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Abstract

This paper presents a large deviations principle for the average of real-
valued processes indexed by the positive integers, one which is particularly
suited to queueing systems with many traffic flows. Examples are given of
how it may be applied to standard queues with finite and infinite buffers,
to priority queues, and to finding most likely paths to overflow.

1 Introduction

Consider a queue fed by several different inputs. Many quantities of interest in
queueing theory, such as the amount of work in the queue, can be expressed as
functions of the sequence of variables (x¢)ien, where x4 is the total amount of
work received t timesteps ago.

The sequence (z;) will typically live in a space on which the quantity of
interest is a continuous function. For example, let &), be the space of real-valued
sequences x = (z;) for which ¢t=1 Zle x; < p eventually. Then the amount of
work () in a queue with an infinite buffer and fixed service rate C' > pu is given
by

t +
Qx) = {sup( T — Ct)]
>0 \i—
We will define a simple topology on &), that will be useful in many queueing
applications, and which makes () continuous.

This can be used to understand the large deviations behaviour of a wide
range of queueing systems. Consider a sequence of queueing systems, in which
the Lth system has input XZ. The idea is to establish a sample path large
deviations principle for X¥ in the space A&, and then to use the contraction
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principle to find one for the quantity of interest, which is assumed to be a
continuous function on A&),.

In this paper we will be motivated by one particular limiting regime, in which
X1 is the average of L processes. This is known in queueing theory as the many
sources asymptotic, and was described in an early paper of Weiss (1986). It is
well-suited to modern telecommunications networks, in which a switch may have
hundreds of different inputs. Another limiting regime which has been widely
studied is the large buffer asymptotic, in which X* is a speeded-up version of a
base process X. We will see that large deviations in this regime can often be
found as a special case of the many sources regime.

The rest of this paper is in two parts. In Section 2, the sample path large
deviations principle for X’ is established. O’Connell (1997a) has proved a sam-
ple path large deviations principle for the large buffer regime, and the proof
given here for the many sources regime is similar. We also give several exam-
ples of processes satisfying the sample path LDP, including fractional Brownian
motion.

In Section 3, the sample path LDP is used together with the contraction
principle to study large deviations in three different queueing problems: stan-
dard queues with finite and infinite buffers, likely paths to overflow, and priority
queues. There are many other possible applications; for example, it is used by
Wischik (1999) in studying the output of a queue. Several authors have used
this approach to study large deviations under the large buffer regime; we will
see that under the many sources regime, large deviations often possess a richer
structure.

2 Large Deviations for Averages of Processes

We will be concerned with the set X of real-valued processes indexed by the
natural numbers {1,2,...}. Throughout this paper, ¢ will represent a natural
number. Denote a process in X by x(0,00), and its truncation to the set {s +
1...t} by x(s,t] for s < t. When the meaning is unambiguous, x(0,00) and
x(0,t] may be written x. Let 1 be the constant process taking value 1 at each
time step. Denote by z; the value of the process at time ¢, and by z(s,t] the
cumulative process z(s,t] = 22:8“ x;, with z(¢,t] = 0.

We will prove results about the limit of a sequence of random processes
(XL : L =1...00). Think of X as the average of L independent, identically
distributed processes. The principal result of this section is a sample path large
deviations principle for X~.

It should be explained here what is meant by a large deviations principle.
For a full introduction to the theory, and details of the tools and definitions we
will be using, see Dembo and Zeitouni (1993). A sequence of random variables
XT in a Hausdorff space X with Borel o-algebra B is said to satisfy a large
deviations principle (LDP) with good rate function I if for any B € B,

1
o < liminf — L
z1En]£o I(X) < IILHLIOI(IDf I logP(X* € B)

1
< limsup — logP(X? € B) < — inf I(X),
Looo L zeB

where I : X — RT U{oo} has compact level sets. If X is a process, this is called
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a sample path LDP. The left and right hand sides of this inequality are referred
to as the large deviations lower and upper bounds.

We want to find a sample path LDP in a space appropriate for queueing
applications. This will be done in four steps. The first step is to find an LDP
for finite truncations of the process. If X’ is the average of L processes, a finite
truncation is just the average of L vectors, and there are standard tools for
dealing with this. The next step is to extend the LDP to the entire process.
This is done by taking projective limits, again a standard step. The third step
takes most of the work. Many queueing functions of interest are not continuous
with respect to the projective limit topology, so we need to strengthen the LDP
to a more appropriate topology. O’Connell (1997a) has introduced a suitable
topology: that given by the uniform norm

(1)

X|| = su
x| = sup| =5

x(0, ] ‘ '

As well as choosing this finer topology we need to restrict the LDP by incorpo-
rating a notion of stability; this is the final step.

We will find conditions under which X* satisfies an LDP, with the uniform
topology, and with good rate function

I(x) = sup sup 6 - x(0,t] — A¢(0), (2)
t>0 OcR?

where A¢(0) is the moment generating function

1
lim — log EExp (L@ - X*(0,1]).
L—oo L

An LDP for truncated sequences

The following lemma establishes an LDP for any finite truncation of the process.
It is a direct restatement of the Gartner-Ellis theorem for the average of vectors
in R' (see Dembo and Zeitouni, Theorem 2.3.6).

AssumPTION 1 (Finite-time regularity)
Define the logarithmic moment generating function AtL(B) for 0 € R by

1
AF(6) = 7 log EExp(LO - X%(0,1]).

Assume that for each t and @, the limiting moment generating function

Ay(0) = lim AF(0)
L—oo
exists as an extended real number, and that the origin belongs to the interior of
the effective domain of Ay. Assume further that Ay is an essentially smooth,
lower semicontinuous function.

LEMMA 1 Under Assumption 1, for any fived t, the sequence X% (0,t] satisfies
an LDP with good rate function

A (x(0,1]) = osgﬂ}é 0 -x(0,t] — A¢(0).
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Ezample 1 (Many Sources).
Let X% be the average of L independent copies of the process X. Then

A(0) = AL(0) = log Eef X0,

This example should be borne in mind, because it is the motivation behind all
the following results. O

Ezample 2 (Fractional Brownian Motion).

As an illustration of Example 1, let X* be the average of L independent copies
of the process X, defined by X (0,t] = A\t + 0Z; where Z; is a fractional Brown-
ian Motion with Hurst parameter H. Then Ay(6) = 0 -1+ 1026 - S,6, where
the ¢ x¢ matrix Sy is given by (S¢)i; = (|j—i— 1" +[j—i+1]*" —2[j—i[*). O

Ezample 3 (Large Buffer).

Given a base process X, let XZ(0,¢] = f(L)*X(0, f(L)t]. This is the large
buffer asymptotic regime. For a variety of processes X it is possible to choose a
normalising function f(L) such that Assumption 1 is satisfied. Often, the nor-
malising function is just f(L) = L, and the limit A; has the simple linear form
A(0) = 22:1 A4 (6;). For an account of conditions under which this occurs, see
Dembo and Zajic (1995). Duffield and O’Connell (1995) have studied queueing
systems with general normalising functions; in such cases the limit A; may not
be linear. O

The Projective Limit

Now we extend the LDP from finite truncations X(0,¢] to the full process
X(0,00). We need a little more care than this in stating the result, because
the definition of the large deviations principle relies on open and closed sets
and there are several useful topologies on the space of processes X'. We will use
the topology of projective limits, i.e. the topology of pointwise convergence of
sequences. The following lemma is a direct application of the Dawson-Gértner
theorem for projective limits (see Dembo and Zeitouni, Theorem 4.6.1).

LEMMA 2 Under Assumption 1, The sequence X satisfies an LDP in X under
the topology of pointwise convergence, with good rate function

I(x) = sup A (x(0, ). (3)

Strengthening the topology

The topology of pointwise convergence is not directly useful for many queueing
applications. For example, if x; is the amount of work arriving at a queue at
time —t, and the queue is served at constant rate C, then the queue size at time
0is

Q(x) =supz(0,t] — Ct

t>0
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and this function is not continuous with respect to the topology of pointwise
convergence. To see this, set 2t = C for t < L, ¥ = C + 1, and ¥ = 0 for
t > L. Then x” converges pointwise to the constant process of rate C, for which
Q = 0, but Q(x*) = 1 4 0. The answer is to show that the LDP holds in a
finer topology.

The uniform topology (1) defined above allows one to analyse a wide range
of queueing problems. The idea is that it controls what happens over very large
timescales. Under an additional assumption on the large timescale behaviour
of the process X*, we can show that the sample path LDP of Lemma 2 can be
extended to this topology.

The results in Section 3 do not actually need a topology as strong as the
uniform topology. The only properties of the topology they use are that it is
stronger than the projective limit topology, and that it makes the queue size
function continuous. There are weaker topologies that have these two properties,
such as the weak queue topology used in Wischik (1999), defined by the metric

d(x,y) = 1Q(x) - QW)+ > W

But the uniform topology is easier to work with, so we will use it in what follows.

AssumPTION 2 (Large timescale characteristics) A scaling function is a
function v : N — R for which v(t)/logt — oo. For some scaling function
v, define the scaled cumulant moment generating function

1
AF(0) = —< A (100(t)/t
HO) = S AL B0 /1),
for 8 € R. From Assumption 1, for each t there is an open neighbourhood of the
origin in which the limit
A¢(9) = lim AL(9)
L—oo
exists. Assume that there is an open neighbourhood of the origin in which these

limits and the limit
A(F) = lim A4(0)

exist uniformly in 6.

We also know from Assumption 1 that for 6 in some open neighbourhood of
the origin, the limit AF(8) — Ay(0) — 0 is uniform as L — oo. Assume that for
0 in some open neighbourhood of the origin, the limit

"0 (a6) - 80) 0 (4)

logt
is uniform in 6 as t, L — oo.

THEOREM 3 (Sample-path LDP for process averages) Suppose X! satis-
fies Assumptions 1 and 2. Then it satisfies an LDP in the space of real-valued
sequences X equipped with the uniform topology (1), with good rate function I
given in (3).
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Ezample / (Many Sources).

In the case of Example 1, when X% is the average of L independent processes
with common distribution X, the uniformity of the limit (4) is guaranteed, since
A=A O

Ezample 5 (Fractional Brownian Motion with Many Sources).

For the earlier fractional Brownian motion example, Example 2, choose the scal-
ing function v(t) = t** =) so that AF(6) = M\ + +0?6%. This does not depend
on L or t, so it is also equal to A4(6) and A(F). O

Ezample 6 (Large Buffer).

Recall the large buffer asymptotic, Example 3. Suppose A; takes the sim-
ple linear form A;(@) = > Ai(6;): this gives as the rate function I(x) =
> Aj(x;). Choose v(t) = t, so that A(§) = A1(#). Since Af() is given by
(Lt)~'log EExp(#X (0, Lt]), for any t we can choose L to make AL(0) — A4(0)
arbitrarily small, and thus the limit (4) is uniform as ¢,L — oo. O’Connell
(1997a) describes sample path large deviations under the large buffer asymp-
totic in more detail. [

Ezample 7 (Fractional Brownian Motion with Large Buffer).

To contrast the many sources and the large buffer asymptotic, consider the
large buffer version of fractional Brownian motion. Let X be a fractional Brow-
nian motion with Hurst parameter H, as in Example 2. Choose the scaling
XL(0,t] = f(L)7*X(0, f(L)t] with f(L) = L'?0=H) Now A; is not linear:
Ay(01) = N0t + L026%t>H . As in Example 6, the limit (4) is uniform for any
scaling function v, and as in Example 5 we can choose v(t) = t>(=#). Applying
Theorem 3 and the results of the Section 3, we can rederive a result of Duffield
and O’Connell (1995) for the workload in a queue fed by a single fractional
Brownian motion source. [

Proof of Theorem 3. The processes X take values in the space X' of real-valued
sequences. Write (X, p) for X equipped with the projective limit topology, and
(X, ||-1]) for X equipped with the uniform topology. The identity map from
(X, |l to (X, p) is continuous; and we know that X% satisfies an LDP in (X, p)
with rate function I. So, by the Inverse Contraction Principle (see Dembo and
Zeitouni, Theorem 4.2.4), if X’ is exponentially tight in (X', ||{|), then it satisfies
an LDP in (X, ]|-]]) with the same rate function.

It remains to show that X’ is exponentially tight in (X, ]-||): in other words
that there exist compact sets K, in (X, ]|-||) such that

1
lim lim sup I logP(Xl ¢ K,,) = —o0.

a— 00 L—o00o

Choose the sets K, as follows. For each ¢, let u; = A}(0), let dy = y/logt/v(t),

let

x(0,1]
t

Ka(t):{xEX: € [ut—adt,ut+adt]},
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and choose

Ko =[] Kalt)-

teN

Exponential tightness with these K, will be shown in the following two lemmas.
O

LEMMA 4 The sets K, are compact in the uniform topology.

Proof. Because we are working in a metric space, it suffices to show that the sets
K, are sequentially compact. So, let x* be a sequence of processes. Since the
T-dimensional truncation of (,., K« (t) is compact in R”, the intersection K,
is compact under the projective topology. That is, there is a subsequence x7(¥)
which converges pointwise, say to x. It remains to show that x/ — x under the
uniform topology.

Given any ¢, since d; — 0 as t — 00, we can find ¢y such that for ¢ > tg,
2d;o < €. And since x and all the x7 are in K,
27(0,8]  x(0,1]

t t

sup
t>to

<

Also, since the x/ converge pointwise, there exists a jy such that for j > jo,

27(0,1]  x(0,1]
t

sup
t<to

<

Putting these two together gives the result. O

LEMMA 5

1
lim lim sup I logP(X* ¢ K,) = —c0.

=0 oo

Proof. First, note that if

lim limsup L~} logyﬁ = —00,
=0 oo

and the same is true of 2%, then it is also true of y% + zL, by the principle of
the largest term.
Also note that

P(X" ¢ Ko) <Y P(XH0,8)/t > py + ady) + Y P(XE(0, 8]/t < pe — ady).

We will adopt the strategy of breaking the infinite sums up into several parts:
several finite timescale parts, and a long-timescale infinite part. Finite timescale
parts are easy to deal with individually, and we can control the behaviour of
XI over long timescales. This strategy is also at the core of proofs for related
large deviations results, proved directly by Courcoubetis and Weber (1996) and
Duffield and Botvich (1995).
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First, fix ¢ and consider limsup; L~ log P(XX(0,t]/t > p + ad;). By Cher-
noff’s bound,

F(XP(0,8/t > p + ady) < Exp (—Lv(w(e(ut Tady) - Afw)))

for any & > 0. So the expression we are interested in is bounded above by
limsup; —v(t)(0(pus + ad) — AE(9)). Choosing any 6 for which A;(f) is finite,
it is clear that this quantity tends to —oco as a — 0.

Now for the remaining terms. We have assumed that the limits AL () —
A¢(0) and A4(f) — A(f) exist uniformly in € in an open neighbourhood of the
origin. Since Af is a cumulant moment generating function it has a power
series expansion, and so the coefficients in the power series also converge. Let
AF(B) = Ot + 36°sE + O(6%), and denote the coefficients of Ay and A by
dropping the superscripts and subscripts appropriately.

For fixed %y, consider the remaining terms

lim limsup % log Z Exp [—L’U(t) (0(ps + ady) — AtL(H))] . (5)

=00 oo >t

Assume for the moment that s > 0, and pick § depending on L and t: 6F =
(dy +¢eF)/sk, where ef = py — pl. This gives as the typical exponent

L2 _
—Lo(t) {M + O(d, —}—gtL)?’} + aSlet(dt +eb)].

L
2sy 3

Because of our assumption on the uniformity of convergence (4), there exists a
typ and Lo such that for t >ty and L > Ly, GtL is positive; and because d; — 0,
the term in brackets {-} is also positive. (If s = 0, pick 8F = d; + &}; then the
same conclusion holds.)

So the typical exponent in (5) is bounded above by

a—1
—dy(dy + f)
5t

—Lo(t)

for sufficiently large ¢t and L. Indeed, for sufficiently large ¢ and L we can bound
it by —Lv(t)k(a — 1)d? for some constant x > 0. Therefore, by our choice of d;,
for ¢, sufficiently large, expression (5) is bounded above by

. . (a— 1)k _L
lim limsup —7 log Z .

470 L—oo t>to

It is easy to check that this is equal to —oo. O

Stability

We have achieved the goal of a sample path LDP for averages of processes. But
it is still not directly useful for queueing applications, because the queue size
function is still not continuous, even with respect to the finer topology. The
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problem is that there is no notion of stability. If the mean arrival rate is higher
than the service rate, the queue will be unstable. Mathematically speaking, the
queue size function is only continuous on the subspace of processes for which the
mean arrival rate is less than the service rate. Similar stability conditions crop
up again and again, so it will be useful to give the following Theorem, which
shows that the sample path LDP holds in this restricted space of processes.

DEFINITION 3 (Stability) Define the mean rate of the XL to be the derivative
A'(0). Say that XU is stationary if the limiting moment generating functions
Ay correspond to a stationary process.

THEOREM 6 Under Assumptions 1 and 2, the LDP of Theorem 8 holds on the
space X,,, which has the uniform topology and is given by

0,t
X, = {X eX: @ <p eventually},

for any p greater than the mean rate of the XT.

Proof. By Dembo and Zeitouni (1993) Lemma 4.1.5, it suffices to show that
{x:I(x) < o0} C Xy, and for L sufficiently large, P(X% € X,,) = 1.

Recall that I(x) = sup, A;(x(0,¢t]). Let u = A’(0) + ¢, and pick 6 > 0 such
that A(9) < 8(p — 3¢). Now if 2(0,¢]/t > p, then for sufficiently large ¢,

A7x(0,]) = sup0 - x(0,1] = A(0) > 00(0) (200~ 16)) > oo,
0

So if x ¢ X, then this inequality holds for infinitely many ¢, and since v(t) is
unbounded, I(x) = co.

Second, since AF(8) — A4(#) uniformly for ¢ sufficiently large, and A4(6) —
A(8), there exists 6 > 0 such that for L and ¢ sufficiently large, AL (0) < 6(p —
1¢). Then, by Chebychev’s inequality,

Sop(X01 ) < gEXP<—Lv(t)(9u -2k 0)

t=1

which is finite for L sufficiently large. So, by the Borell-Cantelli lemma, P(X% €
AX,)=1.0

This result will be used to study the large deviations behaviour of a variety
of queueing systems. Some of the systems can easily be studied directly. But
the indirect route, via the sample path LDP, can give more insight. It also
means there is less additional work for each different application.

3 Large Deviations for Queues

In this section, the sample path LDP is applied to study large deviations in
several queueing problems: standard queues with finite and infinite buffers,
likely paths to overflow, and priority queues.

The common approach will be to take the sample path LDP and then apply
the Contraction Principle to find an LDP for the quantity of interest. The
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contraction principle says that if X% satisfies the sample path LDP in Xy, and
if f is a continuous function on X, then f(X!) satisfies a LDP with good
rate function I(y) = inf{I(x) : x € X, f(x) = y)}. See Dembo and Zeitouni
Theorem 4.2.1 for a proof of the contraction principle.

First, though, we relate the abstract setting of the last section to queueing
models and describe the limiting regime. Consider a sequence of queues, indexed
by L, in which the Lth queue has L independent identically distributed inputs,
and service rate LC and buffer size LB. Let LX} be the total amount of
work arriving at the Lth queue at time —¢. (Depending on the context, X will
variously be called an input process, a source, or a flow.)

In the many sources asymptotic, X’ is thought of as the average of inde-
pendent flows, and so the Lth queue multiplexes together L different flows and
its resources grow in proportion. This sort of scaling is well-suited to modern
telecommunications networks, in which a switch may have hundreds of inputs
but only a small amount of buffer space per input. The various applications in
this section will be set up differently, but they have the common theme of multi-
plexing together many different inputs, with the resources growing in proportion
to the number of inputs.

This asympotic may be contrasted to the large buffer asymptotic, described
in Example 3, in which X’ is a speeded-up version of a base process X, defined
by X£(0,t] = f(L)71X(0, f(L)t], rather than the average of independent flows.
Several authors, including O’Connell (1996a and 1996b), Paschalidis (1996) and
Puhalskii and Whitt (1998) have used the contraction principle approach to
study the large deviations behaviour of various queueing systems under this
asymptotic.

3.1 Buffer size in a queue

In this section we look at a standard queue with a constant service rate. The
following results have previously been proved directly; but it is instructive to
see the techniques used in deriving them from the sample path LDP, as these
same techniques will be used in the following sections.

Consider a queue with constant service rate C' fed with input process x. The
amount of work in the queue at time —s may be defined to be lim;_, o, Q(x(0,¢]),
where Q)5(x(0,t]) is given by the Lindley recursion

+

Qs—lZ(Qs'i'xs_C) , Q=0.
If the input is a stationary process, the stationary queue size may be written as

Q(x) = supz(0,t] — Ct.
t

Lemma 13 shows that this function is continuous on &), for any p < C. By the
Contraction Principle, this immediately gives Corollary 7: an LDP for workload
in queues with infinite buffers, which when simplified duplicates the results of
Duffield and Botvich (1995) for linear scaling functions v(t), of Duffield (1996)
for general scaling functions, and of Simonian and Guibert (1995) for the special
case of Markov-modulated fluid sources. The estimate which this LDP provides
can be refined with the Bahadur-Rao improvement, as described by Likhanov
and Mazumdar (1999), but for the purposes of this paper we will stick with
large deviations.
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COROLLARY 7 Under Assumptions 1 and 2, if X has mean rate less than C
then Q(XY) satisfies an LDP with good rate function

I(b) = inf I(x).
( ) xEXC:nQ(x):b (X)

Proof. The only point to note is that the infimum is taken over X¢o. But it
might as well have been taken over X, for any p greater than the mean rate and
less than C, since the rate function will be infinite on X\ X, by Corollary 6. O

We can do the same thing for queues with finite buffers. The queue size @
in a queue with a finite buffer B is defined similarly to (Q, except that it cannot
fill to greater than B and any excess work is discarded. This is expressed by
the recursion

QS—IZ(QS +$3—C)+/\B, Qtzo-

Lemma 13 also shows that Q is a continuous function of the input process, and
so we obtain Corollary 8: an LDP for workloads in queues with finite buffers.

COROLLARY 8 Under Assumptions 1 and 2, if XL has mean rate less than C
then Q(XL) satisfies an LDP with good rate function

I(b) = inf I(x).
xEXc:Q(x)=b

These expressions for the rate functions are not very informative, and so
Theorem 9 gives a more manageable expression for I(b). In fact, if the process
is stationary, then for b < B, I(b) and I(b) are identical (and for b > B,

I(b) = o0); this is shown in Theorem 10. The proofs of these theorems are
deferred to the end of this section.

THEOREM 9 Under Assumptions 1 and 2, if Aj(61) < Ct at § = 0 for all t,
then 1(b) is increasing in b and is given by

I(b) = inf I 6
(b) e (x) (6)
- H‘l}f xERhw(%{f]:b{»Ct At (X(O, t]) (7)
= irtlf sup 8(b + Ct) — A4(61). (8)

0

THEOREM 10 If I(b) is finite, then the optimal timescale t and the optimizing
path %(0,1] are both attained; and if the optimal spacescale @ is attained then

%(0,f] = VA;(61).

For a queue with a ﬁm'ée buffer B and stationary input whose mean rate is less
than C, if b < B then I(b) = I(b) and the same path X is optimal.

The optimal 6 and { appearing in Theorem 10 are called the operating point
of the switch, or the critical spacescale and timescale. Courcoubetis, Siris, and
Stamoulis (1997) give a detailed account, with simulation results, of how they
are affected by the traffic mix and the queue parameters under the many sources
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asymptotic regime. The following example contrasts the interpretation of the
timescale parameter in the many sources and the large buffer regimes.

Ezample 8 (Timescales).

In the many sources asymptotic, where X” is the average of L independent
sources, the timescale  identified above is easy to interpret: it is the length of
time which the buffer is most likely to take to fill from empty to a given level
b. In the large buffer asymptotic, where X£(0,t] = f(L)"*X (0, f(L)t], t has a
different interpretation. It is a parameter which relates the scaling of the buffer
Lb to the scaling of time f(L)t.

When ¢ represents real time, rather than time scaling, the large deviations
of the system depend on the characteristics of the source log EExp(6X(0,¢])
over all timescales t. But when it represents a time scaling, then the large de-
viations of the system depend only on the infinite-time characteristics of the
source, limy o, L™ log EExp (X (0, L]). O

There are actually three more LDPs which are useful, which are easily con-
fused with Corollaries 7 and 8. The first gives the probability that a queue with
an infinite buffer is non-empty. At first sight, we can find this from Corollary 7:
just consider the event b > 0. But the upper bound we get is useless, because
it involves the closure of this set—which is b > 0, the entire space. So for a
better bound, we can go back to the sample path LDP and look at the closure
of the set of sample paths for which @(x) > 0, now not the entire space. The
same technique can be used for the events that a queue with a finite buffer is
non-empty or overflows. The infinite buffer result has been proved by Duffield
and Botvich (1995), and the finite buffer results have been proved by Courcou-
betis and Weber (1996). The proof of Corollary 11 is deferred to the end of this
section. The proof of Corollary 12 is similar, and is omitted.

COROLLARY 11 Under Assumptions 1 and 2, if XL has mean rate less than
C, then the event {Q > 0} has large deviations lower bound —I(0%) and upper
bound —I*(0). If in addition B > 0 then the event {Q) > 0} has the same large
deviations bounds. Here, I(b") = limg, I(b) and I'*(0) is given by

I(0) =supfC — A (01).
0

COROLLARY 12 Under Assumptions 1 and 2, if XL is stationary and has mean
rate less then C, then the event that ) overflows has large deviations lower
bound —I(B*) and upper bound —I(B) (or —I1(0) if B=0).

The rest of this section is given over to proofs.

LEMMA 13 The queue size functions Q and @ are continuous on X,, if p < C.

Proof. Consider a sequence of processes x¥ — x in A, under the uniform

topology. That is, given ¢, there is a kg such that for k > kg,

ko, ¢ 0,t
qup| 001 _ 204
p t t
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And since x € A),, there is a ¢ such that for ¢ > o,
z(0,t]/t < p.

Then for k > kg and t > ty, choosing ¢ = C — p,
z8(0,t)/t < C

and the same holds for x. So the expression for queue size () simplifies: for
k > ko, Q(xF) = Q(x*(0,t0]), and the same holds for x. Thus for k > ko,

Q") — Q)| = | sup(a*(0,] — Ct) — sup(x(0,1] — C1)|
t<to t<to
which tends to 0 as k — oo.

Now for Q. Since Q(x) = Q(x(0,t]), the infinite-buffer queue must empty
at some time in [—tp,0]. For suppose it does not. Let s < ¢y be the last time
at which the queue, started from empty at —to, is empty; then Q(x(0,%]) =
Q(x(0, s]) = z(0,s] — Cs. But Q(x) = ¢+ (0, s] — C's where ¢ > 0 is the queue
size at time —s, leading to a contradiction.

So () empties at some time in [—tg,0]. So too must @), because Q < @. In
other words, Q(x) = Q(x(0,t]). The same holds for x* for k sufficiently large,
and so we deduce that @ is also continuous. O

Proof of Theorem 9. If b =0, then (7) and (8) take the value 0 at ¢ = 0. Now
consider the sample path given by x(0,t] = VA4(0). This is constant, taking
the value of the mean arrival rate, so (x) = 0. And it has rate I(x) = 0, so
(6) also takes the value 0. So restrict attention to the case b > 0.

Note that because b + Ct is greated than A}(A1) at 6 = 0, we may take the
supremum only over § > 0; thus (8) is increasing in b.

First, (7) = (8). Fix t. Then X*(0,t]-1 is just a real-valued random variable,
and from Assumption 1 it satisfies an LDP with good rate function given by the
expression in (8). Another way of finding this is by contracting from the sample
path LDP for X£(0,t], which gives as rate function the expression in (7). By
the uniqueness of the rate function, these are equal.

Next, (6) > (7). It will be helpful to introduce some new notation. For a
finite process x and an infinite process y, write x :: y for the concatenation of
the two. And recall that we may replace X¢ in (6) with X, for any p greater
than the mean arrival rate and less than C, because by Theorem 6 the sample
path rate function is infinite on X¢ \ &,.

Suppose that (6) is finite (otherwise the inequality is trivial). The sample
path rate function I is good, so an optimal path X is attained. Now Q(X) =
sup, £(0,t] — C't = b, and this supremum must be attained since otherwise there
is a sequence t,, for which %(0,t,]/t, — C, which cannot happen in X,. So
% = %(0,t] :: y for some y, with 2(0,f] = b+ Ct and Q(y) = 0. Clearly
A7 (x(0,1]) is increasing in ¢ for any x, so

I(x) = sup A7, (% :: ¥(0,s]) > A7 (x(0,)).
s
Taking the infimum over ¢ and x(0, ¢] gives the result.

Finally, (6) < (7). Assume that (7) is finite (since otherwise the inequality
is trivial). For a given ¢, an optimal )E(O,ﬂ is attained by goodness of the rate
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function A}. And an optimal ¢ is also attained. For suppose not, and take a
sequence t, — oo and x"(0,t,] with 2™(0,t,]/t,, — C and A} (x") bounded
above by K say. By the contraction principle and the goodness of the rate
function I, we can extend x"(0,t,] to x™(0,00), with I(x") < K. Since I is
good it has compact level sets, so the x™ have a convergent subsequence, say
x* — x, also with I(x) < K. But then z(0,#]/t;, — C also, and so I(x) = oo,
giving a contradiction.

By the contraction principle and the goodness of the rate function, we can
extend %(0,#] to x = %(0, 00), where I(x(0,#]) = I(X). If Q(%x) = b the inequality
is proved. So suppose Q(X) = b' > b. Then there is some s > ¢ with 2(0,s] = ¥'.
But then

inf inf Aj(x) > inf inf Aj(x) > inf inf A (%),

t x:x(0,t]=b+Ct s>t x:2(0,s]=b"+C's s>t x:2:(0,s]=b+C's
where the last inequality is because for fixed ¢, (8) is increasing in b. The in-
equalities must then both be equalities. We can repeatedly apply this argument
until we find an optimal x such that )(x) = b. For otherwise, as in the previous
paragraph, there are arbitrarily large optimal ¢, leading to a contradiction. [

Proof of Theorem 10. First, we prove that I(b) = I(b). If I(b) is infinite
then I(b) must certainly be infinite, as any path which makes Q(x) = b makes
Q(x) > b. So suppose I(b) is finite, and let the optimizing path in Theorem 9
be x(0, ﬂ We may assume that this path never causes the buffer to exceed level
b. For suppose that under x the buffer reaches level ' > b at time —s. Consider
the truncated process (0, s] = x(f — s, t]. By stationarity, A}(X) > A}(X). And
AS (X) = xERS:ac(lg}g]:b’+cs AS (X) = xERS:x%g,E]:b+cs As (X),
where the second inequality follows because (8) is increasing in b. Because the
optimal path does not cause the buffer to exceed level b, it is also optimal for
the finite buffer case; and so Ip(b) = I(b).

Now fix t and suppose that 6 is optimal in (8). By Assumption 1, A; must
be differentiable at 1. Set x = VA,(f1). Differentiating (8) gives X-1 = b+Ct.
But by Dembo and Zeitouni Lemma 2.3.9, A (%) is equal to (8), and so % is
optimal. [J

Proof of Corollary 11. Let F' be the event that @) > 0. For the large deviations
lower bound we will prove that infxer I(x) = limyjo I(b), and for the large
deviations upper bound,
inf I(x) =inf inf I(x). 9
200 =i ?

This reduces to
tlgg sgp 0Ct — A+(01)

as in Theorem 9. By convexity, A;(#1) < A;(61), so the optimum is attained
at t = 1 and we are left with 77(0).

Since F' = Upso{Q = b}, infxepI(x) = infyso [(b). But because I(b) is
increasing, this is limyo I(b).
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LHS < RHS in (9). Suppose z(0,t] = Ct for some ¢t > 0. For ¢ > 0, let
x¢ = (z1 +€,22,...). Then Q(x°) > 0so x* € F. But ase — 0, x* — X, so
x € F. Thus {x: 3t > 0,z(0,t] = Ct} C F. Taking the infimum of I over these
sets gives the result.

LHS > RHS in (9). Let x € F. Then there exist x® — x in F, and
Q(x") — Q(x) by Lemma 13. If Q(x) > 0 then

I(x) > gr;% I(b) > tlgg Sl;p 0Ct — A(01)

because the optimal £ in (8) must be strictly positive for b > 0.

So suppose @(x"™) — 0. As in Lemma 13, there exist an ng and tp such that
for n > ny,

Q(x") = sup z™(0,t] — Ct.
t<to

And because Q(x™) > 0, the supremum must be attained at ¢ > 0. Some ¢
must be repeated infinitely often as n — oo; for that ¢, (0,¢] = C't. Taking the
infimum over such x gives the result.

Now for {Q > 0}. If Q(x) > 0 then Q(x) > 0 also, so the same upper bound
works. And as for @ > 0, the lower bound is straightforward. O

3.2 Paths to Overflow

The expression for the rate function in Corollary 7 tells us more than just the
probability that the queue size reaches a certain level. It tells us how the queue
reaches that level. Because the rate function I is good, the infimum in

I(b) = e C}gfx):b I(x)
is attained. And Theorems 9 and 10 tell us what that sample path looks like:
x is the path most likely to make the queue fill from empty to level b, and it
takes time ¢ to do so. Furthermore, the sample path LDP tells us the likelihood
of any deviation from this path.

The problem of most likely paths to overflow under the many sources asymp-
totic has been studied before using direct methods. Weiss (1986) solves it for
two-state Markov-modulated fluid sources, and Mandjes and Ridder (1997) solve
it for general Markov sources and for periodic sources. The advantage of our
sample path LDP method is that it can be applied very easily to general input
processes.

Ezample 9 (Markov-modulated fluid source).

Let X© be the average of L independent sources distributed like X, where
X(0,t] =Y(0,t] for Y a stationary continuous time Markov process producing
work at rate h while in the on state and no work while in the off state, and
flipping from on to off at rate A and from off to on at rate u. If § and ¢ are the
critical space and time scales, then the most likely path to overflow is given by

E(X (0, t]e?X(0:4)

x(0,1] = VA4(01) = E(efX(0.1)

(10)
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We may compute E(e?Y (*#1]Yy) and E(Y (0, s]e?Y (®#1|Y;) by conditioning on the
first jump time of the Markov process. By reversibility, the latter is equal to
E(Y (0, s]e?Y(%s11Y,), giving us E(Y (0, s]e?Y (%4]Y,). This allows us to compute
x(0, s] = y(0, s] for the continuous time process y(0,t] given by

ph  A(s)A(t — s)
wy — we pA(t) + AB(t)

Ys =

where

A(s) = (6h — wq)e®™ — (Bh — wy)e®™2,

B(s) = —w2e°"' +wye®™”?,  and

1
wl,wz:§<9h—/\—,ui\/(/\+u—0h)2+40uh>.

The path to overflow s — x4 is concave: the sources start slowly, then conspire
to produce lots of work in the middle of the interval, then slow down again at
the end. Multistate Markov models exhibit more varied behaviour. OJ

Ezample 10 (Gaussian sources).
Suppose X’ is the average of L independent Gaussian processes, each with
mean A and covariance structure Cov(Xy, X;) = ;. It is easy to work out the
optimal path: VA¢(61) = A1 + 0V 1, where Vi; = v,;_j.

Consider the earlier fractional Brownian Motion example, Example 2. For
this process, 7; = $0%[(i — 1)*# — 2i2H 4 (i 4 1)2#], and so the most likely path
to overflow is given by

xi:,\+%902<¢2H_(i—1)2H+(t—i+1)2H—(t—z’)“”).

IfH > %, the source exhibits long-range dependence, and the most likely input
path x leading to overflow is concave; whereas if H < %, the path to overflow is
convex.

Now let X be a single-step autoregressive process: X; = A + a(Xi—1 — ) +
(1—a?)ey, where &, ~ N(0,0?) and |a| < 1. Then v, = 0?a!, and the most likely
path to overflow is

. 1— i 1— t—i+1
a:i:)\—|—002<1+ ¢ ¢ )

1—a l1—a

If @ > 0 then path to overflow is concave; whereas if a < 0, it starts and finishes
at a high rate and in between it oscillates. O

Ezample 11 (Large Buffer).

By contrast, in the large buffer asymptotic it is often the case that the buffer
is most likely to fill up at a constant rate. Suppose that the base process X
leads to a limiting moment generating function A; with the simple linear form
A:(0) = > A1(6;). Then, A;(x(0,t]) = > Ai(z;); and because A; is convex,
the most likely path x to overflow is constant. O
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3.3 Priority Queues

The sample path LDP for the average of processes can be applied to a wide
variety of queueing models. We have seen in the last two sections how it gives
overflow probabilities and sample paths to overflow for a standard queue. As
a further illustration of the power of the technique, in this section we look at
another queueing discipline: the priority queue. This has been studied under
the large buffer regime by Berger and Whitt (1998), and related queueing mod-
els have been studied by Kulkarni, Giin, and Chimento (1995) and O’Connell
(1996a).

Consider a sequence of priority queues, indexed by L. The Lth queue has
two inputs, LX%* and LYY, and service rate LC. Think of X* and Y% as
the averages of L processes. The two streams are assumed to be independent.
The first stream X” has high priority; the second stream Y’ has low priority.
Let Q¥ and R” be respectively the stationary amounts of high-priority and
low-priority work waiting to be served.

Kelly (1996) notes that the amount of high-priority traffic @ is exactly the
amount of work in a standard queue with service rate C' and only the high-
priority input X, and that the total amount of work ) + R is the amount of
work in a standard queue with service rate C' and the aggregate input X + Y.
Therefore, results from Section 3.1 can be applied directly to find the high-
priority loss probability and the aggregate loss probability. But this leaves
some open questions, such as how much low-priority work there is in the queue.
Such questions can be answered with methods very similar to those of Section
3.1.

THEOREM 14 Suppose that X and YT satisfy Assumptions 1 and 2 with lim-
iting moment generating functions Ay and My respectively. Suppose also that
the sum of the mean arrival rates for XX and YL is strictly less than C. Then
the pair (QF, RY) satisties an LDP with good rate function
I(q,7) = inf sup A} (x(0,t]) + sup Mj (y(0,1]). (11)
t t

xeXc,yeXc:
Q(x)=¢,R(x,y)=r

This is bounded below by

irtlf iréf supf(q+ Cs) + ¢(r + C(t — s)) — Ae(01(0, s] + ¢1(s, t]) — Me(o1).
s<t 0,0 (12)

Let I(-,r) =infy>0 I(q,7). This is bounded below by
irtlf sup 8(r + Ct) — A4(01) — M,(01). (13)
9

Proof. Let Ix(x) = sup, A} (x), and define Iy similarly. Because X% and YT
are independent, the pair (X’ Y¥) satisfies an LDP with good rate function
I(x,y) = Ix(x)+Iy(y). Let XA and p be the mean rates for XX and Y%. Since
A+ p < C, we can pick an € > 0 such that A+ p+ 2e < C: then by Theorem 6,
(XL, YT) satisfies the LDP on (X4, X,+e), and the rate function I is infinite
outside this space. So if we can show that (@), R) is continuous on this space,
then using the Contraction Principle we can deduce (11).

Now @ depends only on the high priority process: it is defined as though
there were no other inputs to the queue. So by Lemma 13, it is continuous
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on Xxi.. Also, @ + R is the aggregate workload, and does not depend on
the structure of the queue: so again by Lemma 13, @) + R is continuous on
Xate X Xyqe. Thus (@, R) is continuous.

The bound on the rate function I(g,r) may be obtained by noting a few
properties of the optimal paths to overflow. The optimal paths must be attained,
because the rate function is good. As in Theorem 9, there must be a last time
—t at which the high priority and low priority queues are both empty. And there
must be a last time —s > —¢ at which the high priority queue is last empty.
Because (x) = g, it must be that z(0,s] = ¢ + C's. And because R(x,y) =r,
it must be that x(s,¢] + y(0,t] =r + C(t — s). So

I(q,r) > inf inf inf A (x) + M(y). (14)
t s<t x,yER":
£(0,51=4+Cs,
z(s,t]+y(0,t]=r+C(t—s)

Now fix s and t. As in Theorem 9, the pair (XX(0,s], XL(s,t] + YL(0,]) is
just an R?-valued random variable, and by Assumption 1 it satisfies an LDP
with a good rate function which simplifies to the expression in (12). An-
other way of finding this LDP is by contracting from the sample path LDP
for (X%(0,t],Y%(0,t]) which gives as rate function the expression in (14). By
the uniqueness of the rate function, these are equal.

We can obtain the lower bound on I(,r) in a similar way, by noting that if
R(x,y) = r then there exists a last time —¢ at which both queues were empty,
and since then z(0,]+y(0,t] > r+Ct. The argument of the previous paragraph
can be applied to paths for which z(0,t] + y(0,¢] = ¢ + r + Ct. The resulting
expression is increasing in ¢ (it is a special case of (8) which is increasing in b),
and setting ¢ = 0 yields the result. O

To help interpret this result, we will give an alternative description in terms
of the service seen by the low priority stream. A sensible first guess would be
that the service is a random amount, the service rate C' less a random amount of
high priority work. More thought would throw up various complications about
queue sizes and leftover workloads. In fact, both of these cases arise, and a
system can switch from one to the other as its parameters change. We will give
an example to illustrate this transition.

But first, to make these statements precise we will introduce the idea of effec-
tive bandwidths. They are described in more detail by Kelly (1996). Consider
a single queue with many independent inputs, as in Section 3.1. The overflow
probability depends on the moment generating function A;(61). Suppose the
critical space and time scales are 6 and t, and consider replacing a small pro-
portion of the inputs by constant rate inputs, producing (étA)*lAf(él) units of
work every time step. Locally, at (é, f), these new inputs have the same moment
generating function as the original inputs, and so the operation of the queue is
not affected by the replacement. For this reason, A(#,t) = (6t)~*A;(01) is called
the effective bandwidth of a source.

We can use this idea to describe the service seen by the low priority stream.
Consider a single queue fed by a process with effective bandwidth u(6,¢), but
where the service is an independent stochastic process C with effective band-
width C(6,t). As above, if the critical space and time scales are 6 and , re-
placing a small part of the service with constant service of rate C'(é, f) does not
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affect the operation of the queue, and so we will call 6'(0, t) the effective service
rate. Before we use this idea to describe the service seen by the low priority
stream, we had better check that it actually exists: that is, that the appropriate
cumulant moment generating functions converge.

LeEmMA 15 (Effective Service) Under the assumptions of Theorem 14, the
service seen by the low priority queue has an effective service rate.

Proof. O’Connell (1997b) shows that the departure map (which maps the aggre-
gate input process to the aggregate departure process) is continuous under the
uniform topology. Let d be the departure process from the high priority queue.
The service seen by the low priority queue is C where Cy = C — d;. Since the
departure map is continous, the service map is also continuous. Therefore the
service process satisfies a large deviations principle, say with good rate function
J.

Applying Varadhan’s Integral Lemma (Dembo and Zeitouni Theorem 4.3.1),
and using the fact that the service process is bounded, we find that

1 ~
lim — logEel® €04 = sup 0 - ¢ — J(c).
L—oco L ceR?

In particular, the limit exists. O

We are now in a position to make precise the earlier claim about the service
seen by the low priority queue. The effective service rate is difficult to deal with
analytically, but fortunately we can avoid doing so by using Theorem 14. The
following corollary is a restatement of the bound (13). The terminology is due to
Berger and Whitt (1998), who independently obtained the corresponding result
for the large buffer asymptotic regime. As noted in Example 3, large buffer
results can be deduced from a special case of the corresponding many sources
results.

COROLLARY 16 (Empty Buffer Approximation) The effective service rate
seen by the low priority queue is bounded below by the empty buffer approxima-
tion to the service rate, C(0,t) = C — A(6,1), in the following sense:

I(r) > EI(r) = infsup6(r + tC(6,t)) — Otu(6,1),
[4

where u(0,t) is the effective bandwidth of the low priority source.

This is just the usual rate function (8) for overflow in a single queue, but
with the service rate C' replaced by the effective service rate C. It is called the
empty buffer approzimation because it is the rate function for the total workload
reaching r—so if the most likely way for this to happen leaves the high priority
buffer empty, then EI(r) will agree with I(-,r).

Berger and Whitt stress the point that this approximation gives a simple ad-
mission control region. But it is also interesting to consider the conditions under
which the inequality is strict. When there is equality, the two queues operate
essentially independently. But when the inequality is strict, the low priority
queue gets extra benefit from the sharing arrangement. Such an arrangement
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seems desirable from an engineering perspective. The following example illus-
trates how the queue and traffic parameters control whether or not there is extra
benefit to the low priority traffic.

Ezample 12 (Phase transition in priority queues).

It is often hard to simplify rate functions like I(g,r) because the queue could
overflow over any timescale. But for periodic processes, the queue can only
overflow over timescales less than the period, so the calculations are easier.

Consider a sequence of priority queues indexed by L. Let the high priority
stream X' be the average of L independent copies of a stationary periodic pro-
cess of random phase, which produces 4 units of work every second timestep.
Let the low priority stream Y’ be the average of L independent copies of the
process that independently at each timestep produces 1 unit of work with prob-
ability p and no work with probability 1 — p. Let the service rate C be in the
range [3,4).

These figures are chosen so that the entire queue empties every second
timestep, so that if it overflows it must do so in a single timestep. This means
that the only sample paths we need consider in (11) are those over a single
timestep. So

10,7) = infAj() + Mi(r+C = 2)
I(g,r) = Al(g+C)+Mj(r) (for ¢ > 0).
Since ¢ + C is greater than the mean rate of A, Aj(¢ + C) > AJ(C), and so

I(-,7) = I(0,7). Now for the empty buffer approximation. Since EI(r) is the
rate function of the sample path most likely to give total queue size r,

EI(r) = 0<96121;+TAI(33) +Mj(r+C —x).

Clearly I(-,r) > FEI(r). When is this inequality strict? Let g(z) = Aj(z) +
Mi(r + C — z). It is easy to calculate that for r < 1,

g(w) = h(z/4|1/2) + h(r + C =z | p),

where h(z|p) = zlog(z/p) + (1 — ) log(l — z)/(1 — p), and to show that g(z) is
convex. So I(-,7) > EI(r) if and only if ¢'(C) < 0, where

r p
1 .
1—r+0g1—p

o) = Lioe ¢
g(C) = log ;—F —log

In other words, there is extra benefit to the low priority traffic when the
service rate is small, or when the low priority buffer is large, or when there is
little low priority work. [

4 Conclusion

A sample path large deviations principle is an LDP factory: it makes it easy to
study the large deviations in a wide range of queueing problems. Many LDPs
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have previously been found in this way, under the large buffer asymptotic regime.
This paper presents a sample path LDP for the many sources asymptotic regime,
and applies it to study three queueing problems. Existing results for standard
queues have been refined, and new results have been presented for likely paths
to overflow and for priority queues.

We have seen that the large buffer asymptotic can often be described as a
special case of the many sources asymptotic. This means that large deviations
of queueing systems under the many sources asymptotic, which depend on the
characteristics of the traffic over all timescales, tend to have richer structure
than those under the large buffer asymptotic, which depend only on the long-
timescale characteristics of the traffic.
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