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Abstract

This paper presents a large deviations principle for the average of real�

valued processes indexed by the positive integers� one which is particularly

suited to queueing systems with many tra�c �ows� Examples are given of

how it may be applied to standard queues with �nite and in�nite bu�ers�

to priority queues� and to �nding most likely paths to over�ow�

� Introduction

Consider a queue fed by several di�erent inputs� Many quantities of interest in
queueing theory� such as the amount of work in the queue� can be expressed as
functions of the sequence of variables �xt�t�N� where xt is the total amount of
work received t timesteps ago�

The sequence �xt� will typically live in a space on which the quantity of
interest is a continuous function� For example� let X� be the space of real�valued

sequences x � �xt� for which t��
Pt

i�� xi � � eventually� Then the amount of
work Q in a queue with an in�nite bu�er and �xed service rate C � � is given
by

Q�x� �

�
sup
t��

� tX
i��

xi � Ct
���

We will de�ne a simple topology on X� that will be useful in many queueing
applications� and which makes Q continuous�

This can be used to understand the large deviations behaviour of a wide
range of queueing systems� Consider a sequence of queueing systems� in which
the Lth system has input XL� The idea is to establish a sample path large
deviations principle for XL in the space X�� and then to use the contraction
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principle to �nd one for the quantity of interest� which is assumed to be a
continuous function on X��

In this paper we will be motivated by one particular limiting regime� in which
XL is the average of L processes� This is known in queueing theory as the many
sources asymptotic� and was described in an early paper of Weiss �	��
�� It is
well�suited to modern telecommunications networks� in which a switch may have
hundreds of di�erent inputs� Another limiting regime which has been widely
studied is the large bu�er asymptotic� in which XL is a speeded�up version of a
base process X� We will see that large deviations in this regime can often be
found as a special case of the many sources regime�

The rest of this paper is in two parts� In Section 
� the sample path large
deviations principle for XL is established� O�Connell �	���a� has proved a sam�
ple path large deviations principle for the large bu�er regime� and the proof
given here for the many sources regime is similar� We also give several exam�
ples of processes satisfying the sample path LDP� including fractional Brownian
motion�

In Section �� the sample path LDP is used together with the contraction
principle to study large deviations in three di�erent queueing problems� stan�
dard queues with �nite and in�nite bu�ers� likely paths to over�ow� and priority
queues� There are many other possible applications� for example� it is used by
Wischik �	���� in studying the output of a queue� Several authors have used
this approach to study large deviations under the large bu�er regime� we will
see that under the many sources regime� large deviations often possess a richer
structure�

� Large Deviations for Averages of Processes

We will be concerned with the set X of real�valued processes indexed by the
natural numbers f	� 
� � � �g� Throughout this paper� t will represent a natural
number� Denote a process in X by x������ and its truncation to the set fs�
	 � � � tg by x�s� t� for s � t� When the meaning is unambiguous� x����� and
x��� t� may be written x� Let � be the constant process taking value 	 at each
time step� Denote by xt the value of the process at time t� and by x�s� t� the
cumulative process x�s� t� �

Pt
i�s�� xi� with x�t� t� � ��

We will prove results about the limit of a sequence of random processes
�XL � L � 	 � � ���� Think of XL as the average of L independent� identically
distributed processes� The principal result of this section is a sample path large
deviations principle for XL�

It should be explained here what is meant by a large deviations principle�
For a full introduction to the theory� and details of the tools and de�nitions we
will be using� see Dembo and Zeitouni �	����� A sequence of random variables
XL in a Hausdor� space X with Borel ��algebra B is said to satisfy a large
deviations principle �LDP� with good rate function I if for any B � B�

� inf
x�B�

I�X� � lim inf
L��

	

L
logP�XL � B�

� lim sup
L��

	

L
logP�XL � B� � � inf

x� �B
I�X��

where I � X � R
� �f�g has compact level sets� If X is a process� this is called
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a sample path LDP� The left and right hand sides of this inequality are referred
to as the large deviations lower and upper bounds�

We want to �nd a sample path LDP in a space appropriate for queueing
applications� This will be done in four steps� The �rst step is to �nd an LDP
for �nite truncations of the process� If XL is the average of L processes� a �nite
truncation is just the average of L vectors� and there are standard tools for
dealing with this� The next step is to extend the LDP to the entire process�
This is done by taking projective limits� again a standard step� The third step
takes most of the work� Many queueing functions of interest are not continuous
with respect to the projective limit topology� so we need to strengthen the LDP
to a more appropriate topology� O�Connell �	���a� has introduced a suitable
topology� that given by the uniform norm

kxk � sup
t��

����x��� t�t

���� � �	�

As well as choosing this �ner topology we need to restrict the LDP by incorpo�
rating a notion of stability� this is the �nal step�

We will �nd conditions under which XL satis�es an LDP� with the uniform
topology� and with good rate function

I�x� � sup
t��

sup
��Rt

� � x��� t���t���� �
�

where �t��� is the moment generating function

lim
L��

	

L
log E Exp�L� �XL��� t���

An LDP for truncated sequences

The following lemma establishes an LDP for any �nite truncation of the process�
It is a direct restatement of the G�artner�Ellis theorem for the average of vectors
in R

t �see Dembo and Zeitouni� Theorem 
���
��

Assumption � �Finite�time regularity�
De�ne the logarithmic moment generating function �L

t ��� for � � R
t by

�L
t ��� �

	

L
log E Exp�L� �XL��� t���

Assume that for each t and �� the limiting moment generating function

�t��� � lim
L��

�L
t ���

exists as an extended real number� and that the origin belongs to the interior of
the e�ective domain of �t� Assume further that �t is an essentially smooth�
lower semicontinuous function�

Lemma � Under Assumption �� for any �xed t� the sequence XL��� t� satis�es
an LDP with good rate function

��
t �x��� t�� � sup

��Rt
� � x��� t���t����
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Example � �Many Sources��
Let XL be the average of L independent copies of the process X� Then

�t��� � �L
t ��� � log Ee� �X���t��

This example should be borne in mind� because it is the motivation behind all
the following results� �

Example � �Fractional Brownian Motion��
As an illustration of Example 	� let XL be the average of L independent copies
of the process X� de�ned by X��� t� � �t� �Zt where Zt is a fractional Brown�
ian Motion with Hurst parameter H � Then �t��� � �� � �� �

��
�
� � St�� where

the t�tmatrix St is given by �St�ij �
�
� �jj�i�	j�H�jj�i�	j�H�
jj�ij�H�� �

Example 	 �Large Bu�er��
Given a base process X� let XL��� t� � f�L���X��� f�L�t�� This is the large
bu�er asymptotic regime� For a variety of processes X it is possible to choose a
normalising function f�L� such that Assumption 	 is satis�ed� Often� the nor�
malising function is just f�L� � L� and the limit �t has the simple linear form
�t��� �

Pt
i������i�� For an account of conditions under which this occurs� see

Dembo and Zajic �	����� Du�eld and O�Connell �	���� have studied queueing
systems with general normalising functions� in such cases the limit �t may not
be linear� �

The Projective Limit

Now we extend the LDP from �nite truncations X��� t� to the full process
X������ We need a little more care than this in stating the result� because
the de�nition of the large deviations principle relies on open and closed sets
and there are several useful topologies on the space of processes X � We will use
the topology of projective limits� i�e� the topology of pointwise convergence of
sequences� The following lemma is a direct application of the Dawson�G�artner
theorem for projective limits �see Dembo and Zeitouni� Theorem ��
�	��

Lemma � Under Assumption �� The sequence XL satis�es an LDP in X under
the topology of pointwise convergence� with good rate function

I�x� � sup
t
��
t �x��� t��� ���

Strengthening the topology

The topology of pointwise convergence is not directly useful for many queueing
applications� For example� if xt is the amount of work arriving at a queue at
time �t� and the queue is served at constant rate C� then the queue size at time
� is

Q�x� � sup
t��

x��� t�� Ct
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and this function is not continuous with respect to the topology of pointwise
convergence� To see this� set xLt � C for t � L� xLL � C � 	� and xLt � � for
t � L� Then xL converges pointwise to the constant process of rate C� for which
Q � �� but Q�xL� � 	 	� �� The answer is to show that the LDP holds in a
�ner topology�

The uniform topology �	� de�ned above allows one to analyse a wide range
of queueing problems� The idea is that it controls what happens over very large
timescales� Under an additional assumption on the large timescale behaviour
of the process XL� we can show that the sample path LDP of Lemma 
 can be
extended to this topology�

The results in Section � do not actually need a topology as strong as the
uniform topology� The only properties of the topology they use are that it is
stronger than the projective limit topology� and that it makes the queue size
function continuous� There are weaker topologies that have these two properties�
such as the weak queue topology used in Wischik �	����� de�ned by the metric

d�x�y� � jQ�x��Q�y�j�
�X
t��

	 
 jxt � ytj


t
�

But the uniform topology is easier to work with� so we will use it in what follows�

Assumption � �Large timescale characteristics� A scaling function is a
function v � N � R for which v�t�	 log t � �� For some scaling function
v� de�ne the scaled cumulant moment generating function

�Lt ��� �
	

v�t�
�L
t ���v�t�	t��

for � � R� From Assumption �� for each t there is an open neighbourhood of the
origin in which the limit

�t��� � lim
L��

�Lt ���

exists� Assume that there is an open neighbourhood of the origin in which these
limits and the limit

���� � lim
t��

�t���

exist uniformly in ��
We also know from Assumption � that for � in some open neighbourhood of

the origin� the limit �Lt �����t���� � is uniform as L��� Assume that for
� in some open neighbourhood of the origin� the limits

v�t�

log t

�
�Lt ��� � �t���

�
� � ���

is uniform in � as t� L���

Theorem � �Sample�path LDP for process averages� Suppose XL satis

�es Assumptions � and �� Then it satis�es an LDP in the space of real
valued
sequences X equipped with the uniform topology �	�� with good rate function I
given in ����
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Example � �Many Sources��
In the case of Example 	� when XL is the average of L independent processes
with common distribution X� the uniformity of the limit ��� is guaranteed� since
�L
t � �t� �

Example � �Fractional Brownian Motion with Many Sources��
For the earlier fractional Brownian motion example� Example 
� choose the scal�
ing function v�t� � t����H	� so that �Lt ��� � ��� �

��
���� This does not depend

on L or t� so it is also equal to �t��� and ����� �

Example 
 �Large Bu�er��
Recall the large bu�er asymptotic� Example �� Suppose �t takes the sim�
ple linear form �t��� �

P
����i�� this gives as the rate function I�x� �P

t�
�
��xt�� Choose v�t� � t� so that ���� � ������ Since �Lt ��� is given by

�Lt��� log E Exp��X��� Lt��� for any t we can choose L to make �Lt ��� � �t���
arbitrarily small� and thus the limit ��� is uniform as t� L � �� O�Connell
�	���a� describes sample path large deviations under the large bu�er asymp�
totic in more detail� �

Example � �Fractional Brownian Motion with Large Bu�er��
To contrast the many sources and the large bu�er asymptotic� consider the
large bu�er version of fractional Brownian motion� Let X be a fractional Brow�
nian motion with Hurst parameter H � as in Example 
� Choose the scaling
XL��� t� � f�L���X��� f�L�t� with f�L� � L������H	� Now �t is not linear�
�t���� � ��t � �

��
���t�H � As in Example 
� the limit ��� is uniform for any

scaling function v� and as in Example � we can choose v�t� � t����H	� Applying
Theorem � and the results of the Section �� we can rederive a result of Du�eld
and O�Connell �	���� for the workload in a queue fed by a single fractional
Brownian motion source� �

Proof of Theorem 	� The processes XL take values in the space X of real�valued
sequences� Write �X � p� for X equipped with the projective limit topology� and
�X � k �k� for X equipped with the uniform topology� The identity map from
�X � k�k� to �X � p� is continuous� and we know that XL satis�es an LDP in �X � p�
with rate function I� So� by the Inverse Contraction Principle �see Dembo and
Zeitouni� Theorem ��
���� if XL is exponentially tight in �X � k�k�� then it satis�es
an LDP in �X � k�k� with the same rate function�

It remains to show that XL is exponentially tight in �X � k�k�� in other words
that there exist compact sets K� in �X � k�k� such that

lim
���

lim sup
L��

	

L
logP�XL 	� K�� � ���

Choose the sets K� as follows� For each t� let �t � ��t���� let dt �
p
log t	v�t��

let

K��t� �
n
x � X �

x��� t�

t
� ��t � 
dt� �t � 
dt�

o
�
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and choose

K� �
�
t�N

K��t��

Exponential tightness with these K� will be shown in the following two lemmas�
�

Lemma � The sets K� are compact in the uniform topology�

Proof� Because we are working in a metric space� it su�ces to show that the sets
K� are sequentially compact� So� let xk be a sequence of processes� Since the
T �dimensional truncation of

T
t	T K��t� is compact in RT � the intersection K�

is compact under the projective topology� That is� there is a subsequence xj�k	

which converges pointwise� say to x� It remains to show that xj � x under the
uniform topology�

Given any �� since dt � � as t � �� we can �nd t� such that for t � t��

dt
 � �� And since x and all the xj are in K��

sup
t�t�

����xj��� t�t
�
x��� t�

t

���� � ��

Also� since the xj converge pointwise� there exists a j� such that for j � j��

sup
t�t�

����xj��� t�t
�
x��� t�

t

���� � ��

Putting these two together gives the result� �

Lemma 	

lim
���

lim sup
L��

	

L
logP�XL 	� K�� � ���

Proof� First� note that if

lim
���

lim sup
L��

L�� log yL� � ���

and the same is true of zL� � then it is also true of yL� � zL� � by the principle of
the largest term�

Also note that

P�XL 	� K�� �
X
t

P�XL��� t�	t � �t � 
dt� �
X
t

P�XL��� t�	t � �t � 
dt��

We will adopt the strategy of breaking the in�nite sums up into several parts�
several �nite timescale parts� and a long�timescale in�nite part� Finite timescale
parts are easy to deal with individually� and we can control the behaviour of
XL over long timescales� This strategy is also at the core of proofs for related
large deviations results� proved directly by Courcoubetis and Weber �	��
� and
Du�eld and Botvich �	�����



Sample path large deviations for queues �

First� �x t and consider lim supL L
�� logP�XL��� t�	t � �t�
dt�� By Cher�

no��s bound�

P�XL��� t�	t � �t � 
dt� � Exp

�
�Lv�t�����t � 
dt�� �Lt ����

�

for any � � �� So the expression we are interested in is bounded above by
lim supL�v�t�����t � 
dt� � �Lt ����� Choosing any � for which �t��� is �nite�
it is clear that this quantity tends to �� as 
���

Now for the remaining terms� We have assumed that the limits �Lt ��� �
�t��� and �t��� � ���� exist uniformly in � in an open neighbourhood of the
origin� Since �Lt is a cumulant moment generating function it has a power
series expansion� and so the coe�cients in the power series also converge� Let
�Lt ��� � ��Lt � �

��
�sLt � O��
�� and denote the coe�cients of �t and � by

dropping the superscripts and subscripts appropriately�
For �xed t�� consider the remaining terms

lim
���

lim sup
L��

	

L
log

X
t�t�

Exp
h
�Lv�t�

	
���t � 
dt�� �Lt ���


i
� ���

Assume for the moment that s � �� and pick � depending on L and t� �Lt �
�dt � �Lt �	s

L
t � where �

L
t � �t � �Lt � This gives as the typical exponent

�Lv�t�

��
�dt � �Lt �

�


sLt
�O�dt � �Lt �






�

� 	

sLt
dt�dt � �Lt �

�
�

Because of our assumption on the uniformity of convergence ���� there exists a
t� and L� such that for t � t� and L � L�� �

L
t is positive� and because dt � ��

the term in brackets f�g is also positive� �If s � �� pick �Lt � dt � �Lt � then the
same conclusion holds��

So the typical exponent in ��� is bounded above by

�Lv�t�

�

� 	

sLt
dt�dt � �Lt �

�

for su�ciently large t and L� Indeed� for su�ciently large t and L we can bound
it by �Lv�t���
� 	�d�t for some constant � � �� Therefore� by our choice of dt�
for t� su�ciently large� expression ��� is bounded above by

lim
���

lim sup
L��

�
� 	��

L
log

X
t�t�

t�L�

It is easy to check that this is equal to ��� �

Stability

We have achieved the goal of a sample path LDP for averages of processes� But
it is still not directly useful for queueing applications� because the queue size
function is still not continuous� even with respect to the �ner topology� The
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problem is that there is no notion of stability� If the mean arrival rate is higher
than the service rate� the queue will be unstable� Mathematically speaking� the
queue size function is only continuous on the subspace of processes for which the
mean arrival rate is less than the service rate� Similar stability conditions crop
up again and again� so it will be useful to give the following Theorem� which
shows that the sample path LDP holds in this restricted space of processes�

Definition � �Stability� De�ne the mean rate of the XL to be the derivative
������ Say that XL is stationary if the limiting moment generating functions
�t correspond to a stationary process�

Theorem 
 Under Assumptions � and �� the LDP of Theorem 	 holds on the
space X�� which has the uniform topology and is given by

X� �
n
x � X �

x��� t�

t
� � eventually

o
�

for any � greater than the mean rate of the XL�

Proof� By Dembo and Zeitouni �	���� Lemma ��	��� it su�ces to show that
fx � I�x� ��g � X�� and for L su�ciently large� P�XL � X�� � 	�

Recall that I�x� � supt�
�
t �x��� t��� Let � � ����� � �� and pick � � � such

that ���� � ���� �
���� Now if x��� t�	t � �� then for su�ciently large t�

��
t �x��� t�� � sup

�

� � x��� t���t��� � �v�t�
�x��� t�

t
� ��� �

���
�
� �

��v�t���

So if x 	� X� then this inequality holds for in�nitely many t� and since v�t� is
unbounded� I�x� ���

Second� since �Lt ��� � �t��� uniformly for t su�ciently large� and �t����
����� there exists � � � such that for L and t su�ciently large� �Lt ��� � ��� �
�
���� Then� by Chebychev�s inequality�

�X
t��

P

�
XL��� t�

t
� �

�
�

�X
t��

Exp

�
�Lv�t����� �Lt ����

�

which is �nite for L su�ciently large� So� by the Borell�Cantelli lemma� P�XL �
X�� � 	� �

This result will be used to study the large deviations behaviour of a variety
of queueing systems� Some of the systems can easily be studied directly� But
the indirect route� via the sample path LDP� can give more insight� It also
means there is less additional work for each di�erent application�

� Large Deviations for Queues

In this section� the sample path LDP is applied to study large deviations in
several queueing problems� standard queues with �nite and in�nite bu�ers�
likely paths to over�ow� and priority queues�

The common approach will be to take the sample path LDP and then apply
the Contraction Principle to �nd an LDP for the quantity of interest� The
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contraction principle says that if XL satis�es the sample path LDP in X�� and
if f is a continuous function on X�� then f�XL� satis�es a LDP with good
rate function I�y� � inffI�x� � x � X�� f�x� � y�g� See Dembo and Zeitouni
Theorem ��
�	 for a proof of the contraction principle�

First� though� we relate the abstract setting of the last section to queueing
models and describe the limiting regime� Consider a sequence of queues� indexed
by L� in which the Lth queue has L independent identically distributed inputs�
and service rate LC and bu�er size LB� Let LXL

t be the total amount of
work arriving at the Lth queue at time �t� �Depending on the context� X will
variously be called an input process� a source� or a �ow��

In the many sources asymptotic� XL is thought of as the average of inde�
pendent �ows� and so the Lth queue multiplexes together L di�erent �ows and
its resources grow in proportion� This sort of scaling is well�suited to modern
telecommunications networks� in which a switch may have hundreds of inputs
but only a small amount of bu�er space per input� The various applications in
this section will be set up di�erently� but they have the common theme of multi�
plexing together many di�erent inputs� with the resources growing in proportion
to the number of inputs�

This asympotic may be contrasted to the large bu�er asymptotic� described
in Example �� in which XL is a speeded�up version of a base process X� de�ned
by XL��� t� � f�L���X��� f�L�t�� rather than the average of independent �ows�
Several authors� including O�Connell �	��
a and 	��
b�� Paschalidis �	��
� and
Puhalskii and Whitt �	���� have used the contraction principle approach to
study the large deviations behaviour of various queueing systems under this
asymptotic�

��� Bu�er size in a queue

In this section we look at a standard queue with a constant service rate� The
following results have previously been proved directly� but it is instructive to
see the techniques used in deriving them from the sample path LDP� as these
same techniques will be used in the following sections�

Consider a queue with constant service rate C fed with input process x� The
amount of work in the queue at time�smay be de�ned to be limt��Qs�x��� t���
where Qs�x��� t�� is given by the Lindley recursion

Qs�� �
	
Qs � xs � C


�
� Qt � ��

If the input is a stationary process� the stationary queue size may be written as

Q�x� � sup
t
x��� t�� Ct�

Lemma 	� shows that this function is continuous on X� for any � � C� By the
Contraction Principle� this immediately gives Corollary �� an LDP for workload
in queues with in�nite bu�ers� which when simpli�ed duplicates the results of
Du�eld and Botvich �	���� for linear scaling functions v�t�� of Du�eld �	��
�
for general scaling functions� and of Simonian and Guibert �	���� for the special
case of Markov�modulated �uid sources� The estimate which this LDP provides
can be re�ned with the Bahadur�Rao improvement� as described by Likhanov
and Mazumdar �	����� but for the purposes of this paper we will stick with
large deviations�
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Corollary � Under Assumptions � and �� if XL has mean rate less than C
then Q�XL� satis�es an LDP with good rate function

I�b� � inf
x�XC �Q�x	�b

I�x��

Proof� The only point to note is that the in�mum is taken over XC � But it
might as well have been taken over X� for any � greater than the mean rate and
less than C� since the rate function will be in�nite on XC nX� by Corollary 
� �

We can do the same thing for queues with �nite bu�ers� The queue size �Q
in a queue with a �nite bu�er B is de�ned similarly to Q� except that it cannot
�ll to greater than B and any excess work is discarded� This is expressed by
the recursion

�Qs�� �
	
�Qs � xs � C


�

 B� �Qt � ��

Lemma 	� also shows that �Q is a continuous function of the input process� and
so we obtain Corollary �� an LDP for workloads in queues with �nite bu�ers�

Corollary � Under Assumptions � and �� if XL has mean rate less than C
then �Q�XL� satis�es an LDP with good rate function

�I�b� � inf
x�XC � �Q�x	�b

I�x��

These expressions for the rate functions are not very informative� and so
Theorem � gives a more manageable expression for I�b�� In fact� if the process
is stationary� then for b � B� �I�b� and I�b� are identical �and for b � B�
�I�b� � ��� this is shown in Theorem 	�� The proofs of these theorems are
deferred to the end of this section�

Theorem 
 Under Assumptions � and �� if ��
t���� � Ct at � � � for all t�

then I�b� is increasing in b and is given by

I�b� � inf
x�XC �Q�x	�b

I�x� �
�

� inf
t

inf
x�Rt�x���t��b�Ct

��
t �x��� t�� ���

� inf
t
sup
�
��b� Ct���t����� ���

Theorem �� If I�b� is �nite� then the optimal timescale �t and the optimizing

path �x��� �t� are both attained� and if the optimal spacescale �� is attained then

�x��� �t� � r��t�
�����

For a queue with a �nite bu�er B and stationary input whose mean rate is less
than C� if b � B then �I�b� � I�b� and the same path �x is optimal�

The optimal �� and �t appearing in Theorem 	� are called the operating point
of the switch� or the critical spacescale and timescale� Courcoubetis� Siris� and
Stamoulis �	���� give a detailed account� with simulation results� of how they
are a�ected by the tra�c mix and the queue parameters under the many sources
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asymptotic regime� The following example contrasts the interpretation of the
timescale parameter in the many sources and the large bu�er regimes�

Example � �Timescales��
In the many sources asymptotic� where XL is the average of L independent
sources� the timescale �t identi�ed above is easy to interpret� it is the length of
time which the bu�er is most likely to take to �ll from empty to a given level
b� In the large bu�er asymptotic� where XL��� t� � f�L���X��� f�L�t�� �t has a
di�erent interpretation� It is a parameter which relates the scaling of the bu�er
Lb to the scaling of time f�L��t�

When �t represents real time� rather than time scaling� the large deviations
of the system depend on the characteristics of the source log E Exp��X��� t��
over all timescales t� But when it represents a time scaling� then the large de�
viations of the system depend only on the in�nite�time characteristics of the
source� limL�� L�� log E Exp��X��� L��� �

There are actually three more LDPs which are useful� which are easily con�
fused with Corollaries � and �� The �rst gives the probability that a queue with
an in�nite bu�er is non�empty� At �rst sight� we can �nd this from Corollary ��
just consider the event b � �� But the upper bound we get is useless� because
it involves the closure of this set�which is b � �� the entire space� So for a
better bound� we can go back to the sample path LDP and look at the closure
of the set of sample paths for which Q�x� � �� now not the entire space� The
same technique can be used for the events that a queue with a �nite bu�er is
non�empty or over�ows� The in�nite bu�er result has been proved by Du�eld
and Botvich �	����� and the �nite bu�er results have been proved by Courcou�
betis and Weber �	��
�� The proof of Corollary 		 is deferred to the end of this
section� The proof of Corollary 	
 is similar� and is omitted�

Corollary �� Under Assumptions � and �� if XL has mean rate less than
C� then the event fQ � �g has large deviations lower bound �I���� and upper
bound �I����� If in addition B � � then the event f �Q � �g has the same large
deviations bounds� Here� I�b�� � lima
b I�b� and I���� is given by

I���� � sup
�
�C ��������

Corollary �� Under Assumptions � and �� if XL is stationary and has mean
rate less then C� then the event that �Q over�ows has large deviations lower
bound �I�B�� and upper bound �I�B� �or �I���� if B � ���

The rest of this section is given over to proofs�

Lemma �� The queue size functions Q and �Q are continuous on X�� if � � C�

Proof� Consider a sequence of processes xk � x in X� under the uniform
topology� That is� given �� there is a k� such that for k � k��

sup
t

����xk��� t�t
�
x��� t�

t

���� � ��
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And since x � X�� there is a t� such that for t � t��

x��� t�	t � ��

Then for k � k� and t � t�� choosing � � C � ��

xk��� t�	t � C

and the same holds for x� So the expression for queue size Q simpli�es� for
k � k�� Q�xk� � Q�xk��� t���� and the same holds for x� Thus for k � k��

jQ�xk��Q�x�j � j sup
t	t�

�xk��� t�� Ct�� sup
t	t�

�x��� t�� Ct�j

which tends to � as k ���
Now for �Q� Since Q�x� � Q�x��� t���� the in�nite�bu�er queue must empty

at some time in ��t�� ��� For suppose it does not� Let s � t� be the last time
at which the queue� started from empty at �t�� is empty� then Q�x��� t��� �
Q�x��� s�� � x��� s��Cs� But Q�x� � q� x��� s��Cs where q � � is the queue
size at time �s� leading to a contradiction�

So Q empties at some time in ��t�� ��� So too must �Q� because �Q � Q� In
other words� �Q�x� � �Q�x��� t���� The same holds for xk for k su�ciently large�
and so we deduce that �Q is also continuous� �

Proof of Theorem �� If b � �� then ��� and ��� take the value � at t � �� Now
consider the sample path given by x��� t� � r�t���� This is constant� taking
the value of the mean arrival rate� so Q�x� � �� And it has rate I�x� � �� so
�
� also takes the value �� So restrict attention to the case b � ��

Note that because b� Ct is greated than ��
t���� at � � �� we may take the

supremum only over � � �� thus ��� is increasing in b�
First� ��� � ���� Fix t� ThenXL��� t��� is just a real�valued random variable�

and from Assumption 	 it satis�es an LDP with good rate function given by the
expression in ���� Another way of �nding this is by contracting from the sample
path LDP for XL��� t�� which gives as rate function the expression in ���� By
the uniqueness of the rate function� these are equal�

Next� �
� � ���� It will be helpful to introduce some new notation� For a
�nite process x and an in�nite process y� write x �� y for the concatenation of
the two� And recall that we may replace XC in �
� with X� for any � greater
than the mean arrival rate and less than C� because by Theorem 
 the sample
path rate function is in�nite on XC n X��

Suppose that �
� is �nite �otherwise the inequality is trivial�� The sample
path rate function I is good� so an optimal path �x is attained� Now Q��x� �
supt �x��� t��Ct � b� and this supremum must be attained since otherwise there
is a sequence tn for which �x��� tn�	tn � C� which cannot happen in X�� So
�x � �x��� t� �� �y for some �y� with �x��� �t� � b � C�t and Q��y� � �� Clearly
��
t �x��� t�� is increasing in t for any x� so

I��x� � sup
s
��

�t�s��x �� �y��� s�� � ��
�t ��x���

�t���

Taking the in�mum over t and x��� t� gives the result�
Finally� �
� � ���� Assume that ��� is �nite �since otherwise the inequality

is trivial�� For a given t� an optimal �x��� �t� is attained by goodness of the rate
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function ��
t � And an optimal �t is also attained� For suppose not� and take a

sequence tn � � and xn��� tn� with xn��� tn�	tn � C and ��
tn�x

n� bounded
above by K say� By the contraction principle and the goodness of the rate
function I� we can extend xn��� tn� to xn������ with I�xn� � K� Since I is
good it has compact level sets� so the xn have a convergent subsequence� say
xk � x� also with I�x� � K� But then x��� tk�	tk � C also� and so I�x� ���
giving a contradiction�

By the contraction principle and the goodness of the rate function� we can
extend �x��� �t� to �x � �x������ where I��x��� �t�� � I��x�� If Q��x� � b the inequality
is proved� So suppose Q��x� � b� � b� Then there is some s � �t with �x��� s� � b��
But then

inf
t

inf
x�x���t��b�Ct

��
t �x� � inf

s�t
inf

x�x���s��b��Cs
��
s�x� � inf

s�t
inf

x�x���s��b�Cs
��
s�x��

where the last inequality is because for �xed t� ��� is increasing in b� The in�
equalities must then both be equalities� We can repeatedly apply this argument
until we �nd an optimal �x such that Q��x� � b� For otherwise� as in the previous
paragraph� there are arbitrarily large optimal �t� leading to a contradiction� �

Proof of Theorem ��� First� we prove that �I�b� � I�b�� If I�b� is in�nite
then �I�b� must certainly be in�nite� as any path which makes �Q�x� � b makes
Q�x� � b� So suppose I�b� is �nite� and let the optimizing path in Theorem �
be �x��� �t�� We may assume that this path never causes the bu�er to exceed level
b� For suppose that under �x the bu�er reaches level b� � b at time �s� Consider
the truncated process  x��� s� � x��t�s� �t�� By stationarity� ��

�t ��x� � ��
s� x�� And

��
s� x� � inf

x�Rs�x���s��b��cs
��s�x� � inf

x�Rs�x���s��b�cs
��s�x��

where the second inequality follows because ��� is increasing in b� Because the
optimal path does not cause the bu�er to exceed level b� it is also optimal for
the �nite bu�er case� and so IB�b� � I�b��

Now �x t and suppose that �� is optimal in ���� By Assumption 	� �t must

be di�erentiable at ���� Set �x � r�t������ Di�erentiating ��� gives �x �� � b�Ct�
But by Dembo and Zeitouni Lemma 
����� ��

t ��x� is equal to ���� and so �x is
optimal� �

Proof of Corollary ��� Let F be the event that Q � �� For the large deviations
lower bound we will prove that infx�F I�x� � limb
� I�b�� and for the large
deviations upper bound�

inf
x� �F

I�x� � inf
t��

inf
x�x���t��Ct

I�x�� ���

This reduces to
inf
t��

sup
�
�Ct��t����

as in Theorem �� By convexity� �t���� � ������� so the optimum is attained
at t � 	 and we are left with I�����

Since F � �b��fQ � bg� infx�F I�x� � infb�� I�b�� But because I�b� is
increasing� this is limb
� I�b��
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LHS � RHS in ���� Suppose x��� t� � Ct for some t � �� For � � �� let
x� � �x� � �� x�� � � � �� Then Q�x�� � � so x� � F � But as � � �� x� � x� so
x � �F � Thus fx � 
t � �� x��� t� � Ctg � �F � Taking the in�mum of I over these
sets gives the result�

LHS � RHS in ���� Let x � �F � Then there exist xn � x in F � and
Q�xn�� Q�x� by Lemma 	�� If Q�x� � � then

I�x� � inf
b��

I�b� � inf
t��

sup
�
�Ct��t����

because the optimal �t in ��� must be strictly positive for b � ��
So suppose Q�xn�� �� As in Lemma 	�� there exist an n� and t� such that

for n � n��
Q�xn� � sup

t	t�

xn��� t�� Ct�

And because Q�xn� � �� the supremum must be attained at t � �� Some t
must be repeated in�nitely often as n��� for that t� x��� t� � Ct� Taking the
in�mum over such x gives the result�

Now for f �Q � �g� If �Q�x� � � then Q�x� � � also� so the same upper bound
works� And as for Q � �� the lower bound is straightforward� �

��� Paths to Over�ow

The expression for the rate function in Corollary � tells us more than just the
probability that the queue size reaches a certain level� It tells us how the queue
reaches that level� Because the rate function I is good� the in�mum in

I�b� � inf
x�C�Q�x	�b

I�x�

is attained� And Theorems � and 	� tell us what that sample path looks like�
�x is the path most likely to make the queue �ll from empty to level b� and it
takes time �t to do so� Furthermore� the sample path LDP tells us the likelihood
of any deviation from this path�

The problem of most likely paths to over�ow under the many sources asymp�
totic has been studied before using direct methods� Weiss �	��
� solves it for
two�state Markov�modulated �uid sources� and Mandjes and Ridder �	���� solve
it for general Markov sources and for periodic sources� The advantage of our
sample path LDP method is that it can be applied very easily to general input
processes�

Example � �Markov
modulated �uid source��
Let XL be the average of L independent sources distributed like X� where
X��� t� � Y ��� t� for Y a stationary continuous time Markov process producing
work at rate h while in the on state and no work while in the o� state� and
�ipping from on to o� at rate � and from o� to on at rate �� If � and t are the
critical space and time scales� then the most likely path to over�ow is given by

x��� t� � r�t���� �
E�X��� t�e�X���t��

E�e�X���t��
� �	��
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We may compute E�e�Y ���s�jY�� and E�Y ��� s�e�Y ���s�jY�� by conditioning on the
�rst jump time of the Markov process� By reversibility� the latter is equal to
E�Y ��� s�e�Y ���s�jYs�� giving us E�Y ��� s�e�Y ���t�jYs�� This allows us to compute
x��� s� � y��� s� for the continuous time process y��� t� given by

ys �
�h

w� � w�

A�s�A�t � s�

�A�t� � �B�t�

where

A�s� � ��h� w��e
sw� � ��h� w��e

sw� �

B�s� � �w�e
sw� � w�e

sw� � and

w�� w� �
	




�
�h� �� ��

p
��� �� �h�� � ���h

�
�

The path to over�ow s �� xs is concave� the sources start slowly� then conspire
to produce lots of work in the middle of the interval� then slow down again at
the end� Multistate Markov models exhibit more varied behaviour� �

Example �� �Gaussian sources��
Suppose XL is the average of L independent Gaussian processes� each with
mean � and covariance structure Cov�X�� Xi� � 
i� It is easy to work out the
optimal path� r�t���� � ��� �V �� where Vij � 
ji�jj�

Consider the earlier fractional Brownian Motion example� Example 
� For
this process� 
i �

�
��

���i� 	��H � 
i�H ��i�	��H �� and so the most likely path
to over�ow is given by

xi � �� �
���

�

�
i�H � �i� 	��H � �t� i� 	��H � �t� i��H

�
�

If H � �
� � the source exhibits long�range dependence� and the most likely input

path x leading to over�ow is concave� whereas if H � �
� � the path to over�ow is

convex�
Now let X be a single�step autoregressive process� Xt � �� a�Xt�� � �� �

�	�a���t� where �t � N��� ��� and jaj � 	� Then 
t � ��at� and the most likely
path to over�ow is

xi � �� ���
�
	 �

	� ai

	� a
�

	� at�i��

	� a

�
�

If a � � then path to over�ow is concave� whereas if a � �� it starts and �nishes
at a high rate and in between it oscillates� �

Example �� �Large Bu�er��
By contrast� in the large bu�er asymptotic it is often the case that the bu�er
is most likely to �ll up at a constant rate� Suppose that the base process X
leads to a limiting moment generating function �t with the simple linear form
�t��� �

P
����i�� Then� ��

t �x��� t�� �
P
���xi�� and because �� is convex�

the most likely path x to over�ow is constant� �



Sample path large deviations for queues 	�

��� Priority Queues

The sample path LDP for the average of processes can be applied to a wide
variety of queueing models� We have seen in the last two sections how it gives
over�ow probabilities and sample paths to over�ow for a standard queue� As
a further illustration of the power of the technique� in this section we look at
another queueing discipline� the priority queue� This has been studied under
the large bu�er regime by Berger and Whitt �	����� and related queueing mod�
els have been studied by Kulkarni� G�un� and Chimento �	���� and O�Connell
�	��
a��

Consider a sequence of priority queues� indexed by L� The Lth queue has
two inputs� LXL and LYL� and service rate LC� Think of XL and YL as
the averages of L processes� The two streams are assumed to be independent�
The �rst stream XL has high priority� the second stream YL has low priority�
Let QL and RL be respectively the stationary amounts of high�priority and
low�priority work waiting to be served�

Kelly �	��
� notes that the amount of high�priority tra�c Q is exactly the
amount of work in a standard queue with service rate C and only the high�
priority input X� and that the total amount of work Q � R is the amount of
work in a standard queue with service rate C and the aggregate input X �Y�
Therefore� results from Section ��	 can be applied directly to �nd the high�
priority loss probability and the aggregate loss probability� But this leaves
some open questions� such as how much low�priority work there is in the queue�
Such questions can be answered with methods very similar to those of Section
��	�

Theorem �� Suppose that XL and YL satisfy Assumptions � and � with lim

iting moment generating functions �t and Mt respectively� Suppose also that
the sum of the mean arrival rates for XL and YL is strictly less than C� Then
the pair �QL� RL� satisties an LDP with good rate function

I�q� r� � inf
x�XC �y�XC �

Q�x	�q�R�x�y	�r

sup
t
��
t �x��� t�� � sup

t
M�

t �y��� t��� �		�

This is bounded below by

inf
t
inf
s	t

sup
��	

��q � Cs� � ��r � C�t� s����t������ s� � ���s� t�� �Mt�����
�	
�

Let I��� r� � infq�� I�q� r�� This is bounded below by

inf
t
sup
�
��r � Ct���t�����Mt����� �	��

Proof� Let IX�x� � supt�
�
t �x�� and de�ne IY similarly� Because XL and YL

are independent� the pair �XL�YL� satis�es an LDP with good rate function
I�x�y� � IX �x� � IY �y�� Let � and � be the mean rates for XL and YL� Since
��� � C� we can pick an � � � such that ����
� � C� then by Theorem 
�
�XL�YL� satis�es the LDP on �X
���X����� and the rate function I is in�nite
outside this space� So if we can show that �Q�R� is continuous on this space�
then using the Contraction Principle we can deduce �		��

Now Q depends only on the high priority process� it is de�ned as though
there were no other inputs to the queue� So by Lemma 	�� it is continuous
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on X
��� Also� Q � R is the aggregate workload� and does not depend on
the structure of the queue� so again by Lemma 	�� Q � R is continuous on
X
�� �X���� Thus �Q�R� is continuous�

The bound on the rate function I�q� r� may be obtained by noting a few
properties of the optimal paths to over�ow� The optimal paths must be attained�
because the rate function is good� As in Theorem �� there must be a last time
�t at which the high priority and low priority queues are both empty� And there
must be a last time �s � �t at which the high priority queue is last empty�
Because Q�x� � q� it must be that x��� s� � q � Cs� And because R�x�y� � r�
it must be that x�s� t� � y��� t� � r � C�t� s�� So

I�q� r� � inf
t
inf
s	t

inf
x�y�Rt�

x���s��q�Cs�
x�s�t��y���t��r�C�t�s	

��
t �x� �Mt�y�� �	��

Now �x s and t� As in Theorem �� the pair �XL��� s�� XL�s� t� � Y L��� t�� is
just an R

� �valued random variable� and by Assumption 	 it satis�es an LDP
with a good rate function which simpli�es to the expression in �	
�� An�
other way of �nding this LDP is by contracting from the sample path LDP
for �XL��� t��YL��� t�� which gives as rate function the expression in �	��� By
the uniqueness of the rate function� these are equal�

We can obtain the lower bound on I��� r� in a similar way� by noting that if
R�x�y� � r then there exists a last time �t at which both queues were empty�
and since then x��� t��y��� t� � r�Ct� The argument of the previous paragraph
can be applied to paths for which x��� t� � y��� t� � q � r � Ct� The resulting
expression is increasing in q �it is a special case of ��� which is increasing in b��
and setting q � � yields the result� �

To help interpret this result� we will give an alternative description in terms
of the service seen by the low priority stream� A sensible �rst guess would be
that the service is a random amount� the service rate C less a random amount of
high priority work� More thought would throw up various complications about
queue sizes and leftover workloads� In fact� both of these cases arise� and a
system can switch from one to the other as its parameters change� We will give
an example to illustrate this transition�

But �rst� to make these statements precise we will introduce the idea of e�ec�
tive bandwidths� They are described in more detail by Kelly �	��
�� Consider
a single queue with many independent inputs� as in Section ��	� The over�ow
probability depends on the moment generating function �t����� Suppose the

critical space and time scales are �� and �t� and consider replacing a small pro�
portion of the inputs by constant rate inputs� producing ����t�����t�

���� units of

work every time step� Locally� at ���� �t�� these new inputs have the same moment
generating function as the original inputs� and so the operation of the queue is
not a�ected by the replacement� For this reason� ���� t� � ��t����t���� is called
the e�ective bandwidth of a source�

We can use this idea to describe the service seen by the low priority stream�
Consider a single queue fed by a process with e�ective bandwidth ���� t�� but
where the service is an independent stochastic process  C with e�ective band�
width  C��� t�� As above� if the critical space and time scales are �� and �t� re�

placing a small part of the service with constant service of rate  C���� �t� does not
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a�ect the operation of the queue� and so we will call  C��� t� the e�ective service
rate� Before we use this idea to describe the service seen by the low priority
stream� we had better check that it actually exists� that is� that the appropriate
cumulant moment generating functions converge�

Lemma �	 �E�ective Service� Under the assumptions of Theorem ��� the
service seen by the low priority queue has an e�ective service rate�

Proof� O�Connell �	���b� shows that the departure map �which maps the aggre�
gate input process to the aggregate departure process� is continuous under the
uniform topology� Let d be the departure process from the high priority queue�
The service seen by the low priority queue is  C where  Ct � C � dt� Since the
departure map is continous� the service map is also continuous� Therefore the
service process satis�es a large deviations principle� say with good rate function
J�

Applying Varadhan�s Integral Lemma �Dembo and Zeitouni Theorem ����	��
and using the fact that the service process is bounded� we �nd that

lim
L��

	

L
log EeL� �


C���t� � sup
c�Rt

� � c� J�c��

In particular� the limit exists� �

We are now in a position to make precise the earlier claim about the service
seen by the low priority queue� The e�ective service rate is di�cult to deal with
analytically� but fortunately we can avoid doing so by using Theorem 	�� The
following corollary is a restatement of the bound �	��� The terminology is due to
Berger and Whitt �	����� who independently obtained the corresponding result
for the large bu�er asymptotic regime� As noted in Example �� large bu�er
results can be deduced from a special case of the corresponding many sources
results�

Corollary �
 �Empty Bu�er Approximation� The e�ective service rate
seen by the low priority queue is bounded below by the empty bu�er approxima�
tion to the service rate�  C��� t� � C � ���� t�� in the following sense�

I��� r� � EI �r� � inf
t
sup
�
��r � t  C��� t�� � �t���� t��

where ���� t� is the e�ective bandwidth of the low priority source�

This is just the usual rate function ��� for over�ow in a single queue� but
with the service rate C replaced by the e�ective service rate  C� It is called the
empty bu�er approximation because it is the rate function for the total workload
reaching r�so if the most likely way for this to happen leaves the high priority
bu�er empty� then EI �r� will agree with I��� r��

Berger and Whitt stress the point that this approximation gives a simple ad�
mission control region� But it is also interesting to consider the conditions under
which the inequality is strict� When there is equality� the two queues operate
essentially independently� But when the inequality is strict� the low priority
queue gets extra bene�t from the sharing arrangement� Such an arrangement
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seems desirable from an engineering perspective� The following example illus�
trates how the queue and tra�c parameters control whether or not there is extra
bene�t to the low priority tra�c�

Example �� �Phase transition in priority queues��
It is often hard to simplify rate functions like I�q� r� because the queue could
over�ow over any timescale� But for periodic processes� the queue can only
over�ow over timescales less than the period� so the calculations are easier�

Consider a sequence of priority queues indexed by L� Let the high priority
stream XL be the average of L independent copies of a stationary periodic pro�
cess of random phase� which produces � units of work every second timestep�
Let the low priority stream YL be the average of L independent copies of the
process that independently at each timestep produces 	 unit of work with prob�
ability p and no work with probability 	 � p� Let the service rate C be in the
range ��� ���

These �gures are chosen so that the entire queue empties every second
timestep� so that if it over�ows it must do so in a single timestep� This means
that the only sample paths we need consider in �		� are those over a single
timestep� So

I��� r� � inf
�	x	C

��
��x� �M�

��r � C � x�

I�q� r� � ��
��q � C� �M�

��r� �for q � ���

Since q � C is greater than the mean rate of �� ��
��q � C� � ��

��C�� and so
I��� r� � I��� r�� Now for the empty bu�er approximation� Since EI �r� is the
rate function of the sample path most likely to give total queue size r�

EI �r� � inf
�	x	C�r

��
��x� �M�

��r � C � x��

Clearly I��� r� � EI �r�� When is this inequality strict! Let g�x� � ��
��x� �

M�
��r � C � x�� It is easy to calculate that for r � 	�

g�x� � h�x	� j 		
� � h�r � C � x j p��

where h�xjp� � x log�x	p� � �	� x� log�	� x�	�	� p�� and to show that g�x� is
convex� So I��� r� � EI �r� if and only if g��C� � �� where

g��C� �
	

�
log

C

�� C
� log

r

	� r
� log

p

	� p
�

In other words� there is extra bene�t to the low priority tra�c when the
service rate is small� or when the low priority bu�er is large� or when there is
little low priority work� �

� Conclusion

A sample path large deviations principle is an LDP factory� it makes it easy to
study the large deviations in a wide range of queueing problems� Many LDPs
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have previously been found in this way� under the large bu�er asymptotic regime�
This paper presents a sample path LDP for the many sources asymptotic regime�
and applies it to study three queueing problems� Existing results for standard
queues have been re�ned� and new results have been presented for likely paths
to over�ow and for priority queues�

We have seen that the large bu�er asymptotic can often be described as a
special case of the many sources asymptotic� This means that large deviations
of queueing systems under the many sources asymptotic� which depend on the
characteristics of the tra�c over all timescales� tend to have richer structure
than those under the large bu�er asymptotic� which depend only on the long�
timescale characteristics of the tra�c�
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