Short Messages

By DAMON WISCHIK}
UCL

This paper has three purposes. The first is to explain to a general audience what is
involved in retrieving a web page or performing some other complex network task, and
what can make it slow, and why the problem of slowness is likely to get worse as net-
worked applications become more complex. The second is to describe to those who program
networked applications certain facts that we have learnt from modelling communication
networks, which may allow more efficient applications to be written. The third is to de-
scribe to network modellers an interesting class of problems relating to algorithm design for
communication networks.

1. What causes delay in network transactions?

The time it takes for a light pulse to travel from London to New York and back again is
around 38ms. With a perfect network, the time it should take to request a web page from
nytimes.com and to receive the reply should be 38ms, plus a handful of milliseconds for the
web browser to formulate the request and the webserver to formulate the reply. In practice,
depending on the time of day, it can take up to five seconds. What causes this delay? Cohen
and Kaplan [2] give a full account; here are the highlights.

Anatomy of a website. When a web browser sends a request for, say, http://gmail. com,
the server does not typically reply with the entire page. Instead it returns a shell page with
some plain text, plus links to further items such as pictures or style information. The web
browser reads the shell page, works out what further items are needed, and automatically
sends out more requests. These new items may in turn request further items. Many modern
web pages link to code which is retrieved and executed on your web browser, which then
issues further requests—this feature is used by interactive web sites, where new content is
retrieved when the user types or clicks a button. Sometimes the server doesn’t even serve
any content at all: it may simply reply saying “the item you requested has moved and is
now at x”, and the web browser automatically sends its request to the new location. The
status bar at the bottom of a web browser window shows which items it is busy retrieving.

Figure 1 shows the graph of dependencies in the web page that was retrieved when I
logged on to gmail.com on 28 August 2006. (The labels in this figure are simple mnemon-
ics.) The very first item requested is ServiceLoginAuth, and the web server replies with
a redirection to CheckCookie, which then invokes the retrieval of auth, which invokes the
retrieval of browser. js, and so on. The dependency graph is not a strict tree: the code says
to retrieve loading html and hist1, and only when both of these have been retrieved will
it go on to retrieve hist2.

Some of the items in this dependency graph can be retrieved in parallel, such as the
42 images (status flags, rounded corners, unread mail icons, etc.), whereas others must be

1 Damon Wischik is supported by a Royal Society university research fellowship

Article submitted to Royal Society TEX Paper

2 Damon Wischik

~600B each

42 images

ServiceLoginAuth|

KEY

https
http uncached
http

gmail retries

q%

ticker

Figure 1: The graph of dependencies for retrieving an inbox at gmail.com, gathered on
28 August 2006 using Firefox 1.07. Paros 3.2.13 was used to trap each http request. On
successive visits, different sets of requests were let through; the set of ensuing requests
reveals the graph. The numbers show the size in bytes of each item.

retrieved in sequence. Even when items can be retrieved in parallel, the web browser may
choose not to do so—see the table on page 11. All this back-and-forth leads to delay.

The web browser can choose to cache some of the items, so that on future visits to
gmail.com they do not need to be retrieved over the Internet. The web server indicates

which items it is safe to cache and for how long.

The http and https protocols. Now we drill down into the mechanics of how the web
browser actually retrieves an item, and find more opportunities for delay. The web browser
and server communicate by sending messages to each other. To retrieve a single item, there

is a round of messages:

Client
Hello!

Please send X.

1
2
3
4.
5. Goodbye!
6

Server

Hello!

Here’s X. Goodbye!

OK!

To retrieve an item over a secured connection (https), as for the first two items in Figure
1, step 3 is replaced by some extra steps which in the best case are

Client
3a. Let’s use cipher c.
3b.

Server

Here’s my public key.

3c. Here’s a secret key for all further data.

3d.

Article submitted to Royal Society

Ready.

Short Messages 3

3e. Please send X.

Reliable delivery over an unreliable network. Each one of these messages is broken
down into packetst and send over the Internet. The Internet is inherently unreliable and
may drop packets en route. To cope with this, the computer’s operating system runs the
Transmission Control Protocol (TCP) which implements reliable delivery as follows.

TCP sends the first packet of a message, and waits for an acknowledgement that it has
been received (except for the final OK! which does not expect an acknowledgement). It sets
a retransmission timeout RTO, and if no acknowledgement is forthcoming within RTO then
it retransmits. When it receives an acknowledgement it goes on to transmit the remaining
packets, usually sending several packets at a time, and it has a more rapid means of detecting
when it needs to retransmit. For the final packet in a message, the acknowledgement may
be wrapped up with the first packet of the reply message.

Ideally RTO might be roughly the round trip time from one party to the other and back
again, but round trip time varies from packet to packet so RTO is continually updated to
take account of estimated mean and variability. Each side of the communication maintains
its own copy of RTO. The complete specifications of how RTO is updated are in [11], and
a survey of how it is implemented in practice is given by Rewaskar et al. [12]. Broadly
speaking, if the round trip time experienced by a packet is RTT, then

(i) RTO=3 seconds for the first packet in a round of messages

(i) RTO=max(3RTT,200ms) for the second packet

(iii) RTO decreases to ERTT + max(10ms, 4E|[RTT — ERTT]|) thereafter, except it is not

allowed below 200ms (the specification says the minimum should be 1 second)

(iv) RTO is used as the timeout the first time a given packet is retransmitted, 2RTO

the second time, 4RTO the next, and so on.

There are yet more layers under TCP in which delay can be introduced. Suppose the
web-browsing computer is connected to the Internet over wifi: then its wireless card and the
wifi base-station will run yet another protocol with timeouts and retransmissions. The net
effect is that TCP is shielded from most dropped packets, but at the expense of increasing
its estimate of round trip time mean and variance—which means it takes longer to recover
when it actually does suffer a dropped packet.

Reliability can also be implemented in higher layers too. In Figure 1, there are several
items with bold borders—this denotes the fact that Google’s code repeatedly attempts to
retrieve the item if it has not received within a few seconds. Network engineers normally
think of reliable delivery as a network function, but Google has implemented it in Javascript,
presumably because the network does not do what Google needs.

Sequential versus parallel programming. Here is a final example of a distributed sys-
tem: obtaining a directory listing in Windows, over a virtual private network.

Client Server
1 Hello!
2. Hello!
3. What is first file in directory d?
4 It is fl-

t Packets are typically of size < 1500bytes for ethernet, < 576bytes for a modem. Messages 1, 2, 5 and
6 always fit in a single packet.

Article submitted to Royal Society

4 Damon Wischik

ot

What is the next file after f;?
6. It is fg,

n + 4. What is the next file after f,,7

n+5. No more files.
n+ 6. Goodbye!

n+7. Goodbye!
n+8. OK!

Each transmission apart from step n + 8 uses an RTO. The task is inherently parallel, but
the Windows programming interface turns it into a sequential computer program. This is a
natural way to program, but it leads to systems which turn sluggish when the network is
slow or has too many dropped packets.

Growth in complexity. It seems likely that network tasks will become more complex: web
pages will become richer and more interactive, and web browsers will become tools to mash
up data from a whole host of networked databases. The more complex the task, the more
sensitive it will be to latency and packet drops.

2. Internet traffic statistics, and how to make TCP faster

If the first packet in a message is dropped, then the TCP’s RTO timeout is at least 200ms,
and can be as much as 3 seconds. If the message is more than one packet long then TCP
waits for the other party to acknowledge the first packet before transmitting the rest.

It would be easy to speed up TCP. We could send multiple redundant copies of each
packet back-to-back, so that even if one packet is dropped there’s a good chance another
copy will make it through. We could send later packets in a message at the same time as the
first, without waiting for an acknowledgement. These changes to TCP would make it more
aggressive, and more likely to cause congestion. In fact the original design of TCP was more
aggressive, and in 1988 this led to Internet congestion collapse [6]. That experience resulted
in the current design of TCP, and a strong disinclination to experiment with making TCP
more aggressive.

I will argue that the characteristics of Internet traffic mean that it is safe to send several
redundant copies of packets that make up short messages, say messages of one to three
packets, though of course there is no point sending them so close together that they share
the same fate. Note that many of the items in the gmail.com inbox are very small, so they
would benefit.

There has also been a proposal that TCP should be allowed to send up to four packets
or so without waiting for an acknowledgement [1]. This option is widely implemented, but
it seems to be turned off by default.

Article submitted to Royal Society

Short Messages 5

(a) Heavy tails and short messages

Most traffic is composed of large traffic flows, known as elephants. Elephants are large
and rare. Yet most network tasks, are composed of short flows, known as mice. Mice
are small and numerous. Since most traffic comes from elephants, capacity planning is
based on elephants, but it is the mice that users value most highly. This is the central
paradox of communication network design.

What do users value? The Three mobile phone network pay-as-you-go charges in October
2007 are £1 per megabyte for broadband data, 50p per minute for video calls of about 64
kbit/s (£1.04 per megabyte), and 12p per text message of 140 bytes (£857 per megabyte).
And if a picture is worth a thousand words, of average length 5 characters, then there is no
point sending JPEG files any larger than 6 kB, much less the ~4 MB photos taken by a
digital camera.

Why the dichotomy between mice and elephants? Measurements of Internet traf-
fic have found that message sizes have a heavy-tailed distribution [3]. This is a class of
probability distributions for which a few large items are likely to outweigh many many
small items. These distributions have been found in biology, chemistry, ecology, finance, etc.
Mitzenmacher [10] gives some of the history, and describes three general models of why they
might come about; for the particular case of web file sizes, Doyle and Carlson [4] suggest
that heavy tails arise as a consequence of optimal partitioning of data. In practical terms,
the elephants today are from peer-to-peer sharing of video files, whereas the mice are short
control messages and plain text.

Why do network engineers look at elephants? In the early 1990s, researchers at AT&T
discovered that Internet traffic was self-similar (it has spikes at many timescales, ‘peaks,
riding on bursts, riding on swells’) and long-range dependent (strong positive correlations)
[8]. Researchers went looking for the cause, and found heavy-tailed message sizes, and proved
that the aggregate of many heavy-tailed flows will lead to self-similarity and long-range
dependence [15]. Self-similarity shows itself clearly in plots of network load, and long-range
dependence has the consequence that networks need very large buffers.

How much traffic is made up of elephants? Table 1 is a dataset collected by Tanenbaum
et al. [14], which lets us quantify just how big the elephants are compared to the mice, and
which also shows that the elephants are growing. The data is of file sizes on a university
filestore. Assume that this represents message sizes in the Internetf Now, consider making
TCP more aggressive by sending three copies of the first packet of every message, two copies
of the second, and one copy of subsequent packets—this crude hack would increase total
network traffic volume by 34% in 1984, 2.7% in 2005. Or consider enlarging every flow so
that it is at least five packets long—this would increase total network traffic volume by 21%
in 1984, 1.3% in 2005. (There is however not yet any standard way for an application to tell
the operating system whether a message will be short, other than handing over the entire
message in one go.)

1 I have used this data on file sizes, rather than Internet traffic statistics, because I have not found

historical Internet traffic data which gives such fine detail about the distribution of small message sizes.
Internet traffic engineers have been more interested in elephants than in mice.

Article submitted to Royal Society

6 Damon Wischik

size 20 2! 22 23 24 25 26 27 28 2°
vulo84 1.79 1.88 2.01 2.31 3.32 5.13 8.71 14.73 23.09 34.44
vu2005 1.38 1.53 1.65 1.8 2.15 3.15 4.98 8.03 13.29 20.62
size 210 211 212 213 214 215 216 217 218 219

vul984 48.05 60.87 73.51 84.97 92.563 97.21 99.18 99.84 99.96 100
vu2005 30.91 46.09 59.13 69.96 78.92 85.87 90.84 93.73 96.12 97.73
920 921 922 923 924 925 926 227

size
vul984 100 100 100 100 100 100 100 100
vu2005 98.87 99.44 99.71 99.86 99.94 99.97 99.99 99.99

Table 1: File size distributions, taken from Tanenbaum et al. [14]. The rows show the
what percentage of files are smaller than or equal to the specified size in bytes. The data
sets are from the Computer Science filestore at the Vrije Univeriteit, measured in 1984
and 2005.

Whereas network engineers concentrate on the elephants, for our purposes the mice are
more interesting. In networks which are provisioned to carry elephants, it is safe to be
aggressive when sending mice, e.g. by setting RTO smaller than the round trip time. The
elephants get steadily bigger as years go by, and the mice can be more and more aggressive.

(b) Packet drop statistics

Packet drop rates vary wildly, by time and location, and congestion hotspots hop around
the network. The snapshots at http://www.internetpulse.net show the recent packet
drop rates at the interconnects between 12 major service providers, averaged over various
time intervals; on 21 October 2007 at 01:30 GMT the median, mean and maximum across
the various interconnects were

time period median mean max

1 hour 0 0.20% 4.17%
4 hours 0 017% 3.12%
24 hours 0.03% 0.15% 2.60%

End-to-end packet drop rates will be higher. A 1999 measurement study [20] found packet
drop rates from the US to Sweden of around 3%, and also measured the autocorrelation in
packet drops, and found that it drops off quickly: conditional on a packet drop at time O,
the probability of a packet drop at time ¢ is roughly

t 50ms 100ms 200ms 300ms 400ms 500ms
drop prob. 15% 7.9% 59% 4.9% 42% 3.7%

The wireless setting is completely different. A measurement campaign conducted in a
Berlin machine shop in 2002 [18] found that cell drop probability was a few percent for
much of the time, but there were 20 minute periods where it climbed to 60%, when a nearby
machine was active. (This means incidentally that the conditional drop probability will be
very high, a reflection of non-stationarity rather than correlation.) The wireless layer has its
own retransmission protocol, which will shield most of this very high drop rate from TCP;
TCP will see it instead as lowered capacity and more variable RTT.

Conclusion. The RTO retransmit timer can be set to 100ms, and probably less. There is

probably no point setting it very much less than 20ms, since two packets that close together
are fairly likely to share the same fate.

Article submitted to Royal Society

Short Messages 7

3. A model of computation for distributed algorithms

In Section 4 we will analyse three different network transactions. The first two are concep-
tually straightforward. The third is more elaborate; to understand where it’s coming from
it is worth laying out a general mathematical model and relating it to three strands in the
literature on distributed algorithms.

Define a network transaction to be the coordinated exchange of short messages between
a collection of computers on an unreliable asynchronous network, where the message
protocol is designed to satisfy a suitable SAFETY property and to TERMINATE with
an answer in finite time.

Assume that the computers are infinitely fast. Assume that the network has fixed
latency and that it drops messages randomly.

Measure the performance of the transaction by the time it takes to terminate, and
by the probability that it terminates with the CORRECT answer. Study how these
quantities depend on network latency, drop probability, retransmission strategy, and
network topology.

(a) ‘Distributed algorithms’ model

A distributed algorithm is an interconnected collection of autonomous computing nodes
which communicate by exchanging messages. Many classic network algorithms, e.g. finding
shortest paths, can be rewritten to consist of autonomous programs at each node, commu-
nicating along network edges, and running in slotted time—i.e. every clock tick, each node
receives messages, then performs some local computation, then send messages. This is a
reliable synchronous network.

In an asynchronous network, messages may take arbitrarily long but finite time to be
delivered. There are many algorithms known for reliable asynchronous networks. Consider
for example the problem of electing a leader from a network of several nodes. Each node is
able to perform the local action Accept(me) to indicate that it considers itself leader. The
leader election problem is to find an algorithm which satisfies

e LIVENESS: at any time, if there is no leader, a leader is eventually elected

e SAFETY: at any time, at most one node considers itself the leader
Some algorithms additionally provide

e TERMINATION: once a leader is elected, all nodes eventually enter a Terminated

state in which they know whether or not they are leader and their decision cannot

change
The focus is usually on finding algorithms which perform well, as measured by the total
number of messages sent, and the total execution time (assuming some finite upper bound
on message delivery time). Results are usually asymptotic in n, the number of nodes. For
example, Villadangos et al. [17] give a clever algorithm which takes O(n) messages and O(n)
time to elect a leader, assuming there is a Hamiltonian cycle known to all nodes and that
any pair of nodes can communicate directly with each other.

For asynchronous networks with unreliable nodes (which may crash and stay crashed
forever), there has been elegant logical analysis which has mainly produced impossibility
theorems. It is impossible to solve the leader problem in such networks, without some deus

Article submitted to Royal Society

8 Damon Wischik

ex machina means of detecting which nodes have crashed [13]. This is because a crashed
node cannot be distinguished from a slow node.

(b) ‘Distributed systems’ approach

Asynchronous unreliable networks like the Internet are what we have to work with, and
the next best thing is to weaken the LIVENESS or SAFETY requirements.

A famous example of an algorithm without LIVENESS is Paxos, uncovered by Lamport
[7]. This is an algorithm for achieving consensus between a number of nodes. It guarantees
a SAFETY property and also TERMINATION, but not LIVENESS—there are scenarios in
which progress is not guaranteed.

An example of an algorithm without SAFETY is the leadership election algorithm by
Gupta et al. [5]. This satisfies LIVENESS and TERMINATION, but instead of SAFETY it
provides

e CORRECTNESS: the probability that more than one Terminated node thinks itself

leader is low
The analysis assumes a probabilistic model—a system with n nodes connected in an Erdés-
Rényi random graph, in which packet drops are independent. The LIVENESS guarantee
holds for fixed n, almost surely over all execution traces; for CORRECTNESS a liminf,,
bound is given on the probability of producing a correct answer by some fixed time.

A similar probabilistic approach was taken by Wischik et ibid. [19], which discusses
further the relationship between the logical predicate ‘Ceventually’ and the probabilistic
predicate ‘almost surely’. This work considers the problem of rendezvous in an asynchronous
network with message loss. Suppose there are two generals on the top of hills, and they
communicate via messengers who may be intercepted by barbarians in the valley below. If
both generals decide to attack then the barbarians will be crushed; if only one attacks then
the barbarians will win. The algorithm satisfies the properties

e TERMINATION: eventually both generals learn either that they are both going to

attack, or that one will not

e SAFETY: if a thinks that b is going to attack, then b is going to attack
(but it is well-known that they cannot guarantee to coordinate the time of their attack). The
TERMINATION statement holds almost surely over all execution traces, and the SAFETY
holds at every instant in time for every possible execution trace.

(¢) ‘Interacting systems’ model

The classic model of an epidemic is also a kind of distributed system. Consider for
example the following epidemic/gossip algorithm for leader election. Suppose that each node
has an ID, and that there is a total ordering of IDs. Let each node randomly sends to its
neighbours the highest ID it has heard of so far, and suppose that messages are dropped
randomly. This algorithm has the properties that, in each connected component of a network,
almost surely

e LIVENESS: eventually all nodes agree on a single ID

e CORRECTNESS: this is the highest ID in the component
Most results for epidemics are asymptotics in n, the number of nodes in the network.

Vasudevan et al. [16] propose a more sophisticated gossip algorithm for electing a leader,
intended for ad-hoc networks with mobile nodes. In their algorithm, connectivity may change
as nodes move, and so each node periodically pings its neighbours to check if it should update

Article submitted to Royal Society

Short Messages 9

its idea of who the leader is. They consider the case of constantly moving nodes and use
simulation to study the fraction of time for which a node has a leader. (They also prove
logical LIVENESS and SAFETY properties under the assumption that there is some time
after which the network has reliable delivery.)

4. Three network transactions

We now study three different network transactions. The three problems are all trivial, to
a distributed algorithms theorist who is only interested in logical safety and liveness—but
they are interesting enough to a probabilist who is trying to estimate performance.

We will consider unreliable asynchronous networks, since this is the most reasonable
model for Internet communication. We will calculate how the completion time of the algo-
rithm depends on network latency and packet drop probability p, in the limit as p — 0, for
networks with a fixed number of nodes n. By contrast, performance analysis in the literature
mostly studies the limit as n — oo. This is not a useful way to look at the performance of
say web transfers, in which there are n = 2 parties, the web browser and the web server.
Some sort of limit seems needed to get tractable answers, and p — 0 should produce rea-
sonable approximations for the range of packet drop probabilities described in Section 2.
Some previous work on other problems, e.g. the Fast Byzantine Paxos algorithm of Martin
and Alvisi [9], has considered completion time for arbitrary n, in the ‘common case’ where
p = 0; we will calculate the common-case completion time and additionally the first-order
dependency on p.

We will not be interested in calculating the number of messages sent, since as argued
in Section 2 these are short messages which constitute an insignificant fraction of network
traffic.

(a) Retrieving a web page: http 1.0, 1.1, and 1.1 with pipelining

Consider first a simple idealized web browser and server and network retrieving the
gmail.com inbox. The web browser sends out request messages (pure requests, without the
handshaking steps 1 and 2), and the server replies when it receives a request. The web
browser sends out parallel requests for whatever items it needs next, as soon as it can.
The web browser uses an exponential timer with mean RTO, which is constant, and the
server does not use any timeouts—it is purely passive. Each message may be dropped with
probability p, and successive drops are independent. The round trip time is RTT. It is
straightforward to set up a Markov process to model the progress of the transaction, and to
solve it with computer algebra, but this does not lead anywhere.

Instead, let us consider ET', the expected time until the entire page has been retrieved, as
a function of ¢ = 2p—p?, the round-trip packet drop probability, and let the retransmit timer
be non-random. Now we will condition on the whether or not certain packets get dropped.
Let A be the event that the first request-+response for each item is not dropped, and let B;
be the event that the first request+response for each item apart from ¢ is dropped, that the
first request+response for i is dropped but the second is not. So P(A4) = (1 —¢)% since there
are 66 items in total, and P(B;) = q(l —)% and P(neither A nor any B;) = O(g?). Then

ET = E(T|A)P(A4) + Z]E T|B;)P(B;) + O(q*)

E(T|A) +qz[(T|B;) ~ B(T|4)] + O(c?)

Article submitted to Royal Society

10 Damon Wischik

= 11RTT + 12¢RTO + O(¢?).

The O(1) term is the completion time in the common case, i.e. assuming no drops. The O(q)
term is the sum of additional completion times due to a possible drop, i.e. RTO times the
number of items on the ‘critical path’. We can straightforwardly apply this sort of reasoning
to a fuller model of http, of which there are three versions (see Table 2), taking account
also of whether or not the cacheable items have been cached. We have ignored server-side
timeouts in this table, for convenience, and assumed that all requests go to the same web
server.

uncached idealized http ET = 11RTT + 12¢qRTO + O(¢?)
http 1.0 ET = 50RTT + 30gRTO + O(¢?)
http 1.1 ET = 41RTT + 17¢RTO + O(¢?)
http 1.1 pipelining ET = 21RTT + 17gRTO + O(¢?)
cached http 1.0 ET = 20RTT + 20¢RTO + O(q?)
http 1.1 ET = 14RTT + 20¢RTO + O(q?)
http 1.1 pipelining ET = 12RTT + 12¢RTO + O(¢?)

When the O(gq) term is equal to the O(1) term, as with http 1.1 with pipeling and a cache,
it indicates that the protocol does not impose any extra bottlenecks.

Some of the O(q) terms here are very sensitive to discretization effects relating to how
items are distributed between connections. It would be useful to consider also the expected
completion time when the connection tree itself is random, to smooth away these discretiza-
tion effects.

(b) End-to-end versus hop-by-hop reliable delivery

Here is a toy model of multihop transmission. Consider the problem of reliably delivering
a message from a source node 0 to a destination node n across a series of intermediate nodes,
where each link has its own packet drop probability p; and round trip time RTT;.

p1, RTTy p2, RTT2 Pn, RTTy

0 1

Hop-by-hop reliable delivery. When node i first hears the message it starts sending
it to node i + 1, resending it every RTO;11 until it hears an acknowledgement from
node ¢ 4+ 1. Whenever node ¢ hears the message it sends an acknowledgement back to
node 7 — 1.

End-to-end reliable delivery. Node 0 sends the message out, resending it every RTO
until it hears an acknowledgement. The intermediate nodes are dumb relays: they
just relay messages forwards and acknowledgements back. Node n sends back an
acknowledgement whenever it hears the message.

1t The number four was chosen by Netscape in the early days of web browsers. The unofficial FAQ
www.ufaq.org says this is an appropriate number for users with slow modems. The reckoning might have
been as follows. Consider a user with a 56kb/s modem, which has a packet size of 576 bytes, with four
simultaneous connections to a server with an RTT of 250ms. The average window size for a connection is
0.76 packets. Perhaps one of the connections will be waiting for a reply, giving the others an average window
size of 1.0 packets. This is just at the threshold of what TCP’s fast recovery mechanism can cope with; any
less and it will suffer frequent timeouts.

This rationale is clearly not appropriate for short messages, nor for broadband connection speeds.

Article submitted to Royal Society

Short Messages 11

http 1.0 uses a new TCP connection for every item, i.e. it goes through the full 6 steps listed
in Section 1. A web browser can open multiple simultaneous connections, but it allows
no more than fourfof them to be in steps 1-5.

http 1.1 lets a single TCP connection handle multiple items in sequence. This means that
steps 3 and 4 are replaced by

Client Server
3a. Please send X;.
4a. Here’s X1.
3b. Please send Xs.
4b. Here’s Xo.

and so on as many times as needed. The protocol for handing the Goodbye! message is
slightly different. RFC2616 recommends that no more than two simultaneous connec-
tions should be opened to a web server.

http 1.1 with pipelining allows requests to be pipelined. If a web browser has many re-
quests ready, it can send them together rather than in sequence:
Client Server

3a. Please send X;.

3b. Please send Xs.

4a. Here’s X;.

4b. Here’s Xs.
The default in Firefox 2.0.0.8 is not to use pipelining, and if it is turned on then to
permit up to four pipelined requests. Internet Explorer 7 does not permit pipelining at
all.

Table 2: The flavours of http

Let T be the time until node n receives the message, and suppose we wish to control ET'.
Obviously, by making the retransmission timeouts small enough, we can with either scheme
get ET = t™" 4 ¢ where t™" is the propagation delay from node 0 to n, for any € > 0.

There may be however be constraints on how small the retransmission timeouts can
be. We have already seen that there is little point having these timeouts less than say
~20ms because of correlations in packet drops. We will consider here a different constraint:
computational burden. The relay nodes 1,...,n—1 may be handling many different messages,
and in the hop-by-hop scheme a relay node will need to remember timeouts for each of these
messages. It will need to (i) set a timeout whenever it forwards a message, (ii) cancel the
timeout whenever it receives an acknowledgement, (iii) when it executes a timeout, work
out the next timeout due to expire, and possibly (iv) when it receives a message, work out if
it has already forwarded it. Operations (i)—(iii) typically use a data structure called a heap,
and their complexity is O(log m) where m is the number of outstanding timeouts. Operation
(iv) can be done at low cost using a hash table.

Consider the problem of choosing timeouts so as to minimize computational burden,
subject to the constraint that ET = ¢™" + ¢, and compare hop-by-hop to end-to-end. To
make the working easier, suppose that acknowledgements are always reliably delivered.

Consider first a single link with drop probability p and round trip time RTT, and let
q=1—pand let RTO be the timeout. The expected delay until the message is received is

| RTT
ET — tIIlln _ 1 .
+ . +(1+q) ®TO

Article submitted to Royal Society

12 Damon Wischik

The expected computational cost, measured as number of timers set plus number of timers
processed plus number of acknowledgements processed, is

20 =~ + [y + (olr) +1)

Ignore the |-] for simplicity. The optimum for end-to-end is to choose RTO so as to

(1+[[q) > RTT; [[a

1] 1-—
minimize + such that RTO———"— =z¢,
[Ta RTO [Ta

and the minimal computational cost is

Hl(Ii Tz (1 _l_[l?zzqz 2_RTT:)

The optimum for hop-by-hop is to choose RTO; so as to

minimize Z Z (L+4)RTT; such that ZRTOil

RTO, -5

qi

and the minimal computational cost is

Zqi (Z q@ RTT; >2.

Suppose for the sake of argument that all links have low drop probability p; ~ 0 apart
from one link which has drop probability p*. Let this congested link have round trip time
RTT™. After some algebra, we find that end-to-end is better than hop-by-hop when

P YAHASA e A= WD
b 2 T RIT—RTT™

The critical threshold for p* is an increasing function of A.

This result fits in with intuition and practice—if you have a local wireless link with high
drop rates, it makes sense for the base station and client computer to recover quickly by
using their own retransmissions and short timeouts; but in the wired Internet which has
fewer drops it doesn’t make sense to burden the routers with extra work.

(¢) Leader election

Consider the following problem. A number of machines are connected to a hub, by access
paths of different latencies. Any message sent by one machine to the hub will be broadcast to
all the other machines. Messages may be dropped, either going to or from the hub; the drop
probability is p and drops are independent. The problem is to elect a leader. A machine can
perform the action Accept(X) to indicate that it accepts machine X as leader, and this is a
TERMINATION action, i.e. it can perform Accept no more than once. We want an election
algorithm which satisfies this SAFETY property: if X has done Accept(Y’) then Y has
done Accept(Y). The CORRECTNESS metric is the number of nodes who have Accepted
themselves as leader—we want this to be close to one, but it is impossible to guarantee
exactly one because of the chance of packet drops.

Article submitted to Royal Society

Short Messages 13

Prince Courtier

| send HEARYE (me,1,me) | let rnd:=0
let cand:=-o00

hear HEARD (me,1,X)

hear
PLEASELEAD (me)

send HEARYE (me,2,X)
>

hear hear
HEARYE(S, R, X) ELECTED(X)

Accept(me)
send ELECTED (me) "
if R>rnd: if rnd<oco:
Henceforth, on hearing cand := max(cand,X) rnd := o0
X PLEASELEAD (me), md := R cand := X
send PLEASELEAD () | send ELECTED (me) send HEARD(S,R,cand) Accept(X)
Accept(Z)
Henceforth,
on hearing
PLEASELEAD
(me), send
ELECTED(Z)

Figure 2: Prince and Courtier algorithms. The arrows show transitions from state to state.
Some arrows are labelled, and these are transitions which are triggered by receipt of a
message. The Prince has three unlabelled arrows, which mean: if none of the labelled
transitions have been triggered within time RTO, then resend the message and reset the
timeout.

This might be a simple model for the browser service in Microsoft Windows up to XP.
The machines on an ad hoc wireless network elect one of their number to be the Master
Browser, and this machine maintains a directory of the other machines and their printers and
other facilities, which can be browsed in “My network neighbourhood”. The hub represents
the wireless shared access medium. The latencies might reflect how frequently a machine
checks its message queue. The safety condition means that if a node queries its leader then
the leader is at least expecting to receive queries.

Figure 2 shows a simple algorithm. The algorithm uses two types of nodes, courtiers and
princes. A prince is a candidate for leader, and a courtier simply recognizes leaders. Assume
that there is at least one prince and at least one courtier. Assume that each prince has a
unique identity which it calls me, and that there is a total ordering on identities. The general
idea is that princes broadcast who they are, in two rounds of broadcasts. The courtiers listen
to the first round, then latch on to the best they’ve heard so far at the time the second round
starts. The system however is asynchronous, and fast princes can start on the second round
while slow princes are still on the first.

Section 3 described several other leader election algorithms, mostly more sophisticated
than this simple algorithm. However, the simple algorithm and the assumption of a hub
permit us to calculate performance measures, and I have not yet been able to do the same
for the other algorithms.

Lemma 4.1 (Termination) All Princes will eventually perform Accept, almost surely.
Lemma 4.2 (Safety) If X has done Accept(Y) then Y has done Accept(Y).

Lemma 4.3 (Correctness) Let N be the number of leaders who are eventually elected.
Assume that latencies are non-lattice. Then

EN <1+p+0(p?)

Article submitted to Royal Society

14 Damon Wischik

for any set of start times for the princes.

Lemma 4.4 (Termination time) Lettp be the latency from the hub to the closest prince,
and let tc be the latency from the hub to the closest courtier. Suppose all princes start sending
at the same time. Let T be the delay until an ELECTED message reaches the hub. Then

ET < 11tp + 8tc + 12pRTO + O(p?).

The algorithm could be modified to use more rounds. This would make it more robust
but slower, i.e. decrease the O(p) term in EN, and increase the O(1) term in ET.

Proof of Lemma 4.1. All we need to check is that a prince cannot get stuck in the “send
PLEASELEAD” state. Suppose the contrary, and let P be the prince with the highest 1D
among those who are eventually stuck. Suppose P wants Y to be the leader. This must be be-
cause P heard HEARD(P, 2,Y), which was sent by a courtier in response to HEARYE(P, 2,).
Suppose the courtier had state rnd, cand prior to receiving the HEARYE.

If rnd = oo then cand =Y and the courtier has heard ELECTED(Y'), so Y is in a state
where it will eventually respond to P’s PLEASELEAD(Y") messages.

If rnd < oo then rnd < 2 since that is the highest round number used in this algorithm,
so by the courtier’s algorithm Y > P. It cannot be that Y = P, otherwise P would not
be asking Y to be leader. Therefore Y > P, so by assumption Y is not stuck in the “send
PLEASELEAD?” state, so Y is capable of responding to P and will eventually do so. O

Proof of Lemma 4.2. Safety is trivial, since X will only perform Accept(Y) on hearing
ELECTED(Y), and the first ELECTED(Y") can only be sent by Y after it has done Accept(Y").O

Proof of Lemma 4.3. Each message has a name and a set of arguments. There are finitely
many names and arguments; let M be the set of possibilities, and M = | M]. Each message
in M is transmitted on assorted links in assorted directions, and may be sent multiple times.
Let £ be the set of all links and directions, L = |£|. The randomness consists in deciding
for all messages m € M and locations [€ £ whether a specified copy n € N is dropped at [.
Let A be the event that all messages in M x £ x {1} are delivered, so P(A) = (1 —p)-M.
We will use the synbol _ to denote an arbitrary value, and we will use words rather than
notation to denote locations, so A can be written as the event that all messages (-, 1) are
delivered. Let By, be the event that message (m, 1) is dropped in location ! but all other
messages in M x {1,2} are delivered, so P(B;,,,) = p(1—p)?:™~1. Let C be the complement

of AUU,, Bm,so P(C) =1— (1 —p)!™ — LMp(1 — p)?FM =1 Then
EN = E(N|A)P(A) + > E(N|Bym)P(Bi,m) + E(N|C)P(C)

L,m

=E(N|A)1 — LMp) +p > E(N|Bim) + O(p?)

lm

=E(N|4)+p > (E(N|Bym) — E(N|4)) +O0?). (4.1)
L,m

The O(1) term is the common-case number of leaders elected, and the O(p) term is the
extra number of leaders elected as a consequence of single drops. Note that in calculating
the second term we only need to consider [, m for which E(N|B;) # E(N|A).

Common case. Consider the random variable which is the state (rnd, cand) of each
courtier and the state of each prince as a function of time. We argue first that conditional on

Article submitted to Royal Society

Short Messages 15

event A this random variable is uniquely determined. First, a courtier who receives (m,1)
can never change state when it receives (m,i) for any ¢ > 2. Second, a prince who has
received a message (m, 1) will either ignore (m, 1) and all subsequent copies of m, or he will
move to a state where (m,) does not change his state for any ¢ > 2. Putting these together,
we see that no message (m,) for ¢ > 2 can change the state of any node, therefore it makes
no difference whether or not any (m,) is dropped.

Without loss of generality, consider the courtier C' closest to the hub, and let cand(t) and
rnd(t) be his state as a function of time. (All other courtiers have delayed versions of cand(t)
and rnd(t).) Let to be the first time that C receives a message HEARYE(-, 2, _), and suppose
this message results in cand(to+) = Q. We will argue that cand(t) = Q for all t > ts.

First we prove that if C' receives HEARYE(_, 2, P) at to < t < t~, where to is the first
time that C' receives a message ELECTED, then P < Q. We prove this by induction on the
sequence of HEARYE messages received at or after time t5. The claim is obviously true for
the message received at ¢t = to. Suppose that the claim is true for all messages prior to some
time t > t5. A HEARYE(., 2, P) at time ¢ must have been triggered by a HEARD(_, 1, P) sent
out by C at time u < t. Either u < t5, in which case the C’s action at ¢t ensures Q > P. Or
u > to, in which case the induction hypothesis ensures P = Q.

Now for the case of t > t». The ELECTED(P) message received at t~, was triggered by
a HEARD(_, 2, P) message at some time prior to ¢, either directly or via a PLEASELEAD.
By the above, P = Q.

We have proved that, conditional on A, every courtier latches onto a unique prince @,
i.e. all HEARD(., 2, z) messages have x = Q. By looking at the prince algorithm, we see that
only prince @ can be Accepted.

Single-drop case. Now condition on event B ,,, i.e. suppose that a single message (m, 1)
is dropped in location ! but all other messages in M x {1,2} are delivered. By a similar
argument to the common case, conditional on B ,, all the states of all the nodes at all times
are completely determined. We want to calculate for each [, m how many princes end up
becoming a leader. In fact, a simpler way to approach the problem is to let @ be the elected
leader in scenario A, and to ask which scenarios B;,, would result someone other than @)
becoming a leader.

Pick some prince P # @, and suppose P becomes a leader in scenario B; ,,. P must have
become leader as a consequence of hearing either HEARD(P, 2, P) or PLEASELEAD(P), and
we consider the two cases separately.

Suppose first that P becomes leader as a consequence of hearing HEARD(P, 2, P). It must
previously have sent HEARYE(P, 1, P), and suppose this should have reached the courtier C
nearest the hub at tI’. Define £ and t? similarly. Note that t{ and t? are non-random—
they depend only on the start times and latencies—whereas tf depends on the particular
scenario By ,. Now, if t < t? in this scenario, then in scenario A it must also happen that
C hears HEARYE(P, 2,) before it has heard HEARYE(Q, 1, @), so @ will not be elected,
which contradicts the choice of Q. Therefore t& > t?. Then the only way that P can end
up hearing HEARD(P, 2, P) is if (i) the message drop is to or from C, and (ii) the drop is of
HEARYE(Q, 1, Q).

Suppose next that P becomes leader as a consequence of hearing PLEASELEAD(P). This
must have been triggered by some other prince hearing HEARD(_, 2, P), which was triggered
by them sending HEARYE(_,2,_). Let t2 be the time at which this HEARYE should have
reached courtier C'. As in the first case, it must be that to > t?, and again the message drop
must have been of HEARYE(Q, 1, Q) on its way to C.

Article submitted to Royal Society

16 Damon Wischik

In fact we can narrow down the location of the message drop even further. Suppose that
HEARYE(Q, 1, Q) never reaches C because it is dropped on its way to the hub. The same
argument as for the common case shows that all courtiers latch onto a single prince, who is
elected leader.

We have shown that if B, results in some prince other than) becoming leader, then
the dropped message (I, m) is HEARYE(Q, 1, Q) on its way from the hub to courtier C. This
must be the only non-zero term in the sum in (4.1).

Finally, consider the number of nodes who might be elected leader as a consequence of
this drop. It is not hard to see that the only princes who can possibly become leader are @,
plus the first prince from whom C hears HEARYE(_, 2, _). Therefore the only non-zero term
in the sum in (4.1) is < 1. O

Proof of Lemma 4.4. Let P be the closest prince, C' the closest courtier, and @ the prince
who is elected leader in the common case. Let tg be the latency from @ to the hub. As in
the proof of correctness, the O(1) term is the delay in the common case of no drops, and
the O(p) term is the extra delay due to single drops.

For the common case, when there are no drops, consider the chain of events
time 0: P sends HEARYE(P, 1, P)
time tp + teo: C replies HEARD(P, 1,)
time 2tp + 2tc: P sends HEARYE(P, 2,)
time 3tp + 3to: C replies HEARD(P, 2, Q)
time 4tp + 4tc: P sends PLEASELEAD(Q)
time 5tp + 4tc + to: @ sends ELECTED(Q)
time 5tp + 4t + 2tg: ELECTED reaches the hub
The election may not actually happen this way, but there is no way it could happen any
slower. For example, we know from the proof of the correctness lemma that C' latches on to
the eventual leader when it first receives a HEARYE(_,2,_), and this must have happened
by time 3tp + 3t¢ if @ is to become leader. Furthermore, it must have happened because C
received a HEARYE(Q, 1, @), therefore tg + tc < 3(tp + tc). Putting all this together, we
find that in the common case, T' < 11tp + 8tc.

In the single-drop case, we need to find the possible extra delay caused by any dropped
packet. If all the twelve messages involved in the above chain of events are delivered, then
there is no extra delay beyond 11tp + 8t¢. If one of them is dropped, the worst that can
happen is an extra delay of RTO. This gives the 12pRTO term. |

5. Conclusion

Ever more computer applications run over the Internet, and these applications perform ever
more sophisticated tasks through interacting with other networked computers. For many
applications it is good use of the network which gives value, not isolated computer power.
This is the case not just for the Internet—it holds too for communication between cores of
a multicore processor.

The trouble with networks is that the speed of light limits how fast these interactions
can be, and unreliable networks which lose data will make the slowdown even worse. It’s
important to understand how the performance of algorithms depends on the network: its
latency, its drop probability, and its topology.

Just as there is a standard set of algorithms and data structures for which we know how
computation time and memory requirements depend on the size of the input data, just so

Article submitted to Royal Society

Short Messages 17

can we imagine a collection of distributed algorithms for which we know how performance
depends on the characteristics of the network. Much is known already about how perfor-
mance of certain algorithms depends on the size of the network, but little is known about
how it depends on network latency and drop probability.

The most useful outcome of this research will be a better understanding of layering. Some
network problems can be solved in multiple places—for example, reliable delivery is achieved
by timeouts and retransmission at the wireless link layer built into the hardware of your
wifi card, then at the TCP layer built into the operating system, then at the application
layer in Google’s Javascript code. It’s not clear a priori at which layer reliability should
be implemented, nor what sorts of channels are needed so that Google might communicate
its reliability requirements to the wifi card. This paper has taken a small step, by giving a
method of analysis which applies equally to all layers. The real win will be if we can find
some sort of calculus which can tell us the net performance of a system composed of a
number of distributed algorithms.

References

[1] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial window, 2002. URL
ftp://ftp.rfc-editor.org/in-notes/rfc3390.txt. RFC 3390.

[2] Edith Cohen and Haim Kaplan. Prefetching the means for document transfer: a new
approach for reducing web latency. Computer Networks, 2002. URL http://www.
research.att.com/~edith/publications.html.

[3] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic:
evidence and possible causes. IEEE/ACM Transactions on Networking, 1997. URL
http://doi.acm.org/10.1145/233013.233038.

[4] John Doyle and J. M. Carlson. Power laws, highly optimized tolerance, and generalized
source coding. Physical Review Letters, 2000. URL http://www.cds.caltech.edu/
~doyle/CmplxNets/.

[5] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. A probabilistically
correct leader election protocol for large groups. In Proceedings of 14th International
Symposium on Distributed Computing (DISC), pages 89-103, 2000. URL http://
www.cs.cornell.edu/gupta/Papers/disc2000.final.pdf.

[6] Van Jacobson. Congestion avoidance and control. In Proceedings of SIGCOMM, 1988.
URL http://ee.1bl.gov/papers/congavoid.pdf.

[7] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 1988. URL http://research.microsoft.com/users/lamport/pubs/pubs.
html#lamport-paxos.

[8] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature
of ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994.
URL http://dx.doi.org/10.1109/90.282603.

[9] J-P. Martin and L. Alvisi. Fast Byzantine consensus. In Proceedings of the In-
ternational Conference on Dependable Systems and Networks, 2005. URL http:
//www.cs.utexas.edu/users/lasr/papers/MartinO5Fast . pdf.

Article submitted to Royal Society

18 Damon Wischik

[10] M. Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet mathematics, 2004. URL http://www.eecs.harvard.edu/
~michaelm/ListByYear.html.

[11] V. Paxson and M. Allman. Computing TCP’s retransmission timer, 2000. URL
ftp://ftp.rfc-editor.org/in-notes/rfc2988.txt. RFC 2988.

[12] S. Rewaskar, J. Jaur, and F. D. Smith. A performance study of loss detection/recovery
in real-world TCP implementations. In Proceedings of IEEE ICNP, 2007. URL http:
//www.cs.unc.edu/~jasleen/research/tcp-analysis/.

[13] Laura S. Sabel and Keith Marzullo. Election vs. consensus in asynchronous systems.
Technical Report TR95-1488, Cornell, 1995. URL http://hdl.handle.net/1813/
7146.

[14] A. S. Tanenbaum, J. N. Herder, and H. Bos. File size distribution in UNIX systems—
then and now. Operating System Review, 2006. URL http://www.cs.vu.nl/~ast/
publications/.

[15] Murad S. Taqqu, Walter Willinger, and Robert Sherman. Proof of a fundamental
result in self-similar traffic modeling. ACM/SIGCOMM Computer Communication
Review, 1997. URL http://doi.acm.org/10.1145/263876.263879.

[16] Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and analysis of a leader
election algorithm for mobile ad hoc networks. In Proceedings of IEEE ICNP, 2004.
URL http://doi.ieeecomputersociety.org/10.1109/ICNP.2004.1348124.

[17] J. Villadangos, A. Cérdoba, F. Farifia, and M. Prieto. Efficient leader election in com-
plete networks. In Proceedings of Euromicro-PDP, 2005. URL http://ieeexplore.
ieee.org/xpls/abs_all.jspTarnumber=1386052.

[18] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz. Measurements of a wireless link
in an industrial environment using an IEEE 802.11-compliant physical layer. IFEE
Transactions on Industrial Electronics, 2002. URL http://www.tkn.tu-berlin.de/
~awillig/.

[19] Lucian Wischik and Damon Wischik. A reliable protocol for synchronous rendezvous
(note). Technical Report 2004-1, University of Bologna, 2004. URL http://www.
wischik.com/lu/research/verona.html.

[20] Maya Yajnik, Sue Moon, Jum Kurose, and Don Towsley. Measurement and modelling
of the temporal dependence in packet loss. In Proceedings of IEEE INFOCOM, 1999.
URL http://www-net.cs.umass.edu/networks/publications.html.

Article submitted to Royal Society

