMP however is not the only single path selection algo-
rithm; Hedera proposes using a centralized scheduler to sup-
plement random load balancing, with the goal of explicitly
allocating large flows to paths. Specifically, Hedera flows
start off using ECMP, but are measured by the centralized
scheduler. If, during a scheduling period, a flow’s average
throughput is greater than 10% of the interface speed, it is
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explicitly scheduled. How well does MPTCP compare with
centralized scheduling?

This evaluation is more difficult; the performance of a
scheduler can depend on lag in flow measurement, path con-
figuration, and TCP’s response to path reconfiguration. Sim-
ilarly the performance of MPTCP can depend on how quickly
new subflows can slowstart.

We use a FatTree topology with 128 hosts and run a per-
mutation traffic matrix with closed loop flow arrivals (one
flow finishes, another different one starts). Flow sizes come
from the VL2 dataset. We measure throughputs for single-
path TCP with ECMP, MPTCP (8 subflows), and a central-
ized scheduler using the First Fit heuristic Hedera [2].5

The total throughput is shown in Fig. 13. Again, MPTCP
outperforms TCP over ECMP. Centralized scheduler perfor-
mance depends on how frequently it is run. In [2] it is run ev-
ery 5 seconds. Our results show it needs to run every 100ms
to approach the performance of MPTCP; even if it runs ev-
ery 500ms there is little benefit because in in high bandwidth
data center even large flows complete in around a second.

Host-limited Flows

Hedera’s flow scheduling algorithm is based on the assump-
tion that it only needs to schedule long-lived flows because
they contribute most of the bytes. Other flows are treated as
background noise. It also assumes that a flow it schedules
onto an unused link is capable of increasing to fill that link.

Both assumptions can be violated by flows which are end-
host limited and so cannot increase their rate. For example,
network bandwidth can exceed disk performance for many
workloads. Host-limited flows can be long lived and transfer
a great deal of data, but never exceed the scheduling thresh-
old. These flows are ignored by the scheduler and can collide
with scheduled flows. Perhaps worse, a host-limited flow
might just exceed the threshold for scheduling, be assigned
to an empty path, and be unable to fill it, wasting capacity.

We ran simulations using a permutation matrix where each
host sends two flows; one is host-limited and the other is
not. When the host-limited flows have throughput just below
the 10% scheduling threshold, Hedera’s throughput drops
20%. When the same flows are just above the threshold for
scheduling it costs Hedera 17%.

5We chose First Fit because it runs much faster than the Simulated
Annealing heuristic; execution speed is really important to get ben-
efits with centralized scheduling.

Scheduling App Limited Flows

Threshold Over-Threshold Under-Threshold

5% -21% -22%
10% -17% -21%
20% -22% -23%
50% -51% -45%

The table shows the 10% threshold is a sweet spot; chang-
ing it either caused too few flows to be scheduled, or wasted
capacity when a scheduled flow cannot expand to fill the
path. In contrast, MPTCP makes no such assumptions. It
responds correctly to competing host-limited flows, consis-
tently obtaining high throughput.

5. EVOLVING TOPOLOGIES WITH MP-TCP
We have seen that single-path TCP cannot saturate the net-

work core of a FatTree or VL2 network, except with central-
ized flow placement or when every host sends very many
flows to another non-local host. MPTCP does considerably
better, but even so, only a few workloads actually saturate
the core, and these are somewhat artificial. Thus to justify
full FatTree or VL2 topologies requires:

• There is no locality to the traffic.

• There are times when all hosts wish to send flat-out.

• There is no concentration of traffic on any access link.

In practice, none of these assumptions seem valid, so build-
ing a topology that provides full bisectional bandwidth seems
to be a waste of money.

In section 4.3.3, we examined an oversubscribed FatTree:
one where for the same core network we connected four
times as many hosts. This seems a more likely topology, and
hits a better balance between being bottlenecked on the core
and being bottlenecked on host access links. It also takes
advantage of any locality provided by the application. For
example, HDFS places two out of three replicas in the same
rack, and map jobs in MapReduce are assigned to servers in
the same rack as the data. For such topologies, MPTCP can-
not help much with the local traffic, but it does ensure the
core is used to maximal effect.

If we now take a leap and assume all hosts in the datacen-
ter support MPTCP, then we should also ask whether differ-
ent topologies enabled by MPTCP would perform even bet-
ter. The obvious place to start is to consider cases where the
workloads we have examined are bottlenecked on the access
links between the hosts and the top-of-rack (ToR) switches.
These cases can only be improved by adding more capacity,
but moving to 10Gb/s ethernet is expensive. With single-
path TCP, there is limited benefit from additional 1Gb/s eth-
ernet links to the ToR switches, because a single flow cannot
utilize more than one path. MPTCP does not have this limi-
tation. Almost all current servers ship with dual gigabit eth-
ernet onboard, so an obvious solution is to dual-home hosts
to ToR switches, as shown in Fig.14. Whether to overpro-
vision the core is then an additional question a data center
operator must consider, based on predicted workload.

10



Fig. 14: Dual-homing in the Fat Tree Topology

For our experiments, we wish to keep the cost of the net-
work constant, so we can directly compare new and existing
topologies. To do so, we impose the artificial constraint that
the number of switch ports remains constant, but that we can
move ports from one place in the topology to another6.

Consider the following two topologies:

Perfect Switch . FatTree and VL2 both try to emulate a
single huge non-blocking switch. VL2 comes closer
to succeeding than FatTree does, but a perfect switch
serves as a good control experiment, giving an upper
bound on what any network core might provide using
single links to the hosts.

Dual-homed FatTree (DHFT) . A full FatTree requires five
switch ports per host; one is to the host and four con-
nect the links between the two layers of switches. If
we remove one port per host from the core and use it
to connect the second interface on each server, the net-
work requires the same number of switch ports.

To produce a regular DHFT topology with this ratio of
core-to-access capacity, we start with ak-port FatTree topol-
ogy. We leave the upper-pod switches and aggregation switches
the same, and replace each top-of-rack switch with two11k/12
port switches. With FatTree, each ToR switch hadk/2 up-
links and connectedk/2 hosts. With DHFT, each pair of
DHFT ToR switches still hask/2 uplinks, but have4k/3
downlinks, supporting2k/3 hosts between them. In total,
there are still five switch ports per host.

For sensible values ofk, we cannot produce fully regular
DHFT and FatTree networks with the same number of ports
per host. For this reason we compare DHFT with the Perfect
Switch, which should underestimate the benefits of DHFT.

5.1 Analysis
It is not our aim to show that DHFT is in any sense opti-

mal; we cannot define optimality without knowing the work-
load and which metrics are most important. Rather, we aim
to show that MPTCP creates new options for data center
topologies; DHFT is a simple example of such a topology.

DHFT presents opportunities that single path TCP can’t
exploit. If the network is underutilized, any pair of com-
municating hosts should be able to utilize both their NICs,
reaching a throughput of 2Gb/s.
6In a real network, the ports per switch would be fixed, and the
number of hosts and switches varied, but this does not allow for a
fair comparison, independent of the prices of hosts and switches

We wish to tease apart the effects of the topology alone
from the effects of running MPTCP over the topology. We
compare three scenarios:

• TCP over the Perfect Switch.This is the control exper-
iment, and is an upper bound on what TCP can do in any
single-homed topology. As there are no parallel paths,
MPTCP cannot help on a Perfect Switch. Locality also
has no effect on the results.

• Single-path TCP over DHFT. Although DHFT is not
ideal for TCP, this provides a baseline for comparison.

• MPTCP over DHFT. We wish to understand when MPTCP
over DHFT outperforms any single-homed topology, and
see how much of this is due to MPTCP.

Effects of Locality

Our first experiment shown in Fig. 15 is a packet-level sim-
ulation of the permutation traffic matrix, using long-lived
flows with varying degrees of intra-ToR traffic locality. The
DHFT network has k=12, giving 576 hosts, and 100Mb/s
links, giving a maximum throughput of 43 Gb/s if no traffic
is local, and 115 Gb/s if all the traffic is local to the rack and
both links from each host are used. The dark grey region
shows throughputs that are feasible as locality changes. If
only one of the two interfaces on each host is used, as is the
case with single-path TCP, then the light grey region shows
the possible throughputs.

Our baseline for comparison is a perfect switch directly
connecting all 576 hosts via 100Mb/s links. This provides an
upper bound on what a regular FatTree with the same num-
ber of switch ports as the DHFT could achieve with perfect
traffic scheduling.

MPTCP using eight subflows achieves close to the theo-
retical maximum for all degrees of locality. In contrast, due
to flow collisions on core links, single-path TCP does not
even come close to the theoretical single-path limits untilal-
most all the traffic is not using the core. If the traffic resem-
bles a permutation traffic matrix, it clearly does not make
sense to build an DHFT topology unless MPTCP is used.

If no traffic is local, MPTCP on DHFT is outperformed
by the Perfect Switch. But to achieve no locality whatsoever
requires effort - even with a random traffic, some flows stay
local to the rack. In practice, applications are often adap-
tive, and arrange processing to take advantage of locality.
MPTCP on DHFT outperforms the Perfect Switch when at
least 12% of traffic is local, and costs the same in switch
ports as a FatTree that is strictly worse than a Perfect Switch.

Effects of Load

With a random traffic matrix, throughput can be limited by
access links collisions. For single-path TCP, a DHFT can
reduce this bottleneck, improving performance. Collisions
in the DHFT core remain an issue though. The benefits are
much greater for MPTCP, as it can utilize both access links
even when there are no collisions. Fig. 16 shows how perfor-
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mance depends on load. At light-to-medium load, MPTCP
achieves nearly twice the performance of the perfect switch.
At high load, the DHFT core becomes the bottleneck, and
the Perfect Switch has higher bisectional bandwidth.

Interestingly, if we keep adding connections, we expect
that around 20 connections per host MPTCP will again start
to get more throughput than the perfect switch as more hosts
gain at least one rack-local connection . In the extreme, an
all-to-all traffic matrix will achieve twice the throughputof
the perfect switch, with more than half the traffic being rack-
local flows. Such extreme workloads are above the limits of
our packet-level simulator, and are of no practical relevance.

5.2 Discussion
DHFT costs the same as a Fat Tree, but has more links

in the access. It provides benefits for traffic patterns with
hotspots, and traffic patterns where the network core is un-
derutilized. Compared to an idealized Fat Tree (i.e. the per-
fect switch), DHFT’s worst case performance is 75% and
best case is around 200%. If all traffic matrices we analyzed
are equally likely to appear in practice, DHFT trades a bit of
worst-case performance for substantial average-case gains.

Beyond performance, DHFT improves robustness: any
lower-pod switch failure does not cut-off an entire rack of
servers. As most racks have dual power supplies, switch re-
dundancy eliminates the biggest single cause for correlated
node failures. In turn, this will likely increase application
locality; for instance HDFS could choose to store all three
replicas of each block in the same rack.

DHFT is not optimal by any measure, but it shows that we
can create topologies with better performanceif we assume
MPTCP is the transport protocol. DHFT makes little sense
with TCP, as most of its performance benefits vanish.

With MPTCP as transport, a wider range of topologies
are cost-effective. Multipath TCP allows us to linearly scale
bisection bandwidth for the same increase in cost. For in-
stance, to create a topology with 2Gb/s full bisection band-
width, we could use ak-port Fat Tree withk3/8 dual-homed
hosts. Transport flows would need to be split across differ-
ent host interfaces to reach 2Gb/s. Single path TCP can’t
effectively utilize such a topology.

For really large datacenters with hundreds of thousands
of hosts, Fat Tree is most likely not feasible to deploy. We
expect there will be islands of Fat Trees, connected to a super
core with 10Gb/s uplinks.

6. EXPERIMENTAL VALIDATION
Simulation is only as good as our ability to predict which

properties of the environment we are modeling will turn out
to be important. Ideally we would cross-validate results against
the full implementation. We had two opportinities to do this.

First, we built several small FatTree-like topologies in our
lab, with 12 hosts and 7 switches. Although this is too small
to see various statistical multiplexing effects, it does provide
a controlled enviroment for experimentation. We primarily
use this for microbenchmarks to validate aspects that cannot
be accurately modeled in simulation.

Our second opportunity was to rent virtual machines on
Amazon’s Elastic Compute Cloud (EC2). This is a real large-
scale production datacenter, but we can only infer topology
and we cannot control or even measure competing traffic.

6.1 Microbenchmarks
Our Linux kernel implementation is still research-grade

code; it has not been optimized and a production code could
certainly perform better. All the same, it is important to ver-
ify that the implementation is capable of the performance
indicated in the simulations. In particular, if eight subflows
per connection are needed, can the implementation cope?
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Fig. 20: 24 hours of throughput, all
paths between ten EC2 nodes.

Should MPTCP be enabled for all TCP connections in a
data center? We connected two dual-interface machines to
a gigabit switch, and measured the time to setup a connec-
tion and transfer a short file. TCP can only use one inter-
face; MPTCP can also use the second, but only after the first
subflow has negotiated the use of MPTCP and the second
subflow has been established. Figure 17 shows that TCP is
quicker for files of less than about 150 packets, but much
slower thereafter. Closer analysis shows that our MPTCP
implementation slowstarts slightly slower than TCP. The largest
difference is about two RTTs just as TCP fills the link, and
decreases thereafter. This different does not seem fundamen-
tal, and is likely a quirk of slowstart in our implementation.
As it is, it would be better to delay 5ms until the first subflow
leaves slowstart before starting the second.

6.2 DHFT Testbed Experiments
We built a small DHFT network connecting 12 hosts ar-

ranged in two racks. Each host connects to the two ToR
switches in its rack, which are dual homed to two aggrega-
tion switches. The switches are soft switches running Linux
on PCs. ToR-to-core links are oversubscribed 3:2. This
gives four static-routed paths between hosts in different racks.

Our aim is to validate some of the simulations, and to see
how well our Linux MPTCP implementation behaves with
multiple paths. To compare with Fig. 15 we ran the per-
mutation locality traffic matrix, varying the fraction of rack-
local connections. A traffic pattern quite similar to this is
generated by HDFS writes, where2/3 of the traffic is rack-
local. The throughput curve, shown in Fig. 18, is close to
the theoretical value; if 15% of traffic is local, DHFT equals
the throughput of a perfect switch; with more local traffic,
the improvements are bigger. Aggregate throughput levels
off at 21Gb/s; although MPTCP could send more, the Linux
soft-switches are saturated.

To validate MPTCP’s robustness to link failures we ran
the experiment from Fig. 11, downgradinga core link’s speed
from 1Gb/s to 100Mb/s. Single-path TCP cannot avoid this
link as such a failure will not trigger re-routing. We ran a
zero-locality permutation matrix to maximally load the core.
Fig. 19 shows a time series of flow throughputs. Approxi-

mately 4 minutes into the experiment, we downgrade one of
the core switches’ links to 100Mb/s. MPTCP copes well: its
congestion control fairly distributes the remaining core ca-
pacity between the flows. When the link returns to 1Gb/s,
MPTCP flows increase to fill the capacity.

6.3 EC2
Amazon’s EC2 compute cloud allows us to run real-world

experiments on a production data center. Amazon has sev-
eral data centers; their older ones do not appear to be have
redundant topologies, but their latest data center (USEast1d)
is arranged in a topology that provides many parallel paths
between most pairs of virtual machines.

We do not know the precise topology of the US East data
center. Compared to our simulations, it is complicated slightly
because each instance is a virtual machine, sharing the phys-
ical hardware with other users. Background traffic levels are
also unknown to us, and may vary between experiments.

To understand the variability of the environment and the
potential for MPTCP to improve performance, we ran our
MPTCP-capable Linux kernel on ten EC2 instances, and for
24 hours sequentially transmitted between each pair of hosts,
cycling through MPTCP with 2 and 4 subflows and TCP. The
resultant dataset totals 3,700 measurements for each config-
uration, and samples across both time and topology.

Fig. 20 shows the results ordered by throughput for each
configuration. Traceroute shows that 26% of the paths are
local to either the host or the switch; for these there is no
alternative path. They correspond to the right-hand ¼ of the
flows in the figure; their bottleneck is the sending or receiv-
ing host. MPTCP cannot help; in fact some of these flows
show a very slight reduction in throughput; whether this is
due to additional costs of MPTCP or slight inaccuracy com-
puting the fair value fora in the congestion control algorithm
is unclear. The remaining 74% of paths are four or five IP
hops. Traceroute shows all of them implement load balanc-
ing across a redundant topology. MPTCP with four subflows
achieves three times the throughput of a single-path TCP for
almost every path across the entire 24-hour period.
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7. RELATED WORK
Multipath TCP spans routing, path selection and conges-

tion control in datacenters, offering a general solution toflow
scheduling in such networks.

There has been much work on scheduling for Clos net-
works [12, 15, 10].m = n Clos networks are rearrangeably
non-blocking: there is an assigment of flows to paths such
that any source-destination traffic pattern can be satisfiedat
maximum speed. However, mapping flows to paths is dif-
ficult; random path selection can give less than 50% of the
possible throughput. Many heuristic algorithms have been
proposed to utilize Clos networks, but most have drawbacks
either in convergence time or performance [10]. More re-
cently, Hedera has provided such a solution for data center
networks, using a centralized coordinator and programmable
switches to place flows on paths in the Fat Tree topology [1].

VL2[7] sidesteps the scheduling issue by using 10Gb/s
links in the core and per-flow Valiant Load Balancing (ECMP).
The speed difference between core and access links reduces
the effect of collisions. With BCube [8], sources probe con-
gestion on all paths before using source routing to dictate a
path. Unfortunately congestion levels vary quickly, and the
initial choice may quickly become suboptimal.

Spreading each connection over multiple paths makes the
scheduling problem tractable. Geoffray [6] proposes striping
packets across multiple paths, coupled with layer two back-
pressure. The limitations of this solution stem from the lim-
itations of back-pressure: it is unclear how well this scheme
works over multi-hop paths with heterogeneous hardware,
as found in todays data centers. In addition to changing
the switches, the transport protocol must also be changed
to cope with frequent reordering.

Multipath TCP takes the next logical step, making the
end-host aware of the different paths, but not changing the
network. MPTCP is topology agnostic, completely distributed,
and can react on the timescale of a few round trip times to
changes in load. MPTCP finds free capacity in the network,
increases fairness and is robust to congested links or failures.
Finally, it can cope with app-limited flows; network-based
solutions struggle here because they have insufficient infor-
mation. MPTCP gets these benefits because it combines path
selection, scheduling and congestion control.

8. CONCLUSIONS
In this paper we examined how the use of MPTCP could

improve data center performance by performing very short
timescale distributed load balancing, so as to make effec-
tive use of parallel paths in modern data center topologies.
Our experiments show that for any traffic pattern that is bot-
tlenecked on the network core rather than on the hosts or
their access links, MPTCP provides real performance ben-
efits. For financial reasons, we expect network cores to be
oversubscribed in real data centers, so these benefits seem
likely to be commonplace; certainly we observed them in
Amazon’s EC2 network.

Although the MPTCP designers only expected to need
a small number of subflows, our results indicate that for
topologies such as FatTree and BCube, as many as eight sub-
flows are needed to achieve both good throughput and fair-
ness. Only then is the variance of load between core links
reduced sufficiently. The MPTCP protocol and our imple-
mentation handle this without difficulty.

Multipath transport protocols such as MPTCP can change
the way we think about data center design. With the right
congestion control, they actively relieve hot spots, with no
need for any form of network scheduling other than simple
random ECMP routing. More importantly, network topolo-
gies that make no sense with TCP can be very effective with
MPTCP. Even routing protocols might benefit. In recent
years switch vendors have put a great deal of effort into
reducing failure detection and routing reconvergence times.
But as data centers scale to hundreds of thousands of hosts,
this becomes increasingly difficult. In topologies with many
redundant paths and hosts running MPTCP, perhaps fast rout-
ing reconvergence after failures is less critical.
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