
Short Messages

By Damon Wischik

UCL

This paper has three purposes. The first is to explain to a general audience what is in-
volved in retrieving a web page or performing some other complex network transaction,
and what can make it slow, and why the problem of slowness is likely to get worse as net-
worked applications become more complex. The second is to describe to those who program
networked applications certain facts that we have learnt from modelling communication net-
works, notably the fact of heavy-tailed distributions in traffic, which may allow more efficient
applications to be written. The third is to describe to network modellers an interesting class
of problems relating to algorithm design for communication networks.

1. What causes delay in network transactions?

The time it takes for a light pulse to travel from London to New York and back again is
around 38ms. With a perfect network, if I in London want to retrieve www.nytimes.com
from New York then it should take 38ms, plus a handful of milliseconds for my computer to
formulate the request and the webserver to formulate the reply, plus a few more milliseconds
since the transatlantic cables will not be perfectly direct. In practice, it often takes at least
four seconds. In the rest of this section I will outline where delay can arise. Cohen and
Kaplan [2] give a more technical account.

Anatomy of a web page. When a web browser sends a request for, say, www.nytimes.com,
the server does not typically reply with the entire page. Instead it returns a shell page with
some plain text, plus links to further items such as pictures or style information. The web
browser reads the shell page, works out what further items are needed, and automatically
sends out more requests. These new items may in turn request further items. Many modern
web pages link to code which is retrieved and executed on your web browser, which then
issues further requests—this feature is used by interactive websites, where new content is
retrieved when the user types or clicks a button. Sometimes the server doesn’t even serve
any content at all: it may simply reply saying “the item you requested has moved and is
now at x”, and the web browser automatically sends its request to the new location. The
status bar at the bottom of a web browser window shows which items it is busy retrieving.

Figure 1 shows the graph of dependencies in the web page that was retrieved when I
logged on to gmail.com on 28 August 2006. (The labels in this figure are simple mnemon-
ics.) The very first item requested is ServiceLoginAuth, and the web server replies with
a redirection to CheckCookie, which then invokes the retrieval of auth, which invokes the
retrieval of browser.js, and so on. The dependency graph is not a strict tree: the code says
to retrieve loading html and hist1, and only when both of these have been retrieved will
it go on to retrieve hist2.

Some of the items in this dependency graph can be retrieved in parallel, such as the
42 images (status flags, rounded corners, unread mail icons, etc.), whereas others must be

Article submitted to Royal Society TEX Paper

2 Damon Wischik

ServiceLoginAuth

CheckCookie

auth

browser.js

loading timer js

m_base

loading.html hist1

hist2

inbox

.gif

.png

contacts
channel/test

test

setgmail

gp

sound.swf

1st msg

last msg

1st unread msg

last unread msg

ticker

bind

bind

inbox ping

inbox ping

https

http

http uncached

gmail retries

42 images

ongoing

ongoing

0B

749B

2107B

1846B

2464B

419997B

22091B

146B 261B

˜ 600B each

261B

18392B

20B

1061B134B

0B

197B

7106B
5982B

20B

3588B

238B

20B

20B

K E Y

Figure 1: The graph of dependencies for retrieving an inbox at gmail.com, gathered on
28 August 2006 using Firefox 1.07. Paros 3.2.13 was used to trap each http request. On
successive visits, different sets of requests were let through; the set of ensuing requests
reveals the graph. The numbers show the size in bytes of each item.

retrieved in sequence. Even when items can be retrieved in parallel, the web browser may
choose not to do so—see Section 3a. All this back-and-forth leads to delay. To cut some of
the delay, the web browser can choose to cache some of the items, so that on future visits
to gmail.com they do not need to be retrieved over the Internet; the web server indicates
which items it is safe to cache and for how long.

The http and https protocols. Now we drill down into the mechanics of how the web
browser actually retrieves an item, and we find more opportunities for delay. The web browser
and server communicate by sending messages to each other. To retrieve a single item, there
is a round of messages:

Client Server
1. Hello!
2. Hello!
3. Please send X .
4. Here’s X. Goodbye!
5. Goodbye!
6. OK!

The first two steps are there to prevent one round of messages from getting confused with
another [13]. To retrieve an item over a secured connection (https), as for the first two items
in Figure 1, there are some extra steps in between 2 and 3 which in the best case are

Client Server
2a. Let’s use cipher c.
2b. Here’s my public key.

Article submitted to Royal Society

Short Messages 3

2c. Here’s a secret key for all further data.
2d. Ready.

Reliable delivery over an unreliable network. The Internet is inherently unreliable
and may drop messages en route. To cope with this, the computer’s operating system runs
the Transmission Control Protocol (TCP) which implements reliable delivery as follows.
TCP sends a message, then waits for an acknowledgement that it has been received (except
for the final OK! which does not expect an acknowledgement). TCP sets a retransmission
timeout RTO, and if no acknowledgement is forthcoming within RTO then it retransmits.
The acknowledgement is usually bundled with the reply message. Ideally RTO would be the
round trip time from one party to the other and back again, but round trip time varies
from packet to packet so RTO is set to take account of estimated mean and variability. Each
side of the communication maintains its own copy of RTO, which it updates continuously.
The complete specifications of how RTO is updated are in [9], and a survey of how it is
implemented in practice is given by Rewaskar et al. [10]. Broadly speaking, if the round trip
time experienced by a packet is RTT, then

(i) RTO=3 seconds for the first in a round of messages
(ii) RTO=max(3RTT, 200ms) for the second message
(iii) RTO decreases to ERTT+max(10ms, 4E|RTT−ERTT|) thereafter, except it is not

allowed below 200ms (the specification says the minimum should be 1 second)
(iv) When there are many losses, a given message may be retransmitted multiple times.

RTO is used as the timeout the first time, 2RTO the second time, 4RTO the next,
and so on.

The above description holds for short messages. Larger messages are broken into packets
(typical packet sizes are 1500bytes for ethernet and 576bytes for a modem) and the packets
are reliably delivered. Messages 1 and 2 always fit into one packet. If message 3 is several
packets long, TCP sends the first packet, then waits for it to be acknowledged using the RTO
mechanism; once acknowledged, TCP goes on to transmit the remaining packets, usually
sending several packets at a time, and it has a more rapid means of detecting when it needs
to retransmit. The last packet of a message always uses the RTO mechanism.

There are layers under TCP in which delay can be introduced. Suppose the web-browsing
computer is connected to the Internet over wifi: then its wireless card and the wifi base-
station will run yet another protocol with timeouts and retransmissions. The net effect
is that TCP is shielded from most dropped packets, but at the expense of increasing its
estimate of round trip time mean and variance—which means it takes longer to recover
when it actually does suffer a dropped packet.

Reliability can be implemented in higher layers too. In Figure 1, there are several items
with bold borders—this denotes the fact that Google’s code repeatedly attempts to retrieve
the item if it has not received within a few seconds. Network engineers normally think
of reliable delivery as a network function, but Google has implemented it in Javascript,
presumably because the network does not do what Google needs.

Sequential versus parallel programming. Here is a final example of a distributed sys-
tem: obtaining a directory listing in Windows, over a virtual private network.

Client Server
1. Hello!

Article submitted to Royal Society

4 Damon Wischik

2. Hello!
3. What is the first file in directory d?
4. It is f1.
5. What is the next file after f1?
6. It is f2.

...
n + 4. What is the next file after fn?
n + 5. No more files.
n + 6. Goodbye!
n + 7. Goodbye!
n + 8. OK!

Each transmission apart from step n + 8 uses an RTO. The task is inherently parallel, but
the Windows programming interface turns it into a sequential computer program. This is a
natural way to program, but it leads to systems which turn sluggish when the network is
slow or has too many dropped packets.

Growth in complexity. It seems likely that network tasks will become more complex: web
pages will become richer and more interactive, like Facebook pages full of widgets, and web
browsers will become tools to mash up data from a whole host of networked databases. The
more complex the task, the more sensitive it will be to latency and packet drops.

2. Internet traffic statistics, and how to make TCP faster

When a packet is dropped, the RTO timeout is at least 200ms and can be as much as 3
seconds. It would be easy to speed up TCP: we could send multiple redundant copies of
each packet back-to-back, so that even if one is dropped there’s a good chance another
copy will make it through. This would make TCP more aggressive, and more likely to cause
congestion. In fact the original design of TCP was more aggressive, and in 1988 this led to
Internet congestion collapse [5]. That experience resulted in the current design of TCP, and
a strong disinclination to experiment with making TCP more aggressive. In this section I
will argue that the statistics of Internet traffic mean that it is safe to send several redundant
copies of packets that make up short messages, say messages of one to three packets (note
that many of the items in the gmail.com inbox are this small). Of course there is no point
sending the copies so close together that they share the same fate.

There is incidentally another slowdown in TCP, which occurs when it sends messages
more than one packet long: it waits for the other party to acknowledge the first packet before
sending the rest. There has been a proposal that TCP should be allowed to send up to four
packets or so without waiting for an acknowledgement [1]. This would save at least one
round trip time. It would also give TCP’s rapid retransmit mechanism a chance to work,
though the last packet in a message would still be subject to the RTO timeout. This scheme
is widely implemented, but it seems to be turned off by default.

The central paradox of communication network design: Most traffic is composed
of large traffic flows, known as elephants. Elephants are large and rare. Yet most network
tasks, are composed of short flows, known as mice. Mice are small and numerous. Since most
traffic comes from elephants, capacity planning is based on elephants, but it is the mice that
users value most highly.

Article submitted to Royal Society

Short Messages 5

What do users value? The 3 mobile phone network pay-as-you-go charges in October
2007 are £1 per megabyte for broadband data, 50p per minute for video calls of about 64
kbit/s (£1.04 per megabyte), and 12p per text message of 140 bytes (£857 per megabyte,
although that also includes the cost of storing the message until it can be delivered).

Why the dichotomy between mice and elephants? Measurements of Internet traffic have
found that message sizes have a heavy-tailed distribution [3]. This is a class of probability
distributions for which a few large items are likely to outweigh many many small items. These
distributions have been found in biology, chemistry, ecology, finance, etc. Mitzenmacher [8]
gives some of the history, and describes three general models of why they might come about;
for the particular case of web file sizes, Doyle and Carlson [4] suggest that heavy tails arise
from optimal partitioning of data. In practical terms, the elephants today are from peer-to-
peer sharing of video files, whereas the mice are short control messages and plain text.

Why do network engineers look at elephants? In the early 1990s, researchers at AT&T
discovered that Internet traffic was self-similar (it has spikes at many timescales, ‘peaks, rid-
ing on bursts, riding on swells’) and long-range dependent (strong positive correlations over
long timescales) [6]. Researchers went looking for the cause, and proved that the aggregate of
many heavy-tailed flows will lead to self-similarity and long-range dependence [12], whereas
light-tailed flows will not. Long-range dependence is important for network engineering since
it means that networks need very large buffers; and self-similarity is clearly visible in plots
of network load; hence the interest of network engineers in heavy tails.

How much traffic is made up of elephants? Tanenbaum et al. [11] has collected datasets
which let us quantify just how big the elephants are compared to the mice, and which also
shows that the elephants are growing. The data is of file sizes on the Computer Science
filestore at the Vrije Universiteit, measured in 1984 and 2005. (I have used this data on
file sizes, rather than Internet traffic statistics, because I have not found historical Internet
traffic data which gives sufficiently fine detail about the distribution of small message sizes.
Internet traffic engineers have been more interested in elephants than in mice.) Now, consider
making TCP more aggressive by sending three copies of the first packet of every message, two
copies of the second, and one copy of subsequent packets—this crude hack would increase
total network traffic volume by 34% in 1984, 2.7% in 2005. Or consider enlarging every flow
so that it is at least five packets long—this would increase total network traffic volume by
21% in 1984, 1.3% in 2005.

Packet drop statistics. Packet drop rates vary wildly, by time and location, and con-
gestion hotspots hop around the network. The snapshots at www.internetpulse.net show
the recent packet drop rates at the interconnects between 12 major service providers, aver-
aged over various time intervals; on 21 October 2007 at 01:30 GMT the median, mean and
maximum across the various interconnects were

time period median mean max
1 hour 0 0.20% 4.17%
4 hours 0 0.17% 3.12%
24 hours 0.03% 0.15% 2.60%

End-to-end packet drop rates will be higher. A 1999 measurement study [17] found packet
drop rates from the US to Sweden of around 3%, and also measured the autocorrelation in
packet drops, and found that it drops off quickly: conditional on a packet drop at time 0,
the probability of a packet drop at time t is roughly

Article submitted to Royal Society

6 Damon Wischik

t 50ms 100ms 200ms 300ms 400ms 500ms
drop prob. 15% 7.9% 5.9% 4.9% 4.2% 3.7%

The wireless setting is completely different. A measurement campaign conducted in a
Berlin machine shop in 2002 [14] found that cell drop probability was a few percent for
much of the time, but there were 20 minute periods where it climbed to 60%, when a nearby
machine was active. (This means incidentally that the conditional drop probability will be
very high, a reflection of non-stationarity rather than correlation.)

Conclusion. Whereas network engineers concentrate on the elephants, for our purposes
the mice are more interesting. In networks which are provisioned to carry elephants, that is
to say any general-purpose network, it is safe to be aggressive when sending mice, e.g. by
setting RTO smaller than the round trip time. The elephants get steadily bigger as years go
by, and the mice can be more and more aggressive. The RTO retransmit timer can be set to
100ms, and probably less. There is probably no point setting it very much less than 20ms,
since two packets that close together are fairly likely to share the same fate.

3. Three network transactions

We now study three different network tasks. We will calculate how the completion time
of the task depends on the network latency, the retransmit timeout, and the packet drop
probability p, in the limit as p→ 0.

Performance analysis in the literature has mostly been concerned with the limit n→∞,
where n is the number of nodes, and has usually assumed p = 0. This is not a useful
way to look at the performance of say web transfers, in which there are n = 2 parties,
the web browser and the web server. Some sort of limit seems needed to get tractable
answers, and p → 0 should produce reasonable approximations for the range of packet
drop probabilities described in Section 2. The literature has mostly been concerned with
the number of messages sent, but as argued in Section 2 these are short messages which
constitute an insignificant fraction of network traffic. A fuller review of the literature, as well
as detailed calculations and proofs of the following results, can be found in the extended
version of this paper [15].

(a) Retrieving a web page: http 1.0, 1.1, and 1.1 with pipelining

Consider first a simple idealized web browser and server and network. The web browser
sends out request messages (pure requests, without the handshaking steps 1 and 2), and the
server replies when it receives a request. The web browser sends out parallel requests for
whatever items it needs next, as soon as it can. The web browser uses a fixed retransmit
timeout RTO, and the server does not use any timeouts—it is purely passive. Each message
may be dropped with probability p, and successive drops are independent. The round trip
time is RTT. We shall calculate ET , the expected time until the entire page has been
retrieved, as a function of q = 2p−p2, the round-trip packet drop probability. By conditioning
on which if any packets are dropped, one can show that for the gmail.com web page,

ET = 11RTT + 12qRTO + O(q2).

The O(1) term is the completion time in the common case, i.e. assuming no drops. The O(q)
term is the sum of additional completion times due to a possible drop, i.e. RTO times the
number of items on the ‘critical path’.

Article submitted to Royal Society

Short Messages 7

http 1.0 uses a new TCP connection for every item, i.e. it goes through the full 6 steps listed
in Section 1. A web browser can open multiple simultaneous connections, but it allows
no more than four of them to be in steps 1–5. The number four was chosen by Netscape
in the early days of web browsers. The unofficial FAQ www.ufaq.org says this is an
appropriate number for users with slow modems. The reckoning might have been as
follows. Consider a user with a 56kb/s modem, which has a packet size of 576 bytes,
with four simultaneous connections to a server with an RTT of 250ms. The average
window size for a connection is 0.76 packets. Perhaps one of the connections will be
waiting for a reply, giving the others an average window size of 1.0 packets. This is
just at the threshold of what TCP’s fast recovery mechanism can cope with; any less
and it will suffer frequent timeouts. This rationale is clearly not appropriate for short
messages, nor for broadband connection speeds.

http 1.1 lets a single TCP connection handle multiple items in sequence. This means that
steps 3 and 4 are replaced by

Client Server
3a. Please send X1.
4a. Here’s X1.
3b. Please send X2.
4b. Here’s X2.

and so on as many times as needed. The protocol for handing the Goodbye! message is
slightly different. RFC2616 recommends that no more than two simultaneous connec-
tions should be opened to a web server.

http 1.1 with pipelining allows requests to be pipelined. If a web browser has many re-
quests ready, it can send them together rather than in sequence:

Client Server
3a. Please send X1.
3b. Please send X2.
4a. Here’s X1.
4b. Here’s X2.

The default in Firefox 2.0.0.8 is not to use pipelining, and if it is turned on then to
permit up to four pipelined requests. Internet Explorer 7 does not permit pipelining at
all.

Figure 2: The flavours of http

We can straightforwardly apply this sort of reasoning to a fuller model of http, of which
there are three versions (see Figure 2), taking account also of whether or not the cacheable
items have been cached. We have ignored server-side timeouts in this table, for convenience,
and assumed that all requests go to the same web server.

uncached idealized http ET = 11RTT + 12qRTO + O(q2)
http 1.0 ET = 50RTT + 30qRTO + O(q2)
http 1.1 ET = 41RTT + 17qRTO + O(q2)
http 1.1 pipelining ET = 21RTT + 17qRTO + O(q2)

cached http 1.0 ET = 20RTT + 20qRTO + O(q2)
http 1.1 ET = 14RTT + 20qRTO + O(q2)
http 1.1 pipelining ET = 12RTT + 12qRTO + O(q2)

Article submitted to Royal Society

8 Damon Wischik

When the O(q) term is equal to the O(1) term, as with http 1.1 with pipelining and a cache,
it indicates that the protocol does not impose any extra bottlenecks.

Some of the O(q) terms here are very sensitive to discretization effects relating to how
items are distributed between connections. It would be useful to consider also the expected
completion time when the dependency graph itself is random, to smooth away these dis-
cretization effects.

(b) End-to-end versus hop-by-hop reliable delivery

Here is a toy model of multihop transmission. We will consider two algorithms for reli-
ably delivering a message from a source node 0 to a destination node n across a series of
intermediate nodes, where each link has its own packet drop probability pi and round trip
time RTTi.

0
p1, RTT1←−−−−−→ 1

p2, RTT2←−−−−−→ 2 · · · (n− 1)
pn, RTTn←−−−−−→ n

One algorithm is hop-by-hop reliable delivery. When node i first hears the message it starts
sending it to node i + 1, resending it every RTOi+1 until it hears an acknowledgement
from node i + 1. Whenever node i hears the message it sends an acknowledgement back
to node i− 1. Another algorithm is end-to-end reliable delivery. Node 0 sends the message
out, resending it every RTO until it hears an acknowledgement. The intermediate nodes are
dumb relays: they just relay messages forwards and acknowledgements back. Node n sends
back an acknowledgement whenever it hears the message.

Let T be the time until node n receives the message, and suppose we wish to control ET .
Obviously, by making the retransmission timeouts small enough, we can with either scheme
get ET = tmin + ε where tmin is the propagation delay from node 0 to n, for arbitrarily
small ε > 0. There may however be constraints on how small the retransmission timeouts
can be. We have already seen that there is little point having these timeouts less than say
≈20ms because of correlations in packet drops. We will consider here a different constraint:
computational burden. The relay nodes 1,. . . ,n−1 may be handling many different messages,
and in the hop-by-hop scheme a relay node will need to remember timeouts for each of these
messages. It will need to (i) set a timeout whenever it forwards a message, (ii) cancel the
timeout whenever it receives an acknowledgement, (iii) when it executes a timeout, work
out the next timeout due to expire, and possibly (iv) when it receives a message, work out if
it has already forwarded it. Operations (i)–(iii) typically use a data structure called a heap,
and their complexity is O(log m) where m is the number of outstanding timeouts. Operation
(iv) can be done at low cost using a hash table.

Consider the problem of choosing timeouts so as to minimize computational burden,
subject to the constraint that ET = tmin + ε. To make the working easier, suppose that
acknowledgements are always reliably delivered. Then it is possible to calculate explicitly
the computational burden for hop-by-hop versus end-to-end, measured as number of timers
set plus number of timers processed plus number of acknowledgements processed; detailed
calculations are in [15]. Suppose for the sake of argument that all links have low drop
probability pi ≈ 0 apart from one link which has drop probability p∗. Let this congested
link have round trip time RTT∗. After some algebra, we find that end-to-end is better than
hop-by-hop when

p∗ < 1−
√

A2 + 4−A

2
where A =

ε(N − 1)
∑

i RTTi − RTT∗ .

The critical threshold for p∗ is an increasing function of A.

Article submitted to Royal Society

Short Messages 9

This result fits in with intuition and practice—if you have a local wireless link with high
drop rates, it makes sense for the base station and client computer to recover quickly by
using their own retransmissions and short timeouts; but in the wired Internet which has
fewer drops it doesn’t make sense to burden the routers with extra work.

(c) Leader election

Consider the following problem. A number of machines are connected to a hub, by access
paths of different latencies. Any message sent by one machine to the hub will be broadcast to
all the other machines. Messages may be dropped, either going to or from the hub; the drop
probability is p and drops are independent. The problem is to elect a leader. This might be
a simple model for the browser service in Microsoft Windows up to XP—machines on an ad
hoc wireless network elect one of their number to be the Master Browser, and this machine
maintains a directory of the other machines and their printers and other facilities, which can
be browsed in “My network neighbourhood”. The hub represents the wireless shared access
medium, and the latencies might reflect how frequently a machine checks its message queue.

Formally, we suppose that each machine can perform the action Accept(X) to indicate
that it accepts machine X as leader. We will require that this be a terminal decision, i.e. no
machine can perform Accept more than once; and we will be interested in how long it takes
for all machines to terminate. The leader election problem introduces a new issue: unless
all machines know each other in the first place (which makes the problem pointless, since
they might as well pre-arrange to select the highest-numbered machine), it is impossible to
guarantee that the algorithm will terminate with a single leader. This is because there may
be machines between which all messages happen to be dropped—so some machines either
terminate with the wrong leader, or never terminate at all. To acknowledge this, we will
seek to meet a hierarchy of successively weaker probabilistic requirements.

(i) If X has done Accept(Y) then Y must have done Accept(Y). Such a condition is
known in the literature as safety. We want this to be logically true, i.e. true for every
point in the sample space and not just ‘almost surely’, in case we have the wrong
probability model for packet drops. This property ensures the network cannot enter
an inconsistent state.

(ii) Every machine should terminate. This is known as liveness. We want this to be
almost surely true, but it is unreasonable to insist that it be logically true given
that our probability model has independent drops.

(iii) Let N be the total number of leaders elected. We want EN to be not much larger
than 1. If p = 0 (also referred to as the ‘common case’ or ‘graceful execution’) we
want N = 1 almost surely.

(iv) We wish to know the expected time until all machines have terminated.
The literature on distributed algorithms e.g. the book by Lynch [7] has concentrated on
logical truth. The extended version of this paper outlines other approaches, including the
link between logical and almost-sure truth described by Wischik et idem [16].

Figure 3 shows a simple algorithm. The algorithm uses two types of nodes, courtiers
and princes. A prince is a candidate for leader, and a courtier simply recognizes leaders.
Assume that there is at least one prince and at least one courtier. Assume that each prince
has a unique identity which it calls me, and that there is a total ordering on identities.
The general idea is that princes broadcast who they are, in two rounds of broadcasts. The
courtiers listen to the first round, then latch on to the best they’ve heard so far at the
time the second round starts. The system however is asynchronous, and fast princes can

Article submitted to Royal Society

10 Damon Wischik

send HEARYE(me,1,me)

send HEARYE(me,2,X)

is
Y=me?

Accept(me)
send ELECTED(me)

Henceforth, on hearing
PLEASELEAD(me),
send ELECTED(me)

hear HEARD(me,1,X)

hear HEARD(me,2,Y)

send PLEASELEAD(Y)

let rnd:=0
let cand:=-1

hear
ELECTED(X)

hear
HEARYE(S,R,X)

if rnd<1:
rnd := 1

cand := X

Accept(X)

hear
PLEASELEAD(me)

Accept(Z)

Henceforth,
on hearing
PLEASELEAD

(me), send
ELECTED(Z)

hear
ELECTED(Z)

Yes

No

Prince Courtier

if R¸rnd:
cand := max(cand,X)
rnd := R

send HEARD(S,R,cand)

Figure 3: Prince and Courtier algorithms. The arrows show transitions from state to state.
Some arrows are labelled, and these are transitions which are triggered by receipt of a
message. The Prince has three unlabelled arrows, which mean: if none of the labelled
transitions have been triggered within time RTO, then resend the message and reset the
timeout.

start on the second round while slow princes are still on the first. The extended version of
this paper describes other leader election algorithms, mostly more sophisticated than this
simple algorithm. However, the simple algorithm and the assumption of a hub permit us to
calculate performance measures, and I have not yet been able to do the same for the other
algorithms. The following theorem is proved in [15].

Theorem The algorithm satisfies the safety and termination conditions (i) and (ii).
Let N be the number of leaders who are eventually elected. Then EN ≤ 1 + p + O(p2),

assuming that there is no linear combination of latencies which is equal to 0.
Let T be the delay until an ELECTED message reaches the hub. Let tP be the latency from

the hub to the closest prince, let tC be the latency from the hub to the closest courtier, and
assume all princes start sending at the same time. Then ET ≤ 11tP +8tC +12pRTO+O(p2).

The algorithm could be modified to use more rounds. This would make it more robust
but slower, i.e. decrease the O(p) term in EN , and increase the O(1) term in ET .

4. Conclusion

Ever more computer applications run over the Internet, and these applications perform ever
more sophisticated tasks through interacting with other networked computers. For many
applications it is good use of the network which gives value, not isolated computer power.
This is the case not just for the Internet—it holds too for communication between cores and
and memory caches on a multicore processor.

The trouble with networks is that there is delay inherent in every interaction, because of
the speed of light; in unreliable networks the delay is exacerbated by the need for retrans-
missions. So it is important to understand how the performance of a networked application
depends on the underlying network. Computer science has developed a reportoire of efficient

Article submitted to Royal Society

Short Messages 11

algorithms and data structures for standalone computers, and the discipline of complexity
analysis which studies how computation time and memory requirements depend on the size
of the input data. In just the same way, we need a discipline of network complexity analysis,
which studies how execution time and correctness depend on the network’s latency, its drop
probability, and its topology.

The most useful outcome of this research will be a better understanding of layering.
Some network problems can be solved in multiple places—for example, reliable delivery is
achieved by timeouts and retransmission at the wireless link layer built into the hardware of
your wifi card, then at the TCP layer built into the operating system, then at the application
layer in Google’s Javascript code. It’s not clear a priori at which layer reliability should be
implemented, nor what channels are needed so that Google might communicate its reliability
requirements to the wifi card. This paper has taken a small step, by giving a method of
analysis which applies equally to all layers. The real win will be if we can find some sort
of calculus which can tell us the overall performance of a system composed of a number of
distributed algorithms.

References

[1] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial window, 2002. RFC 3390.

[2] Edith Cohen and Haim Kaplan. Prefetching the means for document transfer: a new approach
for reducing web latency. Computer Networks, 2002.

[3] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic: evidence and
possible causes. IEEE/ACM Transactions on Networking, 1997.

[4] John Doyle and J. M. Carlson. Power laws, highly optimized tolerance, and generalized source
coding. Physical Review Letters, 2000.

[5] Van Jacobson. Congestion avoidance and control. In Proceedings of SIGCOMM, 1988.

[6] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of
ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994.

[7] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[8] M. Mitzenmacher. A brief history of generative models for power law and lognormal distribu-
tions. Internet mathematics, 2004.

[9] V. Paxson and M. Allman. Computing TCP’s retransmission timer, 2000. RFC 2988.

[10] S. Rewaskar, J. Jaur, and F. D. Smith. A performance study of loss detection/recovery in
real-world TCP implementations. In Proceedings of IEEE ICNP, 2007.

[11] A. S. Tanenbaum, J. N. Herder, and H. Bos. File size distribution in UNIX systems—then and
now. Operating System Review, 2006.

[12] Murad S. Taqqu, Walter Willinger, and Robert Sherman. Proof of a fundamental result in
self-similar traffic modeling. ACM/SIGCOMM Computer Communication Review, 1997.

[13] Richard W. Watson and Sandy A. Mamrak. Gaining efficiency in transport services by appro-
priate design and implementation choices. ACM Transactions on Computer Systems, 1987.

[14] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz. Measurements of a wireless link in an industrial
environment using an IEEE 802.11-compliant physical layer. IEEE Transactions on Industrial
Electronics, 2002.

[15] Damon Wischik. Short messages (long version), 2008. URL http://www.cs.ucl.ac.uk/staff/

d.wischik/Research/shortmsg.html.

[16] Lucian Wischik and Damon Wischik. A reliable protocol for synchronous rendezvous (note).
Technical Report 2004-1, University of Bologna, 2004.

[17] Maya Yajnik, Sue Moon, Jum Kurose, and Don Towsley. Measurement and modelling of the
temporal dependence in packet loss. In Proceedings of IEEE INFOCOM, 1999.

Article submitted to Royal Society

