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Preface

How to read this thesis

The progression of chapters in this thesis mirrors the progression in the title,
from abstract probability to applied modelling of the Internet. Accordingly, each
chapter concludes with a summary of what is used in those that follow. The
queueing model in Chapter 3 should be read before the remaining chapters, but
otherwise they can be read in any order, and indeed it might be more interesting
to start with the applications and read backwards.
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Chapter 1

Introduction

If written five years ago, the title of this thesis would probably have been Large
Deviations and Queueing Theory. However, the Internet is one of the most
important queueing networks there is today. Last year it was directly involved
in hundreds of billions of dollars of economic activity, and each year its size
more than doubles. It should be of interest to mathematicians because it raises
interesting mathematical questions, and because good and timely answers to
those questions can feed back into better design.

Congestion is currently a major problem in the Internet. It leads to unreli-
able performance, and it is holding back the deployment of new services. If the
Internet is to evolve into a high-performance network, suitable for forms of com-
munication that are richer than simple file-transfers, we must understand how
congestion arises and find ways to keep the network operating within its capac-
ity. These are our topics in this thesis, and our main tool is the mathematical
theory of large deviations.

1.1 Internet Congestion

The Internet is bewilderingly vast, and draws on the expertise of designers at all
levels from physicists studying fibre-optics to legislators regulating access. We
will be concerned with the level of traffic generation, transmission, and control.

Here are some figures, obtained from transmitting this thesis across the At-
lantic to www.wischik.com in July 1999. There are roughly 248000 characters
to transmit, grouped into packets of 1500 characters. Each packet takes 50-60
milliseconds to reach its destination, travelling through 20 different way-stations
or routers. In the evening, when the Internet is lightly loaded, the entire oper-
ation takes just under 2 seconds. In the afternoon, when there is congestion, it
can take over 40 seconds. The reason it takes so long is that the source computer
waits between sending packets, so as not to overload the network.

The router, connected by cables to other routers and to users, is the basic
building block of the Internet. Each packet of data from a user is labelled with
its destination and sent out to the first router on its path; at a router, each
incoming packet is examined and sent out on the appropriate cable, either to
the next router in its path or to its final destination.

When too many packets arrive at a router they are queued until they can



CHAPTER 1. INTRODUCTION 2

be processed. But a router only has enough buffer space for a limited number
of packets to queue, and when the buffer is full further incoming packets are
dropped, that is, discarded. An end-system will eventually detect the drop, and
would typically respond by reducing its transmission rate (and by resending the
dropped packet). The frequency of packet drops is thus the primary measure of
congestion.

For the past decade Internet congestion has been controlled in this way,
relying on users’ computers to detect congestion and to back off. As the Internet
becomes more commercially important, this consensus arrangement is likely to
fail. Engineers have recently proposed new mechanisms for signalling congestion,
and economists have begun to look at usage-sensitive pricing schemes. But
without a clear mathematical understanding of the phenomenon of congestion,
it is hard to see how these approaches can be understood and integrated. This
is where large deviations theory can help.

1.2 Large deviations

Since the Internet operates as a network of queues, the tools of queueing the-
ory can be used to study it. This is not a simple question of applying well-
understood mathematical results, getting an answer, and rewording it to refer
to the Internet. Rather, there is an ongoing development of the mathematics,
driven by the particular needs of this application.

In this thesis we develop the large deviations theory of queueing networks.
Large deviations theory is a modern branch of probability, concerned with es-
timating the probabilities of rare events. This makes it well-suited to studying
high-performance communications networks, in which dropping a packet should
be a rare event. The Internet is not always a high-performance network, as
anyone who has tried to use it in the early afternoon will know, but we believe
that techniques like those described here will help improve things!

More precisely, large deviations theory is concerned with limiting regimes. In
queueing problems, while precise equations can be written down, it is very rare
that they can be solved exactly: so instead one seeks limiting results. A typical
result would be that for a router used by L traffic flows of a specified type,
with capacity to serve C'L packets a millisecond, the probability of dropping a
packet is roughly e~ *% where x can be calculated, and where the approximation
is accurate in the limit as L tends to infinity. (In other words, its accuracy
improves as the number of traffic sources increases.) This estimate is called
a large deviations principle for the probability of dropping a packet, and & is
called its rate.

Large deviations estimates are governed by the principle of the largest term,
which means that if a rare event occurs, it is overwhelmingly likely that it occurs
in just one way. If we can calculate which is the most likely way, we know the
typical behaviour of the system. This means that many of the details which
make it hard to obtain exact answers to queueing problems disappear. With
this generality comes, of course, some loss of accuracy; we will not investigate
that here.

Large deviations theory has been widely studied, and much work has been
done on large deviations in queueing theory. What makes this work different is
the limiting regime we look at. We consider the many sources limiting regime,
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exemplified above, in which the number of traffic flows increases. This limiting
regime is well-suited to the Internet, which has many thousands of simultaneous
traffic flows in its core.

1.3 Large deviations and Internet congestion

We will use large deviations queueing theory to study congestion in networks.
Our study has four parts. In the first, we use large deviations to model traffic
coming into a router. In the second, we find the way in which a router’s buffer
overflows. In the third, we model traffic travelling through the network. In the
fourth, we analyse algorithms for signalling and controlling congestion.

Large deviations and traffic modelling

Before one can begin to analyse congestion, one must be able to model traffic;
and we do this using large deviations theory and the many sources limiting
regime.

The rate at which data is sent by a computer program typically varies with
time. For example, in sending a video clip, action sequences take more data
than static shots. The natural way to model this variability is to take the traffic
flow to be a random process. Data is sent in myriad different ways, from many
different types of computer application, so we make only very weak assumptions
about the characteristics of the process.

Others have already developed a comprehensive theory to describe large
deviations for random processes, under the large buffer limiting regime, in which
buffer size of a router increases but the number of flows stays fixed. In Chapter
2 we develop a full theory for the many sources regime. We also illustrate how
this theory is more applicable than the large buffer theory to flows which exhibit
the long-range dependence characteristics seen in real Internet traffic.

Formally speaking, we establish a Large Deviations Principle for random
processes under the many sources limiting regime. This Principle gives estimates
for the probability of any event associated with the aggregate of many traffic
flows.

This chapter is mathematically involved. But the work is largely technical,
and it is summarized by a single theorem.

How queues fill up

Congestion happens when buffers overflow, so in Chapter 3 we use large de-
viations to study overflow. We can estimate the probability of overflow using
the Contraction Principle, as follows: we rewrite ‘the queue overflows’ as ‘the
incoming traffic is such as to make the queue overflow’. This is an event associ-
ated with the aggregate input traffic, the probability of which we can estimate
using the Large Deviations Principle from the previous chapter. We will give
estimates for several other events associated with overflow, some of which have
been found before and others of which are new.

We can do more than estimate the probability that a queue overflows: we
can also calculate how overflows occur. The Principle of the Largest Term says
that all that matters is the most likely path to lead to overflow, and that when
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overflow occurs it is overwhelmingly likely that it occurs in this way. The idea of
the most likely path will play a vital part in our analysis of congestion-signalling
mechanisms in Chapter 5.

Networks of queues

Chapter 2 explains how to model traffic as it enters a network—but what really
matters is how traffic behaves as it travels through the network. In Chapter 4 we
prove the new and surprising result that the statistical characteristics of a flow
of traffic are essentially unchanged as it passes through a router. This makes
it meaningful to talk about the intrinsic characteristics of, say, video traffic as
opposed to audio traffic: it is not necessary to consider either the routers that
a flow passes through, or the other flows that it interacts with.

Earlier work on networks has reached different conclusions. The reason for
the difference is that these are all limiting results, and earlier work has con-
sidered different limiting regimes. For example, under the large buffer regime,
the characteristics of a flow of traffic change along its route in ways which are
complicated and do not lend themselves to general principles. Our choice of lim-
iting regime allows a much cleaner conclusion. We consider the many sources
regime, in which the number of flows of traffic increases, and make the additional
assumption that different flows follow diverse routes through the network.

Our result has a straightforward mathematical formulation, but its impli-
cations are significant and merit a good deal of interpretation. It dramatically
simplifies the analysis of congestion in networks.

Signalling congestion

While the results of the previous chapters are framed with the Internet in mind,
they apply in principle to any queueing network. In the last chapter however
we address a question which has arisen specifically from the needs of the In-
ternet engineering community: How should routers signal congestion to users?
There are actually two parts to this: What should be the goals of a congestion-
signalling algorithm? and What sort of algorithm can achieve these goals?

Both of these questions have been looked at, though mainly in isolation:
economists have considered the first, and engineers the second. But without
a mathematical model of the phenomenon of congestion, economists cannot
devise pricing structures to prevent it; and without a theory which explains
how congestion occurs, engineers cannot analyse their algorithms. Only recently
have mathematicians begun to study these issues. In Chapter 5 we address both
questions, using the large deviations tools developed in the previous chapters.

First, we define what it means for a router to signal congestion fairly and
efficiently. This involves a large deviations analysis of the impact of a user
on the network. It also involves economic modelling of how users behave—a
congestion signalling mechanism has the same purposes as a pricing scheme in
a market economy: to convey information and to direct consumption.

We then study algorithms for signalling congestion. Recently it has been
proposed that Internet routers should be able to mark certain packets with a
congestion experienced tag, and that users should respond to marked packets as
they would to drops. The proposal leaves open the question of what marking
algorithm a router should use. We analyse several different algorithms, including
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one which has been implemented in commercial routers, using the idea of the
most likely path. This is, as far as we are aware, the first theoretical analysis
of these algorithms. It turns out that they are all unfair and economically
inefficient. We go on to suggest improvements based on principles from large
deviations theory.

This chapter is more discursive, as it takes some effort to frame an appro-
priate mathematical question. Once that is done, the tools of queueing theory
can be powerfully applied.

1.4 Summary

The Internet raises interesting mathematical issues. Using a limiting regime
suggested by the structure of the Internet, we have been able to prove a result
which significantly simplifies the analysis of networks of queues.

Mathematical study is also of benefit to the Internet. If the Internet is to
fulfil its promise of revolutionising the way we communicate, it needs to evolve
new ways of coping with congestion. The first step must be to understand
the nature of congestion—how it occurs and how it affects traffic—and the
tools of queueing theory can help with this. Then there must be some way to
signal congestion. Signalling mechanisms are just beginning to be developed
and built into routers, and insights from economics and large deviations can
help in their design. A good signalling mechanism will be fundamental to the
future of congestion control.



Chapter 2

Traffic

Consider a queue fed by several different input processes. Many quantities of
interest in queueing theory, such as the amount of work in the queue, can be
expressed as functions of the sequence of variables (z;)en, Wwhere z; is the total
amount of work received ¢ timesteps ago.

The sequence (z;) will typically live in a space on which the quantity of
interest is a continuous function. For example, let &), be the space of real-valued
sequences x = (x;) for which ¢=* Zle z; < p eventually. Then the amount of
work () in a queue with an infinite buffer and fixed service rate C' > p is given
by

t +
Q) = {sup( x; — Ct)]

>0 N
The principal result of this chapter is a large deviations principle (LDP) for
a sequence of processes X, in X, equipped with a topology which makes @
continuous.

This can be used to understand the large deviations behaviour of a wide
range of queueing systems. Consider a sequence of queueing systems, in which
the Lth system has input X~. In Chapter 3 we will use the Contraction Principle
to deduce, from the LDP for X%, LDPs for various quantities of interest such
as Q(XEL).

We will be motivated by one particular limiting regime, in which X is the
average of L processes. This is known in queueing theory as the many sources
asymptotic. It is well-suited to modern telecommunications networks, in which
a router may have thousands of different input flows. However, in this chapter,
X% can be any sequence of processes.

Before proving the result, we introduce our notation, explain what a large
deviations principle is, and review related work. After, we give some examples.

2.1 Large deviations for averages of processes
We will be concerned with the set X of real-valued processes indexed by the

natural numbers {1,2,...}. Throughout this thesis, ¢ will represent a natural
number. Denote a process in X' by x(0,00), and its truncation to the set {s +
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1...t} by x(s,t] for s < t. When the meaning is unambiguous, x(0, c0) and
x(0,t] may be written x. Let 1 be the constant process taking value 1 at each
time step. Denote by z; the value of the process at time ¢, and by z(s,t] the
cumulative process z(s,t] = Efzsﬂ x;, with z(t,t] = 0.

We will prove results about the limit of a sequence of random processes
(XL: L =1...00). Think of X* as the average of L independent, identically
distributed processes. The principal result of this chapter is a sample path large
deviations principle for X%,

For a full introduction to the theory of large deviations, and details of the
tools and definitions we will be using, see Dembo and Zeitouni [15]. For the
moment, we will content ourselves with explaining what is meant by a large
deviations principle.

A sequence of random variables X in a Hausdorff space X with Borel o-
algebra B is said to satisfy a Large Deviations Principle (LDP) with good rate
function I if for any B € B,

1
o < liminf — L
z1€nl£0 I(X) < IILHLIOI})f I logP(X* € B)

1
< limsup — logP(X* € B) < — inf I(X), (2.1)
L—oo L z€EB

where I : X — Rt U{oco} has compact level sets. If X is a process, this is called
a sample path LDP. The left and right hand sides of this inequality are referred
to as the large deviations lower and upper bounds.

2.2 Related work

The many sources limiting regime was described in an early paper of Weiss [57].
It has more recently been studied by Botvich and Duffield [4] and Courcoubetis
and Weber [11] and others, whose work will be described in Chapter 3.

Another limiting regime which has been much more widely studied is the
large buffer asymptotic, in which X” is a speeded-up version of a base process
X: XL(0,4) = L71X(0, Lt]. Sample path large deviations for this regime have
been described by O’Connell [43]; and the proof of the LDP in this chapter is
similar in outline. It turns out, as we will show, that the large buffer LDP arises
as a special case of the many sources LDP. Puhalskii and Whitt [47] have also
proved a large buffer sample path LDP in a similar setup.

2.3 Proving the LDP

We want to find a sample path LDP for X” in a space appropriate for queueing
applications. This will be done in four steps. The first step, Section 2.3.1, is
to find an LDP for finite truncations of the process. If X! is the average of
L processes, a finite truncation is just the average of L vectors, and there are
standard tools for dealing with this. The next step, Section 2.3.2, is to extend
the LDP to the entire process. This is done by taking projective limits, again
a standard step. The third step, Section 2.3.3, takes most of the work. Many
queueing functions of interest are not continuous with respect to the projec-
tive limit topology, so we need to strengthen the LDP to a more appropriate
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topology. O’Connell [43] has introduced a suitable topology: that given by the
uniform norm

t
IMZMV&W (22)
t>0 t

As well as choosing this finer topology we need to restrict the LDP by incorpo-
rating a notion of stability; this is the final step, in Section 2.3.4.

We will find conditions under which X% satisfies an LDP, in a subset of X’
equipped with the uniform topology, and with good rate function

I(x) = sup sup 6 - x(0,t] — A(8), (2.3)
t>0 OER?

where A;(0) is the moment generating function

1
lim — logEexp(LO-X%(0,1]).
L—oo L

2.3.1 An LDP for truncated sequences

The following lemma establishes an LDP for any finite truncation of the process.
It is a direct restatement of the Gartner-Ellis theorem for the average of vectors
in R* (see Dembo and Zeitouni [15] Theorem 2.3.6).

Condition 1 (Finite-time regularity)
Define the logarithmic moment generating function AtL(G) for 8 € Rt by

1
AF(6) = 7 logEexp (L6 - x%(0,1]).

Assume that for each t and 0, the limiting moment generating function

A.(6) = lim AF(6)

L—o00

exists as an extended real number, and that the origin belongs to the interior of
the effective domain of A;i. Assume further that Ay is an essentially smooth,
lower semicontinuous function.

Lemma 2.1 Under Condition 1, for any fized t, the sequence XL (0,t] satisfies
an LDP with good rate function

A (x(0,¢]) = :;é)t 0 -x(0,t] — A¢(0).

Throughout this thesis, we have in mind the following example.

Ezample 2.1 (Many Sources)
Let X be the average of L independent copies of the process X. Then

A(6) = A}(6) = log Ee® X1,

and so Condition 1 is automatically satisfied. <&
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2.3.2 The Projective Limit

Now we extend the LDP from finite truncations X(0,¢] to the full process
X(0,00). We need a little more care than this in stating the result, because
the definition of large deviations principle relies on open and closed sets and
there are several useful topologies on the space of processes X. We will use
the topology of projective limits, i.e. the topology of pointwise convergence of
sequences. The following lemma is a direct application of the Dawson-Gértner
theorem for projective limits (see Dembo and Zeitouni [15] Theorem 4.6.1).

Lemma 2.2 Under Condition 1, the sequence X satisfies an LDP in X under
the topology of pointwise convergence, with good rate function

I(x) = sgp A (x(0,¢]). (2.4)

The topology of pointwise convergence is however not directly useful for
many queueing applications. For example, if x; is the amount of work arriving
at a queue at time —t, and the queue is served at constant rate C, then the
queue size at time 0 is

Q(x) = supz(0,t] — Ct
>0

and this function is not continuous with respect to the topology of pointwise
convergence. To see this, set ¥ = C for t < L, ¥ = C + 1, and 2! = 0 for
t > L. Then x* converges pointwise to the constant process of rate C, for which
Q=0,but Q(x)=140.

We need to show that the LDP holds in a finer topology, one which will
make @ continuous. This is done in the next section.

2.3.3 Strengthening the topology

The uniform topology (2.2) defined above allows one to analyse a wide range
of queueing problems. The idea is that it controls what happens over very
large timescales. We will show that the sample path LDP of Lemma 2.2 can be
extended to it, under an additional assumption on the large timescale behaviour
of the process X~.

The results in the following chapters do not actually need a topology as
strong as the uniform topology. The only properties of the topology they use
are that it is stronger than the projective limit topology, and that it makes the
queue size function continuous. There are weaker topologies that have these
two properties, such as the weak queue topology, defined by the metric

d(x,y) = 1Qx) - Q)+ > W

This will be useful in Chapter 4. But the uniform topology makes it easier to
follow the proofs in this chapter, so we will stick with it for now.
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Condition 2 (Large timescale characteristics)
A scaling function is a function v : N = R for which v(t)/logt — co. For some
scaling function v, define the scaled cumulant moment generating function

1
AF(G) = —Af(1
HO) = S AFasu/),
for 8 € R. From Condition 1, for each t there is an open neighbourhood of the
origin in which the limit

A¢(A) = lim AF(9)

exists. Assume that there is an open neighbourhood of the origin in which these
limits and the limat

A®) = Jim A((6)
ezist uniformly in 6.
We also know from Condition 1 that for 6 in some open neighbourhood of
the origin, the limit AF(0) — Ay(0) — O is uniform as L — oo. Assume that for
0 in some open neighbourhood of the origin, the limit

v(t) (L

—Z A —A 2.
o (480 - 8) 0 (25)
is uniform in 6 as t,L — oo: that is, given € > 0 there is a ty and a Lo such
that for t > tg and L > Lo and 6 in the neighbourhood of the origin, expression
(2.5) is within € of 0.

Theorem 2.3 (Sample-path LDP for process averages)

Suppose XL satisfies Conditions 1 and 2. Then it satisfies an LDP in the space
of real-valued sequences X equipped with the uniform topology (2.2), with good
rate function I given by (2.4).

Ezample 2.2 (Many Sources)

In the case of Example 2.1, when X7 is the average of L independent processes
with common distribution X, the uniformity of the limit (2.5) is guaranteed,
since Af = Ay, ©

Proof of Theorem 2.3. The processes X’ take values in the space X' of real-
valued sequences. Write (X, p) for X equipped with the projective limit topol-
ogy, and (X, ]|-]]) for X equipped with the uniform topology. The identity map
from (X, ]-|]) to (X,p) is continuous; and we know that X’ satisfies an LDP in
(X, p) with rate function I. So, by the Inverse Contraction Principle (see Dembo
and Zeitouni [15] Theorem 4.2.4), if X% is exponentially tight in (X, ]|-||), then
it satisfies an LDP in (X, ||-||) with the same rate function.

It remains to show that X’ is exponentially tight in (X, ]|-]|): in other words
that there exist compact sets K, in (X, ]|-]|) such that

1
lim lim sup I logP(XF ¢ K,) = —o0.

a—=0 [ 400
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Choose the sets K, as follows. For each ¢, let u; = A}(0), let dr = y/logt/v(t),
let

(0, ¢]

X
Ka(t) = {X e X: T € [/lt — ady, pt +Oédt]},

and choose

Ko =) Kalt).

teN

Exponential tightness with these K, will be shown in the following two lemmas.
O

Lemma 2.4 The sets K, are compact in the uniform topology.

Proof. Because we are working in a metric space, it suffices to show that the sets
K, are sequentially compact. So, let x* be a sequence of processes. Since the
T-dimensional truncation of (,., Kq(t) is compact in R”, the intersection K,
is compact under the projective topology. That is, there is a subsequence x7(*)
which converges pointwise, say to x. It remains to show that x/ — x under the
uniform topology.

Given any €, since d; — 0 as t — o0, we can find ¢y such that for ¢ > ¢y,
2d;a < €. And since x and all the x7 are in K,

7(0,¢t 0,t
sup| 204 208

t>to t t
Also, since the x/ converge pointwise, there exists a jo such that for j > jo,

J
sup 2/ (0,¢]  x(0,1]
t<to t t

<e.

Putting these two together gives the result. O

Lemma 2.5
1
lim limsup — logP(X! ¢ K,,) = —o0.
a0 p oo L
Proof. First, note that if

lim limsup L™! logyg = —00,
a=30 [ s00

and the same is true of zZ, then it is also true of yL + zL, by the principle of
the largest term. Also note that

P(XE ¢ Ko) <Y P(XH0,8)/t > p + ady) + Y P(XE(0, 8]/t < pe — ady).
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We will adopt the strategy of breaking the infinite sums up into several parts:
several finite timescale parts, and a long-timescale infinite part. Finite timescale
parts are easy to deal with individually, and with the uniform topology we
can control the behaviour of X% over long timescales. This strategy is also
at the core of proofs for related large deviations results, proved directly by
Courcoubetis and Weber [11] and Botvich and Duffield [4].

First, fix ¢ and consider lim sup, L~ log P(XX(0,#]/t > p + ad;). By Cher-
noff’s bound,

P(XE(0,8]/t > e + ady) < exp [—Lv(t) (0(ue + ady) — AL (9))]

for any & > 0. So the expression we are interested in is bounded above by
limsup; —v(t)(0(us + ady) — AF(#)). Choosing any 6 for which A4(6) is finite,
it is clear that this quantity tends to —oco as a@ — oo.

Now for the remaining terms. We have assumed that the limits AL (6) —
A¢(0) and A (8) — A(6) exist uniformly in € in an open neighbourhood of the
origin. Since AF is a cumulant moment generating function it has a power
series expansion, and so the coefficients in the power series also converge. Let
AF(8) = Ouf + 36°st + O(6%), and denote the coefficients of Ay and A by
dropping the superscripts and subscripts appropriately.

For fixed tg, consider the remaining terms

lim lim sup % log Z exp [—Lv(t) (0(ue + ady) — Af (0))} . (2.6)

a—r 00 L—00 >to

Assume for the moment that s > 0, and pick § depending on L and t: §F =
(dy +eb)/sE, where eF = uy — pl. This gives as the typical exponent

{(dt +ef)?

L
2sy

a—1
+ O(d: + 6,{’)3} + T di(dy + ef)
t

—Lu(t)

Because of our assumption on the uniformity of convergence (2.5), there exists
a to and Lo such that for t > to and L > Ly, 6 is positive; and because d; — 0,
the term in brackets {-} is also positive. (If s = 0, pick F = d; + &£; then the
same conclusion holds.)

So the typical exponent in (2.6) is bounded above by

1
—Lo(t) T de(de +€f)
¢

for sufficiently large ¢t and L. Indeed, for sufficiently large ¢ and L we can bound
it by —Lv(t)k(a — 1)d7 for some constant & > 0. Therefore, by our choice of d;,
for ¢ sufficiently large, expression (2.6) is bounded above by

SN (a—1)k -L
lim lim sup —7 log Z tr.

=0 [0

It is easy to check that this is equal to —oo. O
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2.3.4 Stability

We have achieved the goal of a sample path LDP for averages of processes. But
it is still not directly useful for queueing applications, because the queue size
function is still not continuous on X', even with respect to the finer topology. The
problem is that there is no notion of stability. If the mean arrival rate is higher
than the service rate, the queue will be unstable. Mathematically speaking, the
queue size function is only continuous on the subspace of processes for which
the mean arrival rate is less than the service rate. Similar stability conditions
crop up again and again, so it will be useful to give the following theorem, which
shows that the sample path LDP holds in this restricted space of processes.

Definition 3 (Stability) Define the mean rate of the XL to be the derivative
A'(0). Say that XL is stationary if the limiting moment generating functions
A; correspond to a stationary process.

Note that if X” is stationary, then the mean rate is simply limz_, ., EX{.

Theorem 2.6 Under Conditions 1 and 2, the LDP of Theorem 2.3 holds on
the space X,,, which has the uniform topology and is given by
t
Xy, = {x eX: (2 ) <p eventually},

for any p greater than the mean rate of the X .

Proof. By Dembo and Zeitouni [15] Lemma 4.1.5, it suffices to show that {x :
I(x) < oo} C X, and for L sufficiently large, P(XL € X)) =

Recall that I(x) = sup, Af(x(0,¢]). Let p = A’(0) + ¢, and pick 6 > 0 such
that A(8) < 8(u — 3¢). Now if z(0,¢]/t > p, then for sufficiently large ¢,

* z(0,¢
A (0,1 = sup - x(0,1] = 4,(0) 2 00(0)(ZF = 4 = 1)) 2 w0
So if x ¢ X, then this inequality holds for infinitely many ¢, and since v(t) is
unbounded, I(x) = 0.

Second, since AX(0) — A4(#) uniformly for ¢ sufficiently large, and A4(6) —

A(0), there exists 9 > 0 such that for L and ¢ sufficiently large, AL (9) < 6(u —
%z—:) Then, by Chebychev’s inequality,

> or(F > ) < 3o (~matoon - o)

which is finite for L sufficiently large. So, by the Borel-Cantelli lemma, P(X% €
X,) =10

2.4 Examples

We have already given the example of the many sources asymptotic, in which X”
is the average of L independent processes. We now give three more examples.
The first shows how large buffer results can be obtained from the same theorems
(though they usually turn out to have a less rich structure).
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Ezample 2.3 (Large Buffer)
Given a base process X, let X2(0,#] = f(L)71X(0, f(L)t]. This is the large
buffer asymptotic regime. For a variety of processes X it is possible to choose
a normalising function f(L) such that Condition 1 is satisfied. Often, the nor-
malising function is just f(L) = L, and the limit A; has the simple linear form
A(0) = E';:l A, (6;). For an account of conditions under which this occurs,
see Dembo and Zajic [14]. In Example 2.5 below, the normalising function is
not linear and A; has a more complicated form.

Suppose for now that A; has the simple linear form: this gives as the rate
function I(x) = >, Aj(x¢). Then Condition 2 is satisfied. To see this, choose
v(t) = t, so that A(f) = A;(). Since AL(6) is given by

1
AF@B) = 7 logEexp (#X (0, Lt)),

and we have assumed that this converges as L — oo, we can by choosing ¢t and
L sufficiently large make AF(#) — A4(8) arbitrarily small. Thus the limit (2.5)
is uniform as t, L — oco. O’Connell [43] describes sample path large deviations
under the large buffer asymptotic in more detail. <&

The second example is of fractional Brownian motion, a process with long-
range dependence, by which we mean that the sum of covariance coefficients
Yoo Cov(Xo, X;) is infinite. This makes it both appealing as a model for In-
ternet traffic, since this phenomenon has been observed empirically by Leland
et al. [33] and others, and also a problem for the standard large buffer asymp-
totic. But under the many sources asymptotic, it looks just like any other
process.

Ezample 2./ (Fractional Brownian Motion with Many Sources)
As an illustration of the many sources asymptotic, let X% be the average of
L independent copies of the process X, defined by X(0,t] = A\t + 0Z; where
Zy is a fractional Brownian motion with Hurst parameter H. Then A:(0) =
2O -1 + %020 - 510, where the t x ¢t matrix S; is given by (S;);; = %(L] -4 —
1P 4 |j — i+ 1PH — 2|5 —i|*H), and so A¢(01) = N0t + 2026%¢>H.

To check that Condition 2 is satisfied, choose the scaling function v(t) =
2=H) "so that AF(#) = A0 + 20262, This does not depend on L or ¢, so it is
also equal to A(f) and A(F). &

Ezample 2.5 (Fractional Brownian Motion with Large Buffer)
To contrast the many sources and the large buffer asymptotic, consider the large
buffer version of fractional Brownian motion. Let X be a fractional Brownian
motion with Hurst parameter H, as in the previous example. Choose the scaling
XE(0,t] = f(L)™'X(0, f(L)t] with f(L) = LY/2(=H)_ This gives A (61) =
A (61) = N0t + 2520%¢*H | the same expression as before. This is not linear in
t, so A¢(0) does not have the simple linear form described in Example 2.3.
For Condition 2, as with any large buffer example the limit (2.5) is uniform
for any scaling function v, and as in Example 2.4 we can choose v(t) = t2(1=H),
Applying the results in Chapter 3 to the LDP we obtain from this, we can
rederive a result of Duffield and O’Connell [19] for the workload in a queue fed
by a single fractional Brownian motion source. <
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The final example is of Moderate Deviations. This refers to a family of
results somewhere between the Central Limit Theorem and Large Deviations.
There is not yet a standard reference for moderate deviations; see de Acosta
[12] and Deo and Babu [16] for related results.

Suppose that X’ is the average of L independent processes distributed like
X, and let p = EX. The central limit theorem looks at the limiting behaviour
of L'/? (XL — p); it produces estimates based on the normal distribution and
involving only the mean and covariance. Large deviations on the other hand can
be thought of as looking at the limiting behaviour of (X¥ — u); the estimates
it produces involve the entire distribution, but they are simple because they
depend only on the most likely path.

Moderate deviations sits between these: it looks at the limiting behaviour
of L”/Z(XL —p) for 0 < v < 1, and produces estimates involving only the mean
and covariance and depending only on the most likely path. To be precise, let
us say that X’ satisfies a moderate deviations principle if

1
L=
satisfies the upper and lower large deviations bounds (2.1), with a good rate
function which depends only on the covariance structure.

logP(L"*(X* — u) € B) (2.7)

Ezample 2.6 (Moderate Deviations)
Let

YN = VNV A XN ).

If YV satisfies the conditions of Theorem 2.3 we obtain estimates of the quantity
(2.7), where L = N*/(1=7),

Further, we know that the log moment generating function for X*(0,¢] does
not depend on L since X’ is assumed to be the average of independent copies
of X. Let it be

A{(0)=60 p,+10-T0+--.
Then the log moment generating function for Y%(0,1] is
M/ (6) = 16 -T16 + O(1/VL)

and so the rate function, which depends on the limit M;, only involves the
covariance structure I';. <

We shall revisit this example in the next chapter, to see what moderate
deviations tells us about queue size.

2.5 Summary

For most of the rest of this thesis, all that matters from this chapter is the
following, a restatement of Theorem 2.6. In Chapter 4 we need to pay a little
more attention to the conditions under which this theorem is satisfied, but for
the rest all we need is the notation and the result.

Consider the space X of real-valued processes x = (x1,2,...) indexed by
the natural numbers. Write x(0,t] for (z1,...2:), and z(0,¢] for x; + - - + z;.
Consider a sequence of random processes X in X
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Theorem 2.7 (Sample path LDP) Under Conditions 1 and 2 (on pages 8
and 10), XL satisfies a large deviations principle with good rate function

I(x) = sup sup € -x(0,t] — A¢(0),
>0 OER!

where A(0) is the moment generating function
.1 L
LlL}H;O 7 log Eexp (LH - X*(0, t]),

in the space

x(0, ]
t

X, = {x eX: <u eventually},

equipped with the uniform norm

z(0, ]

[[x[| = sup
t>0

)

for any p greater than the mean rate of the X* (Definition 3 on page 13).

This result will be used to study the large deviations behaviour of a variety of
queueing systems. It lets us estimate the probabilities of events we are interested
in, and also gives a good idea of how those events are likely to occur. Some of the
systems can easily be studied directly—but the indirect route, via this sample
path LDP, can give more insight. It also means there is less additional work for
each different application.



Chapter 3

Queues

In this chapter we use the sample path LDP of Chapter 2 to study large de-
viations in three different queueing problems: in Section 3.3 we study overflow
in standard first-in—first-out queues with finite and infinite buffers; in Section
3.4 we study the sample paths that lead to overflow; and in Section 3.5 we
study overflow in queues which give some flows priority over others. There are
many other possible applications: for example, in Chapter 5 we use it to analyse
control algorithms for routers.

The common approach will be to take the sample path LDP and then apply
the Contraction Principle to find an LDP for the quantity of interest. The
contraction principle says that if X’ satisfies the sample path LDP in X, with
rate function I, and if f is a continuous function on X, then f(X’) satisfies a
LDP with good rate function I(y) = inf{I(x) : x € A),, f(x) = y)}. See Dembo
and Zeitouni [15] Theorem 4.2.1 for a proof.

In Section 3.6 we describe our results in the more practical language of
effective bandwidths. First, though, we relate the abstract setting of the last
section to queueing models, and describe the limiting regime.

3.1 The queueing model

Consider a sequence of queues, indexed by L, in which the Lth queue has service
rate C' and buffer size B. Let X} be the total amount of work arriving at the
Lth queue at time —t. (Depending on the context, X will variously be called
an input process, a source, or a traffic flow.)

There are several ways in which we can interpret this, depending on what
XL represents, though none of the results in this section rely on a particular
interpretation. Here are three possibilities, corresponding to three examples
from the previous chapter.

The first example is the one we have in mind throughout this thesis: when
the total input flow is the aggregate of many independent input flows. This
sort of scaling is well-suited to modern telecommunications networks, in which
a router may have thousands of inputs.

Ezample 8.1 (Many Sources)
In the many sources asymptotic, X’ is the average of L independent identically
distributed flows. So the Lth queue can be thought of as multiplexing together

17
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L different flows, with its resources growing in proportion: it has service rate
LC and buffer size LB. &

The next example has been much more widely studied. For Markov modu-
lated fluid sources and for many others, the probability of loss decays exponen-
tially in buffer size, so a good way to reduce loss is to make the buffers larger;
and it is natural to study asymptotic regimes in which the buffer size increases.
The observation that this is largely inaccurate when there are many input flows
or when the sources exhibit long-range dependence (see Choudhury et al. [7]
and Leland et al. [33] for example) has prompted some of the work on the many
sources asymptotic.

Ezample 3.2 (Large Buffer)

In the large buffer asymptotic, described in Example 2.3, X” is a speeded up
version of a base process: XL(0,¢] = f(L)~*X (0, f(L)t]. So the Lth queue can
be thought of as having a single input X and fixed service rate C, but increasing
buffer size f(L)B. ¢

The final example looks at a different sort of limit, in which the impacts
of the mean arrival rate and burstiness are treated differently. It has some
appealing features: the probability of overflow depends on the input processes
only through their mean and covariance structure, which makes calculations
easier.

Ezample 8.8 (Moderate Deviations)
Moderate deviations theory, described in Example 2.6, lies between large devi-

ations theory and the central limit theorem. Let X* = /M(Y™ — u) where
Y™ is the average of M independent stationary sources distributed like Y,
pw=pl=EY, and M = L"/(1=7)_ So the Lth queue can be thought of as having
L independent input flows each distributed like Y, service rate Ly + L1 =7/2C
and buffer size L=/ B. &

3.2 Related work

The work in this chapter and the one preceding was motivated by the results
of Courcoubetis and Weber [11] and Botvich and Duffield [4], who find large
deviations rate functions for the amount of work in a queue and the event
of overflow. Duffield [17] has treated separately the case of nonlinear scaling
functions. These authors proved their results directly, but we will start with
the sample path LDP and apply the contraction principle. Ours is a more
general method, and it lets us fill in some gaps: in particular, we give the large
deviations rate function for workload in a queue with a finite buffer. Simonian
and Guibert [52] obtain similar results for a special class of input processes,
Markov-modulated fluid sources. Botvich and Duffield describe both continuous
time and discrete time models, but we will restrict our attention to the discrete
case.

The large deviations estimates for overflow probability can be refined using
the Bahadur-Rao improvement as described by Likhanov and Mazumdar [34].
Their techniques involve a lot more technical details and give only a little extra
insight, so we stick with large deviations.
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Another benefit of the sample path LDP approach is that it tells us the most
likely sample path to overflow. Weiss [57], who introduced the many sources
asymptotic, obtained similar results for the special case of an on-off Markov
source using direct methods; and Mandjes and Ridder [40] have too for Markov-
modulated sources and periodic sources. Our results hold much more generally.

The contraction principle approach has been applied widely to the large
buffer asymptotic, described in Example 3.2. See O’Connell [42, 43|, Duffield
and O’Connell [19] and Paschalidis [46] for examples. We will see that under
the many sources regime, large deviations often possess a richer structure.

The final queueing problem studied in this chapter, that of the priority
queue, has been studied by Berger and Whitt [2], who independently obtained
similar results for the large buffer asymptotic. Related queueing models under
that asymptotic are described by Kulkarni et al. [32] and O’Connell [45].

3.3 Buffer size in a queue

In this section we look at a standard queue with a constant service rate. The
following results have previously been proved directly; but it is instructive to
see the techniques used in deriving them from the sample path LDP, as these
same techniques will be used in the following sections.

Consider a queue with constant service rate C' fed with input process x. The
amount of work in the queue at time —s may be defined to be lim;_, o, Q4 (x(0,¢]),
where Q5(x(0,¢]) is given by the Lindley recursion

+
stl = (Qs + s — C) ; Qt =0.
If the input is a stationary process, the stationary queue size may be written as

Q(x) = sup z(0,t] — Ct.
¢

Lemma 3.7 shows that this function is continuous on X, for any p < C. By
the Contraction Principle, this immediately gives Corollary 3.1: an LDP for
workload in queues with infinite buffers, which when simplified duplicates the
results of Botvich and Duffield [4] for linear scaling functions v(t), of Duffield
[17] for general scaling functions, and of Simonian and Guibert [52] for the
special case of Markov-modulated fluid sources.

Corollary 3.1 Under the conditions of Theorem 2.7, if XX has mean rate less
than C' then Q(XT) satisfies an LDP with good rate function

I(b) = inf I(x).

( ) xeXc:Q(x)=b ( )
Proof. The only point to note is that the infimum is taken over X. But it
might as well have been taken over X, for any p greater than the mean rate and
less than C, since the rate function will be infinite on X\ X, by Corollary 2.6. O

We can do the same thing for queues with finite buffers. The queue size @
in a queue with a finite buffer B is defined similarly to @, except that it cannot
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fill to greater than B and any excess work is discarded. This is expressed by
the recursion

Qse1 = (Qs +2,—C)" AB, Qy=0.

Lemma 3.7 also shows that @ is a continuous function of the input process, and
so we obtain Corollary 3.2: an LDP for workloads in queues with finite buffers.

Corollary 3.2 Under the conditions of Theorem 2.7, if XL has mean rate less
than C' then Q(XT) satisfies an LDP with good rate function

I(b) = inf I(x).
() xEXc:Q(x)=b ( )

These expressions for the rate functions are not very informative, and so
Theorem 3.3 gives a more manageable expression for I (b). In fact, if the process
is stationary, then for b < B, I(b) and I(b) are identical (and for b > B,

I(b) = o0); this is shown in Theorem 3.4. The proofs of these theorems are
deferred to the end of this section.

Theorem 3.3 Under the conditions of Theorem 2.7, if Ay(01) < Ct at @ =0
for all t, then I(b) is increasing in b and is given by

I(b) = inf I 3.1
)= ot 1% (3.1)
= 11t1f xERt:x(l(?,f]:b-i-Ct A;(x(0,¢]) (3.2)
= irtlf sup 8(b + Ct) — A (61). (3.3)

9

Theorem 3.4 If I(b) is finite, then the optimal timescale t and the optimizing
path f((O,ﬂ are both attained; and if the optimal spacescale 6 is attained then

%(0,] = VA;(61).

For a queue with a finite buffer B and stationary input whose mean rate is less
than C, if b < B then I(b) = I(b) and the same path X is optimal.

The optimal 6 and t appearing in Theorems 3.3 and 3.4 are called the oper-
ating point or the critical spacescale and timescale of the queue. Courcoubetis
et al. [10] give a detailed account, with simulation results, of how they are af-
fected by the traffic mix and the queue parameters under the many sources
asymptotic regime.

Examples

To illustrate the different forms that this rate function can take, we will go back
to the three examples of Section 3.1—the many sources asymptotic, the large
buffer asymptotic, and moderate deviations—paying particular attention to the
interpretation of the critical timescale.
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Ezample 3.4 (Many Sources)

As in Example 3.1, consider a sequence of queues indexed by L in which the
Lth queue Q' is fed by an aggregate LX” of L independent inputs and has
service rate LC, and suppose the event of interest is that the queue size reaches
Lb. As in Example 2.4, let each source be a fractional Brownian motion with
mean rate A and Hurst parameter H. We can calculate the critical spacescale
and timescale:

é:7b+(q_/\)t and
0’2t2H
C—-\1-H

(or rather, ¢ is an integer close to this value; but we will ignore this minor
complication.) This gives rate function

1 H 2(1—H) 1

- 2(1—H) _ 2H | 7% =
1) = 55b (C =)\ (1_ H) —

and large deviations approximation
log P(Q*(LX") = Lb) ~ —LI(b) for large L.
&

Under the large buffer asymptotic the rate function is exactly the same, but
it has a very different interpretation, as we now illustrate.

Ezample 8.5 (Large Buffer)

Instead of a sequence of queues we will consider a single queue with fixed service
rate C' and fed by a single input flow X, as in Example 3.2. Let the input flow
again be a fractional Brownian motion, and consider the event that the queue
size reaches f(L)b, where f(L) = L'/?(0—H),

As we saw in Example 2.5, the moment generating function A; is exactly the
same as for the many sources asymptotic, and so the rate function I(b) is the
same too. This similarity disguises the fact that the results have very different
interpretations. To see this, note that b is just a scaling factor so we may as well
set b=1, and let 8 = f(L). Then the large deviations approximation amounts
to

log P(Q(X) = ) ~ —g*=H (1) for large 5.

Notice that when H = % the decay is exponential in 8: many other sources
including Markov-modulated fluid sources share this exponential decay. But
when H > % the source has long-range dependence and the decay is less than
exponential, which means that increasing the buffer size does not give as much of
a reduction in loss probability. This phenomenon was observed in real network
traffic by Leland et al. [33], and it has stimulated much interest in long-range
dependent traffic models. But as we saw in the last example, it makes no
difference to the many sources approximation whether H = £ or H > . ¢

There are some noteworthy differences between the many sources and large
buffer asymptotics as regards the critical timescale ¢ identified in Theorem 3.3.
We illustrate the differences in the next example.
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Ezample 3.6 (Timescales)
In the many sources asymptotic, the timescale £ is easy to interpret: it is the
length of time which the buffer is most likely to take to fill from empty to a given
level Lb. In the large buffer asymptotic, ¢ has a slightly different interpretation.
It is a scaling parameter which relates the buffer level f(L)b to the time taken
to reach that level, f(L)t.

In the latter case, the time taken to fill the buffer tends to infinity and so
the rate function I(b) depends only on the infinite-time characteristics of the
source. For Markov-modulated fluid sources (and many other sources which
satisfy conditions described by Dembo and Zajic [14]), it is appropriate to take
f(L) = L and so A¢(61) = tlimy,_,o L ' logEexp(6X(0,L]). Then the rate
function I(b) simplifies to I(b) = supy 6b, where the supremum is taken over all
0 such that A;(8) < C.

By contrast, under the many sources asymptotic the rate function depends
on the characteristics of the source logEexp(0X(0,%]) over all timescales t. <

Our final example is a moderate deviations result for fractional Brownian
motion. The distinguishing feature of moderate deviations results is that the
rate function I(b) depends only on the mean and covariances of the source,
but since Gaussian sources are completely characterized by their means and
covariances this feature is not apparent here. We wish instead to draw attention
to the way that in moderate deviations the mean and the covariances are treated
differently.

Ezample 3.7 (Moderate deviations)

As in Example 3.3 consider a sequence of queues indexed by L, where the Lth
queue is fed by L independent sources and has service rate LA + L(1—7/2)C,
and suppose the event of interest is that the queue size reaches L1=7/2)p. As
before, let each source be a fractional Brownian motion of mean rate A and
Hurst parameter H.

As noted in Example 2.6 the generating function A; depends only on the
covariance structure, and one can calculate A.(61) = 10262tH. This gives a
rate function I(b) similar to that in Example 3.4, but without the A.

The reason for this difference is that in setting the service rate to LA +
L(=7/2)C we are assuming that the queue is already provisioned to cope with
the mean rate, and so any loss is attributable to the variance of the input. <&

More LDPs

There are actually three more LDPs which are useful, but which are easily
confused with Corollaries 3.1 and 3.2. The first gives the probability that a
queue with an infinite buffer is non-empty. At first sight, we can find this from
Corollary 3.1: just consider the event b > 0. But the large deviations upper
bound we get is useless, because it involves the closure of this set—which is
b > 0, the entire space. So for a better bound, we can go back to the sample
path LDP and look at the closure of the set of sample paths for which Q(x) > 0,
now not the entire space. The same technique can be used for the events that
a queue with a finite buffer is non-empty or overflows. The infinite buffer result
has been proved by Botvich and Duffield [4], and the finite buffer results have
been proved by Courcoubetis and Weber [11]. The proof of Corollary 3.5 is
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deferred to the end of this section. The proof of Corollary 3.6 is similar, and is
omitted.

Corollary 3.5 Under the conditions of Theorem 2.7, if XX has mean rate less
than C, then the event {Q > 0} has large deviations lower bound —I(0") and
upper bound —I1(0). If in addition B > 0 then the event {Q > 0} has the same
large deviations bounds. Here, I(b") =limg; I(b) and I'T(0) is given by

It(0) =supfC — A (01).
0

Corollary 3.6 Under the conditions of Theorem 2.7, if X" is stationary and
has mean rate less then C, then the event that () overflows has large deviations
lower bound —I(B™) and upper bound —I(B) (or —I7(0) if B =0).

Proofs

The rest of this section is given over to proofs.

Lemma 3.7 The queue size functions Q and Q are continuous on Xy, if p < C.

Proof. Consider a sequence of processes x* — x in A, under the uniform

topology. That is, given €, there is a ko such that for k£ > ko,

k
up| 2011 (0.1

<e
t t t

And since x € &), there is a ¢ such that for ¢ > o,
z(0,t]/t < p.

Then for k > kg and t > tg, choosing ¢ = C' — p,
zF(0,t)/t < C

and the same holds for x. So the expression for queue size @) simplifies: for
k > ko, Q(xF) = Q(x*(0,0]), and the same holds for x. Thus for k > ko,

1Q(x") = Q(x)| = | sup(*(0,#] — Ct) — sup(x(0,t] — Ct)|
t<to t<to
which tends to 0 as k — oo.

Now for Q. Since Q(x) = Q(x(0,%]), the infinite-buffer queue must empty
at some time in [—tp,0]. For suppose it does not. Let s < ¢y be the last time
at which the queue, started from empty at —to, is empty; then Q(x(0,%p]) =
Q(x(0,s]) = z(0,s] — Cs. But Q(x) = ¢+ (0, s] — C's where ¢ > 0 is the queue
size at time —s, leading to a contradiction.

So ) empties at some time in [—ty,0]. So too must @, because Q < Q. In
other words, Q(x) = Q(x(0,%]). The same holds for x* for k sufficiently large,
and so we deduce that @ is also continuous. O

Proof of Theorem 3.3. If b = 0, then (3.2) and (3.3) take the value 0 at ¢ = 0.
Now consider the sample path given by x(0,t] = VA.(0). This is constant,
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taking the value of the mean arrival rate, so Q(x) = 0. And it has rate I(x) = 0,
so (3.1) also takes the value 0. So restrict attention to the case b > 0.

Note that because b + Ct is greater than A;(f1) at § = 0, we may take the
supremum only over 6 > 0; thus (3.3) is increasing in b.

First, (3.2) = (3.3). Fix t. Then X%(0,#] - 1 is just a real-valued random
variable, and from Condition 1 it satisfies an LDP with good rate function given
by the expression in (3.3). Another way of finding this is by contracting from
the sample path LDP for X(0,#], which gives as rate function the expression
in (3.2). By the uniqueness of the rate function, these are equal.

Next, (3.1) > (3.2). It will be helpful to introduce some new notation. For
a finite process x and an infinite process y, write x :: y for the concatenation of
the two. And recall that we may replace X¢ in (3.1) with X, for any u greater
than the mean arrival rate and less than C', because by Theorem 2.6 the sample
path rate function is infinite on X¢ \ X),.

Suppose that (3.1) is finite (otherwise the inequality is trivial). The sample
path rate function I is good, so an optimal path % is attained. Now Q(x) =
sup; Z(0,t] — Ct = b, and this supremum must be attained since otherwise there
is a sequence t,, for which %(0,%,]/t, — C, which cannot happen in &,. So
% = %(0,# :: ¥ for some y, with #(0,#] = b+ Ct and Q(y) = 0. Clearly
A (x(0,]) is increasing in t for any x, so

I(x) =sup A, (% = y(0,5]) 2 A} (x(0,1]).
Taking the infimum over ¢ and x(0, ¢] gives the result.

Finally, (3.1) < (3.2). Assume that (3.2) is finite (since otherwise the in-
equality is trivial). For a given ¢, an optimal %(0,] is attained by goodness
of the rate function A;. And an optimal t is also attained. For suppose not,
and take a sequence t, — oo and x"(0,t,] with 2™(0,¢,]/t, — C and A} (x")
bounded above by K say. By the contraction principle and the goodness of the
rate function I, we can extend x™(0,t,] to x"(0,00), with I(x™) < K. Since I
is good it has compact level sets, so the x™ have a convergent subsequence, say
x* — x, also with I(x) < K. But then z(0, ]/t — C also, and so I(x) = oo,
giving a contradiction.

By the contraction principle and the goodness of the rate function, we can
extend %(0,#] to % = %(0, 00), where I(%(0,#]) = I(%). If Q(X) = b the inequality
is proved. So suppose Q(x) = b' > b. Then there is some s > ¢ with 2(0,s] = b'.
But then

inf inf A} (x) > inf inf A% (x) > inf inf Al (x),
t x:x(0,t]=b+Ct s>t x:2(0,s]=b'+C's s>t x:22(0,s]=b+C's

where the last inequality is because for fixed ¢, (3.3) is increasing in b. The in-
equalities must then both be equalities. We can repeatedly apply this argument
until we find an optimal x such that Q(x) = b. For otherwise, as in the previous
paragraph, there are arbitrarily large optimal #, leading to a contradiction. O

Proof of Theorem 8.4. First, we prove that I(b) = I(b). If I(b) is infinite
then I(b) must certainly be infinite, as any path which makes Q(x) = b makes
Q(x) > b. So suppose I(b) is finite, and let the optimizing path in Theorem 3.3
be %(0, ﬂ We may assume that this path never causes the buffer to exceed level
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b. For suppose that under x the buffer reaches level b’ > b at time —s. Consider
the truncated process %(0, s] = x(— s, #]. By stationarity, A}(%) > A%(%). And

A: (i) = xERS:z(ig}f]:b’Jrcs A: (X) = xERS:z%(I)l,f;]:bJrcs A: (X),
where the second inequality follows because (3.3) is increasing in b. Because the
optimal path does not cause the buffer to exceed level b, it is also optimal for
the finite buffer case; and so I(b) = I(b).

Now fix ¢ and suppose that 6 is optimal in (3.3). By Condition 1, A; must be
differentiable at f1. Set x = VA.(f1). Differentiating (3.3) gives x-1 = b+ Ct.
But by Dembo and Zeitouni [15] Lemma 2.3.9, A} (%) is equal to (3.3), and so
x is optimal. O

Proof of Corollary 3.5. Let F be the event that () > 0. For the large deviations
lower bound we will prove that infxep I(x) = limyio I(b), and for the large
deviations upper bound,

This reduces to

%I>1(f) s1;p 0Ct — A (01)

as in Theorem 3.3. By convexity, A;(81) < A;(61), so the optimum is attained
at t = 1 and we are left with I7(0).

Since F' = Upso{Q = b}, infxcpI(x) = infyso I(b). But because I(b) is
increasing, this is limy o I(b).

LHS < RHS in (3.4). Suppose z(0,t] = Ct for some t > 0. For € > 0, let
x° = (21 +€&,22,...). Then Q(x*) > 0sox® € F. But ase — 0, x* — X, so
x € F. Thus {x: 3t > 0,2(0,t] = Ct} C F. Taking the infimum of I over these
sets gives the result.

LHS > RHS in (3.4). Let x € F. Then there exist x" — x in F, and
Q(x") = Q(x) by Lemma 3.7. If Q(x) > 0 then

I(x) > g% I(b) > t11>1(f) Sl;p 0Ct — A (01)

because the optimal # in (3.3) must be strictly positive for b > 0.
So suppose Q(x™) — 0. As in Lemma 3.7, there exist an ng and ¢, such that
for n > nyg,

Q(x") = sup z"(0,t] — Ct.

t<to

And because Q(x™) > 0, the supremum must be attained at ¢ > 0. Some ¢
must be repeated infinitely often as n — oo; for that ¢, £(0,¢] = C't. Taking the
infimum over such x gives the result.

Now for {@ > 0}. If Q(x) > 0 then Q(x) > 0 also, so the same upper bound
works. And as for Q > 0, the lower bound is straightforward. O
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3.4 Paths to Overflow

The expression for the rate function in Corollary 3.1 tells us more than just the
probability that the queue size reaches a certain level: it tells us how the queue
reaches that level. Because the rate function I is good, the infimum in

I(b) B xEC:lg{x)Zb I(X)
is attained. And Theorems 3.3 and 3.4 tell us what that sample path looks like:
x is the path most likely to make the queue fill from empty to level b, and it
takes time ¢ to do so. Furthermore, the sample path LDP tells us the likelihood
of any deviation from this path.

The problem of most likely paths to overflow under the many sources asymp-
totic has been studied before using direct methods. Weiss [57] solves it for
two-state Markov-modulated fluid sources, and Mandjes and Ridder [40] solve
it for general Markov sources and for periodic sources. The advantage of our
sample path LDP method is that it can be applied very easily to general input
processes.

Ezample 3.8 (Markov-modulated fluid source)

Let X% be the average of L independent sources distributed like X, where X is
a Markov chain which produces an amount of work h each timestep while in the
on state and no work while in the off state, and which flips from on to off with
probability p and from off to on with probability ¢q. If € and ¢ are the critical
space and time scales, then the most likely path to overflow is given by

E(Xs et’)X(O,t])
We may compute E(e?X(®1| X;) by conditioning on X;. By reversibility, this is
equal to E(e?X[-59|Xy), and by stationarity it is equal to E(e?X[08)!Xt), This
lets us compute E(X,e?X (| X,) and hence z,. For s € (0,] the solution is

qheehAtfsAsfl
qAt + pBy

AN _ [ @=pe™  p \' (1
(5)-("8 ) (1)

If p4+q < 1 the path to overflow s — x, is concave over s € (0, t]: the sources
start slowly, then conspire to produce lots of work in the middle of the critical
timeperiod, then slow down again at the end. (If p+ ¢ > 1 it is convex.) An
example is illustrated in Figure 3.1. The parameters of the process are p = 0.4,
qg = 0.2, h = 2. The service rate for the queue is C' = 1 and the buffer size is

B = 1.3, giving critical spacescale § = 0.282 and critical timescale ¢t = 6.
Multistate Markov models exhibit more varied behaviour. <

Ts =

where
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Figure 3.1: A sample path to overflow. The source is a Markov-
modulated on/off source, as described in Example 3.8. The most
likely path to overflow is convex: the sources start slowly, then con-
spire to produce lots of work in the middle of the critical timeperiod,
then slow down again at the end.

Ezample 3.9 (Gaussian sources)
Suppose X’ is the average of L independent Gaussian processes, each with
mean A\ and covariance structure Cov(Xp, X;) = ;. It is easy to work out the
optimal path: VA(61) = A1 + 0V'1, where Vi; = v,;_j.

Consider the earlier fractional Brownian motion example, Example 2.4. For
this process, 7; = 307 ((i — 1)*# — 2> 4 (i + 1)?H) and so the most likely path
to overflow is given by

2= A+ 3002 (27 = (= 127 4 (t— i+ )M (- i),

IfH > %, the source exhibits long-range dependence, and the most likely input
path x leading to overflow is concave; whereas if H < %, the path to overflow is
convex.

Now let X be a single-step autoregressive process: X; = A + a(X;—1 — \) +
(1—a?)et, where e, ~ N(0,0?) and |a| < 1. Then v, = o%a’, and the most likely
path to overflow is

1— i 1— t—i+1
mi:/\—|—002<1+ a4 a4 >

l—a+ 1—a

If @ > 0 then path to overflow is concave; whereas if a < 0, it starts and finishes
at a high rate and in between it oscillates. An example is illustrated in Figure
3.2. The parameters of the process are A = 0.7, a = —0.5, and 02 = 1. The
service rate for the queue is C' = 0.8 and the buffer size is B = 0.9, giving
critical spacescale # = 0.575 and critical timescale t = 7. &

Ezample 3.10 (Large Buffer)

By contrast, in the large buffer asymptotic it is often the case that the process X
leads to a limiting generating function A; with the simple linear form A;(0) =
>>A1(0;). (See Dembo and Zajic [14] for conditions under which this is so.)
Then, because A is convex, the most likely path x to overflow is constant, and
so the queue fills up at a steady rate. <



CHAPTER 3. QUEUES 28

Service rate

Incoming work

Queue size

Figure 3.2: A sample path to overflow. The source is a first-order au-
toregressive process with negative correlation coeflicient, as described
in Example 3.9. This means that the most likely sample path to over-
flow is oscillatory and the queue fills up in an irregular fashion, over
the critical time period (0, 7].

3.5 Priority Queues

The sample path LDP for the average of processes can be applied to a wide
variety of queueing models. We have seen in the last two sections how it gives
overflow probabilities and sample paths to overflow for a standard queue. As
a further illustration of the power of the technique, in this section we look at
another queueing discipline: the priority queue. This has been studied under
the large buffer regime by Berger and Whitt [2], and related queueing models
have been studied by Kulkarni et al. [32] and O’Connell [45].

Consider a sequence of priority queues, indexed by L. The Lth queue has
two inputs, LX and LY, and service rate LC. Think of X* and Y’ as the
averages of L processes. The two flows are assumed to be independent. The
first flow X! has high priority; the second flow Y% has low priority. Let Q%
and R be respectively the stationary amounts of high-priority and low-priority
work waiting to be served.

Kelly [29] notes that the amount of high-priority traffic () is exactly the
amount of work in a standard queue with service rate C' and only the high-
priority input X, and that the total amount of work ) + R is the amount of
work in a standard queue with service rate C' and the aggregate input X + Y.
Therefore, results from Section 3.3 can be applied directly to find the high-
priority loss probability and the aggregate loss probability. But this leaves
some open questions, such as how much low-priority work there is in the queue.
Such questions can be answered with methods very similar to those of Section
3.3.

Theorem 3.8 Suppose that X* and Y¥ satisfy the conditions of Theorem 2.7
with limiting moment generating functions Ay and M, respectively. Suppose
also that the sum of the mean arrival rates for XL and YT is strictly less than
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C. Then the pair (Q*, RY) satisfies an LDP with good rate function

I(qg,r) = inf sup A7 (x(0,t]) + sup M; (y(0, t]). (3.5)
xEXc,yEXc: t t
Q(x)=¢,R(x,y)=r

This is bounded below by

irtlf Héft. supf(g+ Cs) + ¢(r + C(t — s)) — A¢(01(0, s] + ¢1(s, t]) — Mi(ol).
s<t 9 ¢

(3.6)
Let I(-,r) =infy>0 I(q,r). This is bounded below by

inf sup 0(r + Ct) — A+ (1) — M,(01). (3.7
toy

Proof. Let Ix(x) = sup, A;(x), and define Iy similarly. Because X% and Y%
are independent, the pair (X%, Y¥) satisfies an LDP with good rate function
I(x,y) = Ix(x) +Iy(y). Let A and p be the mean rates for X~ and Y%. Since
A+ u < C, we can pick an € > 0 such that A+ pu+2¢ < C: then by Theorem 2.6,
(XE,YL) satisfies the LDP on (X\4c, X,+c), and the rate function I is infinite
outside this space. So if we can show that (@, R) is continuous on this space,
then using the Contraction Principle we can deduce the LDP for the priority
queue.

Now @ depends only on the high priority process: it is defined as though
there were no other inputs to the queue. So by Lemma 3.7, it is continuous
on Xyie. Also, @ + R is the aggregate workload, and does not depend on
the structure of the queue: so again by Lemma 3.7, @ + R is continuous on
Xate X Xyqe. Thus (@, R) is continuous.

The bound on the rate function I(g,r) may be obtained by noting a few
properties of the optimal paths to overflow. If I(g,r) is finite the optimal paths
must be attained, because the rate function is good. As in Theorem 3.3, there
must be a last time —t at which the high priority and low priority queues are
both empty. And there must be a last time —s > —t at which the high priority
queue is empty. Because Q(x) = ¢, it must be that z(0,s] = ¢ + Cs. And
because R(x,y) =r, it must be that z(s,t] + y(0,t] =7 + C(t — s). So

I(g,r) > inf inf inf Aj(x) + M(y). (3.8)
t s<t x,y€R®:
z(0,s]=¢+Cs,
z(s,t]+y(0,t]=r+C(t—s)

Now fix s and t. As in Theorem 3.3, the pair (X1(0,s], XL (s,t] + Y£(0,t]) is
just an R?-valued random variable, and by Assumption 1 it satisfies an LDP
with a good rate function which simplifies to the expression in (3.6). An-
other way of finding this LDP is by contracting from the sample path LDP
for (X£(0,t],YL(0,t]) which gives as rate function the expression in (3.8). By
the uniqueness of the rate function, these are equal.

We can obtain the lower bound on I(,r) in a similar way, by noting that if
R(x,y) = r then there exists a last time —¢ at which both queues were empty,
and since then z(0,t]+y(0,t] > r+ Ct. The argument of the previous paragraph
can be applied to paths for which «(0,t] + y(0,t] = ¢ + r + Ct. The resulting
expression is increasing in ¢ (it is a special case of (3.3) which is increasing in
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b), and setting ¢ = 0 yields the result. O

To help interpret this result, we will give an alternative description in terms
of the service seen by the low priority flow. A sensible first guess would be that
the service is a random amount, the service rate C' less a random amount of high
priority work. More thought would throw up various complications about queue
sizes and leftover workloads. In fact, it turns out that in some cases the first
guess is correct and in other cases these complications do arise, and a system
can switch from one regime to the other as its parameters change. We will give
an example to illustrate this transition.

In making precise the idea of the service seen by the low priority flow, we
will use the theory of effective bandwidths. The effective bandwidth A(6,t) of a
flow is a measure of the impact it has at a queue. It lies between the mean and
peak bandwidths, and is defined by

A8, 1) = %At(m).

Effective bandwidths are described more fully in Section 3.6, where we show the
following: if a queue is fed by many input flows of effective bandwidth A(6,t)
and has critical point (é, t), then replacing a small number of the input flows by
flows of constant rate A(9, ) does not affect the loss probability.

Effective bandwidths can also describe the service seen by the low priority
flow. Consider a single queue fed by a process with effective bandwidth u(6,t),
but where the service is an independent stochastic process C with effective
bandwidth C'(H,t). As above, if the critical space and time scales are 6 and t,
replacing a small part of the service with constant service of rate C (é, f) does not
affect the operation of the queue, and so we will call 6’(0, t) the effective service
rate. Before we use this idea to describe the service seen by the low priority
flow, we had better check that it actually exists: that is, that the appropriate
cumulant moment generating functions converge.

Lemma 3.9 (Effective Service) Under the assumptions of Theorem 3.8, the
service seen by the low priority queue has an effective service rate.

Proof. O’Connell [44] shows that the departure map (which maps the aggre-
gate input process to the aggregate departure process) is continuous under the
uniform topology. Let d be the departure process from the high priority queue.
The service seen by the low priority queue is C where C; = C — d;. Since the
departure map is continuous, the service map is also continuous. Therefore the
service process satisfies a large deviations principle, say with good rate function
J.

Applying Varadhan’s Integral Lemma (Dembo and Zeitouni [15] Theorem
4.3.1), and using the fact that the service process is bounded, we find that

1 ~
lim — logRe’® € = sup 0. ¢ — J(c).
L—oo L cERt

In particular, the limit exists. O
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We are now in a position to make precise the earlier claim about the service
seen by the low priority queue. The effective service rate is difficult to deal with
analytically, but fortunately we can avoid doing so by using Theorem 3.8. The
following corollary is a restatement of the bound (3.7). The terminology is due
to Berger and Whitt [2], who independently obtained the corresponding result
for the large buffer asymptotic regime. As noted in Example 2.3, large buffer
results can be deduced from a special case of the corresponding many sources
results.

Corollary 3.10 (Empty Buffer Approximation) The effective service rate
seen by the low priority queue is bounded below by the empty buffer approxima-
tion to the service rate, C(0,t) = C — A(0,1), in the following sense:

I(-,r) > EI(r) = irtlf supO(r +tC'(6,1)) — Otu(6,1),
9

where u(0,t) is the effective bandwidth of the low priority source.

This is just the usual rate function (3.3) for overflow in a single queue, but
with the service rate C' replaced by the effective service rate C. It is called the
empty buffer approximation because it is the rate function for the event that
total workload reaches r—so if the most likely way for this to happen leaves the
high priority buffer empty, then EI(r) will agree with I(-,r).

Berger and Whitt stress the point that this approximation gives a simple
admission control region. It is also interesting to consider the conditions under
which the inequality is strict. When there is equality, the two queues operate
essentially independently. But when the inequality is strict, the low priority
queue gets extra benefit from the sharing arrangement. Such an arrangement
seems desirable from an engineering perspective. The following example illus-
trates how the queue and traffic parameters control whether or not there is extra
benefit to the low priority traffic.

Ezample 8.11 (Phase transition in priority queues)

It is often hard to simplify rate functions like I(q,r) because the queue could
overflow over any timescale. But for periodic processes, the queue can only
overflow over timescales less than the period, so the calculations are easier.

Consider a sequence of priority queues indexed by L. Let the high priority
flow X” be the average of L independent copies of a stationary periodic process
of random phase, which produces 4 units of work every second timestep. Let
the low priority flow YZ be the average of L independent copies of the process
that independently at each timestep produces 1 unit of work with probability
p and no work with probability 1 — p. Let the service rate C be in the range
[3,4).

These figures are chosen so that the entire queue empties every second
timestep, so that if it overflows it must do so in a single timestep. This means
that the only sample paths we need consider in (3.5) are those over a single
timestep. So

10.7) = inf Af(e) +Mi(r+C —2)

I(q,7r) = Ai(g+C)+M;(r) (for ¢ > 0).
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Since g + C' is greater than the mean rate of A, Aj(¢+ C) > AJ(C), and so
I(-,r) = I(0,7). Now for the empty buffer approximation. Since EI(r) is the
rate function of the sample path most likely to give total queue size r,
EI(r)= inf Aj \Y iy — ).
(r) =, nf  Ail@)+Mi(r+C—a)
Clearly I(-,r) > EI(r). When is this inequality strict? Let g(z) = Aj(z) +
M;(r + C — z). It is easy to calculate that for r < 1,

9(x) = h(z/4|1/2) + h(r + C =z | p),

where h(z|p) = zlog(z/p) + (1 — z)log(l — z)/(1 — p), and to show that g(x) is
convex. So I(-,7) > EI(r) if and only if ¢'(C) < 0, where

1

c r P
! - _
g'(C) 1 log i—c log - + log

1-p

In other words, there is extra benefit to the low priority traffic when the
service rate is small, or when the low priority buffer is large, or when there is
little low priority work. <&

3.6 Effective Bandwidths

In this section we will not prove any new results about queues. Instead, we
will express the results of the earlier sections in a different way. The effective
bandwidth of a flow is a convenient and intuitive description of its impact on a
queue.

Kelly [29] gives a comprehensive survey of effective bandwidth results. Here
we do not attempt to be comprehensive. Rather we extend the definition of
effective bandwidth and suggest a new way of looking at it. This lets us explain
various results in the following chapters more conveniently.

As usual, let X be a real-valued random process indexed by the natural
numbers. For t > 1 and 8 € R?, define the effective bandwidth of X at 0 to be

1
ax(0) = 9101 log Eexp (8 - X(0, ]).

It is trivially true that all queueing behaviour depends on the effective band-
widths of the input flows, because the effective bandwidth encodes the entire
distribution. What is less obvious is that often only a small part of the distri-
bution matters.

First we will explain how effective bandwidths arise in admission control at
queues, and why they are so called. Then we will describe other circumstances
in which they are useful. Finally we discuss their use as approximations.

Effective bandwidths and loss probability

Consider first a standard queue with service rate C' and buffer size B, as de-
scribed in Section 3.3, fed by input process X. From Corollary 3.6 we know
that the rate function for overflow is

I= iItlf sup (B + Ct) — ftax (01(0,1]).
0
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(This is shorthand for the following: Consider a sequence of queues indexed
by L, where the Lth queue has service rate LC' and buffer size LB, and is fed by
LX" | where X! satisfies the conditions of Theorem 2.7. Let ax be the effective
bandwidth function arising from the limiting moment generating function A.
Then the large deviations upper bound for the event that the queue overflows
is —I. We will often use this shorthand.)

Consider replacing a small proportion ¢ of the L input flows by flows which
produce work at a constant rate a; these have effective bandwidth a. The rate
function for overflowing is now

1(5) = infsup 6(B + Ct) — 0t((1 — &)ax (61(0,4]) + 5a). (3.9)
t g

If the optimizing parameters in I are 6 and ¢, and under appropriate differen-
tiability conditions, the value of a that makes I'(0) = 0 is @ = ax (@) where
6 = él(O,ﬂ. In other words, an input flow has the same effect on the queue
as would a constant flow of rate ax(#). This is why « is called the effective
bandwidth function. The value @ is called the operating or critical point of the
queue.

The standard definition of effective bandwidth is ax(6,t) = ax(61(0,t]).
This is because the operating point for overflow is always of the special form
6 = 61(0,1].

If there are multiple input flows of different types, then the effective band-
width function measures the tradeoff between different types. For example, if
at the operating point the effective bandwidth of a flow of type A is twice that
of a flow of type B, then replacing a small number of flows of type A by twice
that number of flows of type B will not affect the probability of overflow.

Effective bandwidths for other purposes

Suppose we are interested not in the event that the queue overflows but in some
general event F. The large deviations rate for this event is

I(E) = inf I(x) = inf 6 -x(0,1] — 0 - 1(0, tJax (8).
(E) = inf I(x) Jnf sup sup x(0,1] (0, tJox (0)

All the events we are interested in in this thesis have the form E = (J, E;
where E; is of the form x-w; = a; for some w; € Rf. For example, the event the
queue overflows can be written there exists a time t such that z(0,t] > B + Ct.
In such cases, the rate function is

I(E) =inf inf sup 8- -x—6-1(0,t]ax(0)
t xcE; OcRt

= irtlf sup fa; — 0wy - 1(0, tjax (fwy).
9

(The proof of the second equality is just the same as that of (3.2) = (3.3) in
Theorem 3.3.)

If the event E is closed and I(E) is finite, as will typically be the case, then
since I is a good rate function the optimal path x will be attained and so will
the optimal #. Usually the optimal 0 is attained too.
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When the critical point 0 is attained, as in Theorem 3.3 the optimal path x
is given by

%(0,] = VO - 1(0, tjax(6), (3.10)

where the derivative is taken at 6, = és for 0 < s < t and 6, = 0 otherwise.

We will use these ideas extensively in Chapter 5, to analyse the behaviour
of various queue algorithms. The event E will be some mechanism is triggered
and (3.10) will tell us the most likely way for it to be triggered.

Effective bandwidth as an approximation

We have described how effective bandwidths can be interpreted formally, in a
limiting regime in which the number of independent identically distributed input
flows increases and the service rate and buffer size increase in proportion. But
the intention is that they should be thought of as approximating finite systems.
For example, if a queue has buffer size B and service rate C and is fed by input
flows X(1)---X(n), then we approximate

— log P(overflow) ~ irtlf supf(B + Ct) — 6t Z ax(i)(0,1).
0 i=1

This approximation should be good when C' and n are large. (To measure how
good, one can find finer approximations [34] or perform simulations [4, 10, 11].)

What the effective bandwidth approximation does is pick out the most im-
portant part of the distribution, the critical point, and make a zero-order ap-
proximation to the flow at the critical point, (@ + €) = a(8) + - - -, much as
one would approximate a real-valued function f(z) by f(z +¢) = f(z) +---
The other terms do matter, but the zero-order term is most important; and in
the large deviations limit, it is only the zero-order term that matters.

3.7 Summary

A sample path large deviations principle is an LDP factory: it makes it easy to
study large deviations in a wide range of queueing problems. First we recall the
queueing model, and then we describe the results that will be used in the rest
of this thesis.

Consider a sequence of queues indexed by L. Let the Lth queue have service
rate LC and buffer size LB, where B > 0, and let it be fed by LX", which
will typically be the aggregate of L independent copies of some base flow X.
Let Q(X%) be the amount of work in the queue. Assume that X% satisfies
the conditions for the sample path LDP (Theorem 2.7), and has limiting log
moment generating functions A;. Using the Contraction Principle we can show
the following.

Theorem 3.11 (Rate functions for queues) Suppose that X% satisfies the
conditions of Theorem 2.7 and is stationary with mean rate strictly less than C.
Let

I(b) = inf sup 8(b + Ct) — A (61),
t20 geRr
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let I(b*) = limgy I(a), and let IT(0) = supycp 0C — A1 (61).

Then Q(XL) satisfies an LDP with good rate function I(b). Also, the event
{Q > 0} has large deviations lower bound —I(0T) and large deviations upper
bound —I1(0), and the event that Q overflows has large deviations lower bound
—I(B™) and large deviations upper bound —I1(B).

Theorem 3.12 (Path to overflow) Under the conditions of the previous the-
orem it is also the case that

I(b) = inf I(x
( ) xEXc:Q(x)=b ( )
= inf inf 0-x— A:(6).
H% xeRt:x(l(?,t]:b-i-Ctsggz x t( )

If I(b) is finite, the optimal X and t are attained. If the optimal 0 is attained,
it has the form 61 and

x(0,t] = VAL(0) (3.11)
where the derivative is taken at 05 = és for s € (0,t] and 8, = 0 otherwise.

The optimal 6 (or the optimal (é,ﬂ pair) is called the critical point of the
queue.

These are limiting results, and they are intended to be used as approxima-
tions for finite systems. We will talk about a queue with service rate C' and
buffer size B fed by aggregate input X, and we will approximate

P(overflow) = exp(— irtlf supf(B + Ct) — At(01)).
0

(Often the large deviations upper and lower bounds agree). This approximation
should be good when X is the aggregate of many independent flows.



Chapter 4

Networks

A router or switch is a device that routes traffic. A router has several input
flows of traffic, each of which is routed to a specified destination; and inside
the router, work from all the input flows is queued together. Routers are the
building blocks of the Internet. It is by describing their behaviour that queueing
theory can tell us about telecommunications networks.

The behaviour of isolated queues has been much studied. The preceding
chapters have used large deviations to characterize the input traffic, to esti-
mate the probability that the queue overflows, and to study different queueing
regimes. In this chapter, we study networks of routers. The fundamental result
is that, under the many sources limiting regime, the statistical characteristics
of a flow of traffic are not changed by passing through a router.

This result dramatically simplifies the analysis of networks. It means that
the techniques for describing isolated queues can be applied inductively to feed-
forward networks. It also means that it is useful to talk about the characteristics
of a type of traffic, without bothering how many routers the flow has passed
through or what other flows it has interacted with.

The theory of large deviations is concerned with limiting regimes, and it
is our choice of limiting regime which makes possible such clean results for
networks. We study the many sources limiting regime, in which the number of
independent flows coming into a router increases, and the buffer size per flow
and service rate per flow stay fixed. We suppose that of the different flows
coming into a router, only a small number stay together when they leave—it is
after all the function of a router to route traffic to different destinations.

The rest of this chapter is arranged as follows. In Section 4.2 we describe
the network model and set up the notation. In Section 4.3 we prove the funda-
mental result, that the large deviations characteristics of a flow are not changed
by passing through a router. In Section 4.4 we extend this to networks. In Sec-
tion 4.5 we describe these results in terms of effective bandwidths, and discuss
limitations and extensions. First we review related work.

4.1 Related work

Kelly [26] describes queueing networks in which all input traffic flows are Poisson
and service times are exponential. These networks admit a very simple solution:

36
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at any instant in time, the different queues are independent, and the distribution
of queue sizes can be written down explicitly. Furthermore the distribution of
a flow when it leaves the network is the same as when it entered (though inside
the network, the distribution may be different). These are best-possible results,
and they break down when the input processes are more general. Our results
are weaker, in that they only concern limiting regimes, but they do cope with
general input processes. And they are complementary in a curious way: we can
calculate the distribution of a flow at any point inside the network and show
that it is the same as when the flow entered, though we cannot calculate queue
size distributions (except in feedforward networks) because traffic flows within
the network are not independent.

Traffic limits

The limiting regime we are interested in is the many sources limiting regime, in
which the number of independent inputs to a router increases. Another limiting
regime—one which has been more widely studied—is the large buffer regime,
described in Example 3.2, in which the number of input flows is fixed and the
buffer size increases. We call this a traffic limit, because it is mathematically
equivalent to a limiting regime in which the router is fixed but the traffic is
speeded up. In the large buffer regime, clean results for networks are hard to
come by.

It is possible to prove a large deviations principle for the aggregate output
of a router, simply by noting that the map from aggregate input to aggregate
output is continuous and using the contraction principle. It can also be shown
that the map from the set of inputs to an individual output is continuous, and
in this way O’Connell [42, 45] and Majewski [39], find LDPs under the large
buffer limiting regime for the individual output processes. Most of the work in
obtaining this sort of result is in defining the queueing model and in proving
continuity. The outcome is an LDP with a rate function which is the solution
to a complicated variational formula.

It can be seen from this variational formula that the aggregate output is
smoother than the aggregate input. It is hard to draw any other general conclu-
sions. For example, when there are several input flows, it sometimes happens
that some are made burstier while others are made smoother. This has been
investigated further by de Veciana et al. [13]. They found that if the service
rate is sufficiently high then the outputs decouple. By this they mean that the
effective bandwidth of a flow is the same when it leaves the router as when it
came in, at least for low values of the spacescale #. In other words, as long
as we are not interested in extreme behaviour, the statistical characteristics of
a flow of traffic are not altered by passing through the router. Unfortunately,
their arguments only apply to the first router in a network, because the output
flows do not satisfy the conditions that would enable their results to be applied
inductively. We will prove a much stronger form of decoupling. We will show
that the effective bandwidth of the output is the same as that of the input
whatever the spacescale or timescale, for any service rate larger than the mean
input rate; and that this is true throughout the network; and further that in
the limit the different output flows are independent.

There has also been some work on the output of a router under the many
sources limiting regime. Duffield and Low [18] give a large deviations principle
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for the aggregate output using the contraction principle, just as has been done
for the large buffer regime. Because the many sources regime has a richer
structure than the large buffer regime, it produces variational formulae that are
even more complicated.

A different way of looking at networks, which does not face these problems,
is taken by Paschalidis [46] and Bertsimas et al. [3]. They still have complicated
optimization formulae for the output processes, but they eliminate the problem
of coupling by assuming that any work leaving a router chooses its destina-
tion randomly. However, we will assume that each flow is routed to a specific
destination.

Network limits

What all these approaches have in common is that they take a fixed network and
look at various sorts of traffic limit. We have been able to prove much cleaner
results by looking at a different sort of limit, one in which both the traffic and
the structure of the network change.

Many different sorts of network limit have been looked at in the past, though
mostly this has been to help answer questions about routing rather than about
traffic characteristics, and the analysis has mostly involved tools other than
large deviations theory. There has nonetheless been some work on how the
characteristics of traffic change in various network limits: for example, Mount-
ford and Prabhakar [41] have studied the limiting form of traffic as it passes
through more and more queues, and found conditions under which it converges
to a fixed point.

In our network limit the number of traffic flows and the number of routers
both increase, but along the path of a single flow the number of routers stays
fixed. This seems well-suited to the Internet, in which the number of users has
increased dramatically but the length of a typical path has not.

All of this work, like our own, deals only with feedforward networks. Feed-
back raises considerable theoretical challenges.

4.2 The network model

We are still using the queueing model described in Chapter 3. Consider a
standard first-in—first-out queue with constant service rate LC and finite buffer
size LB, and let any work that arrives when the queue is full be lost. We will be
concerned with the behaviour of a queue fed with input process LX%, where X%
satisfies the conditions for the sample path large deviations principle, Theorem
2.7.

Suppose that X’ is the average of L independent identically distributed
flows. Let X&) be a typical input flow, and let X&) be the corresponding
output flow. (In later sections we will allow X* to be the aggregate of several
such averages.) The generating function for the aggregate input is therefore

AF(8) =logEexp (8 - X1)).

Similarly, the moment generating function for the aggregate of independent
copies of a typical output is

AL(0) = logEexp (@ - X)),
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These are the mathematical quantities we will be dealing with, and it is
worth explaining what they represent. We consider the moment generating
function A because it is the natural way to describe the behaviour of a single
output from an upstream queue. But large deviations does not tell us about the
behaviour of a single output, so in order to understand the following theorems
it can be helpful to think of AL as describing the aggregate of independent
copies of X(X), One could think of L different upstream queues each fed by L
independent copies of X(X) and each contributing a single output flow.

Our fundamental result is that if AL satisfies the conditions of the sample
path LDP, Theorem 2.7, then AL also satisfies the sample path LDP, with the
same rate function. We will discuss the meaning and applications of this result
in Sections 4.4 and 4.5. But first we must prove it.

4.3 The output of a router

Suppose that A” satisfies Conditions 1 and 2 of Theorem 2.7, and that AL — A.
Then the theorem tells us that X% satisfies a sample path LDP with a good
rate function which can be calculated from A.

What we would like to show is that that A" satisfies the same conditions
and converges to the same limit. If this were true, X* would satisfy exactly
the same LDP as X”: in other words, the statistical characteristics of a flow of
traffic would be unchanged by passing through the router.

The first condition can be proved. The key idea in its proof is this: that
the probability that the queue is empty over a fixed interval tends to one, by
Theorem 3.11, and so the probability that the amount of work arriving in that
interval is equal to the amount of work leaving in that interval tends to one also.
There is not only convergence in probability but also convergence in expectation;
this is shown in Theorem 4.1.

We would also like to show that A% satisfies Condition 2, which is a tech-
nical condition on the uniformity of convergence. In fact that condition is not
satisfied, and we have not been able to establish Theorem 2.7 for the output.
This is not actually a problem! A sample path LDP still holds, under a weaker
topology which we call the weak queue topology, and as noted in Section 2.3.3
this is sufficient to obtain all the results of Chapter 3. We prove the sample
path LDP in Theorem 4.2.

In the same way that in Section 2.3.4 we restricted the sample path LDP to
take account of the mean arrival rate, so we do here for the output process, in
Theorem 4.3.

Before proving the theorems, we give simulation results to illustrate them.
Figure 4.1 shows two cases: in the first a router handles a single traffic flow, and
in the second a router with three times the capacity handles three identical and
independent flows. In the first case the flow is significantly smoothed by passing
through the router, but in the second the smoothing is negligible. The flows
illustrated are periodic, sending one unit of work every fourth timestep. The
service rate per flow is 0.4 and the buffer size per flow is 1.5. (The figure shows
the effective bandwidth of the flow before it enters the router and after it leaves.
The effective bandwidth function «(6,t) is a convenient representation of the
moment generating function: (6t)~1A;(61). Effective bandwidths are described
more fully in Section 3.6.)
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Figure 4.1: The output of a router. A single flow (A) passes through a
router and is made smoother (B). But when the router is fed by three
identical flows (C) and its service rate and buffer size are increased
in proportion, any smoothing is negligible (D). The graphs plot the
effective bandwidth functions of the flows, all to the same scale. The
effective bandwidth of a flow is a convenient representation of its
burstiness over different timescales and spacescales.

Theorem 4.1 (Finite-time characteristics of the output)

If the input X L) satisfies Conditions 1 and 2, and is stationary with mean rate
strictly less than C, then the output XL) satisfies Condition 1, with the same
limiting moment generating function as XF) . In other words,

Jim logEexp(6 - XB)(0,1]) = A(0).
—00

Proof. First note that X()(0,] < X()(0,t + | B/C]], since any work arriving
before —|B/C], even if it finds the queue full, must have left by time 0. In
what follows, we drop the |-| notation.

For fixed ¢, the collection {exp(@ - X(X)(0,¢])} is uniformly integrable, since
0 < 60-X1)(0,¢] < max|0;| X ) (0,t+B/C], and X 1)(0, t+ B/C] is LP-bounded
for some p > 1 (because the limiting moment generating function exists, by
Condition 1).

For any 1 < s < t, IF’(XS(L) # XS(L)) is bounded by the probability that the
queue is non-empty at either s — 1 or s. By Theorem 3.11, this tends to 0. So
exp(8 - X(1)(0,]) — exp(@ - X(1)(0,#]) converges to 0 in probability.

Thus Eexp (0 - X(1)(0,t]) — Eexp (8 - X()(0,t]) — 0, and taking logarithms
gives the result. O

Definition 4 (Weak queue topology)
Recall the weak queue topology wgq defined on X by the metric

1A |z |

dx,y) = Q) = Q)| + Y 15— (4.1)
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and d(x,y) = oo if Q(x) = 00 or Q(y) = oco.

Theorem 4.2 (Large timescale characteristics of the output)

If the input X1 satisfies Conditions 1 and 2, and is stationary with mean rate
strictly less than C, then the output X (L) satisfies satisfies an LDP in (X, wq)
with good rate function I as in Theorem 2.7.

Proof. First, by the Dawson-Gértner theorem for projective limits (see Dembo
and Zeitouni [15] Theorem 4.6.1), the finite time LDPs of Theorem 4.1 can be
extended to the full space X equipped with the projective limit topology, with
good rate function I. The projective limit topology corresponds to pointwise
convergence of sequences, and can be made into a metric space with the metric
given by the second term in (4.1). Denote this topology by p.

We want to strengthen this LDP from (X,p) to (X, wqg). To do this we
will use the Inverse Contraction Principle (Dembo and Zeitouni [15] Theorem
4.2.4). Since wq is stronger than p, the identity map from (X, wq) to (X,p) is
continuous. And X satisfies an LDP in (X,p) with rate function I. So if
X (L) is exponentially tight in (X', wq) then it satisfies an LDP in (X, wq) with
the same rate function, and that rate function is good.

It remains to show that X&) is exponentially tight in (X, wq): in other
words that there exist compact sets K, in (X, wq) such that

lim limsuplogP(X¥) ¢ K,,) = —c0. (4.2)

a—00 I s~

Let p be the mean rate of the X%, let d; = \/logt/v(t) where v(t) is the scaling
function from Condition 2, and choose the sets

K, = {x 0< % S,u+adt+B/CVt}.

First, to show that K, is compact. Since A’ is a metric space, it suffices
to show that it is sequentially compact. So let x* be a sequence of processes.
Since the T-dimensional truncation of K, is compact in R!, the intersection
K, is compact under the projective topology. That is, there is a subsequence
x/ (k) which converges pointwise, say to x. It remains to show that x/ — x
under the weak queue topology. But if x € K, there exists a ¢y such that for
t > to, z(0,t]/t < C, and this tp can be chosen independently of x. Therefore
the queue size is just Q(x?) = sup,<,, 27 (0,t] — Ct, which converges because the
x/ converge pointwise. Thus K, is compact.

Next, to show the equation (4.2). Since X()(0,t] < XF)(0,¢ + B/C], the
left hand side is bounded above by the expression in the statement of Lemma
2.5, which is there shown to equal —oo. O

Theorem 4.3 (Output stability)
If the input XI) satisfies Conditions 1 and 2, and is stationary with mean
rate strictly less than C, then for any p greater than the mean rate, the output
process XL satisfies a sample path LDP in X, equipped with the weak queue
topology, with good rate function I.
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Proof. We want to restrict the LDP of Theorem 4.2 to &,. By Dembo and
Zeitouni [15] Lemma 4.1.5. it suffices to show that I(x) = oo if x ¢ A,
and that P(X? € X,) = 1. The proof of the first is identical to Theorem
2.6. For the second, that theorem also shows that for ¢ sufficiently small,
P(XL(0,t]/t < p — € eventually) = 1, and since XX (0,¢] < XX(0,t + B/C],
we obtain the result. O

Before using these results to describe more interesting network models, we
make a brief note about speed of convergence. We have shown that the input
and output have essentially the same statistical characteristics, for large L, and
it is interesting to know how large L needs to be for this to be accurate.

The idea behind the proof of Theorem 4.1 is that the probability that the
queue is empty tends to one, and so X(5)(0,#] — X(2)(0,¢] converges to zero
in probability. And large deviations gives us an estimate for the probability
that the queue is nonempty. If I is the rate function for this event, as given
in Theorem 3.11, then for any £ > 0 there exists an Lg such that for L > Ly,
P(QY > 0) < exp —L(I — ¢). Therefore

BX1)(0,1] £ XE)(0,4]) < (¢ 4 1)e~202),

For fixed # and ¢, the difference in log moment generating functions A;(¢1) and
A;(61) can be bounded similarly. So the error decays exponentially in LI at
least.

4.4 Traffic mixes, decoupling, and networks

The results of the previous section can tell us a great deal about networks.
Those results only applied to a single traffic class at a single router, but in this
section we extend them to describe multiple traffic classes on multiple paths.
The most significant result is decoupling, which means that different traffic flows
sharing a router do not influence each other.

4.4.1 Traffic Mixes

In Section 4.3 we assumed that the aggregate input X% to the router was the
average of L independent identically distributed input processes. This was used
in two ways. First, it gave a large deviations estimate for the probability that
the queue is non-empty. Second, it let us describe a typical input using the
moment generating function for the aggregate, AtL .

We can still estimate the probability that the queue is non-empty and de-
scribe a typical input, even when the aggregate input is not made up of inde-
pendent identically distributed flows. Let Y be the aggregate input, and let
X () be the single input we are interested in. Define the moment generating
functions MF(0) = +logEexp (6 - Y%) and A/ () = logEexp(8 - X(2)). Sup-
pose that M and A satisfy the conditions of Theorem 2.7 and are stationary,
and that the mean rate of the aggregate input is less than the service rate. Then
M gives a large deviations estimate for the event that the queue is non-empty,
and A describes the input we are interested in. Theorems 4.1-4.3 go through
unchanged, except that the rate I will depend on M rather than on A.
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There are many different ways of scaling the system to meet these condi-
tions, with different numbers of inputs of different types. For example, let the
aggregate input be made up of a mix of traffic types: Lp(j) copies of X% (5) for
j =1...J, each traffic type satisfying the conditions of Theorem 2.7. Then M
is just a linear combination of the moment generating functions for the different
traffic types.

Another example is when the aggregate input is made up of L flows that
were independent and identical when they entered the network, but which have
passed through several queues before reaching the queue ) we are considering.
Allow each flow to follow a different route, possibly involving feedback and
interaction with other flows. This is interesting because it makes the flows
neither independent nor identical. Let the maximum delay that each flow can
incur before reaching @ be less than D < co. Let the aggregate input to Q) be
Y'L(0,¢]; this is less than the original aggregate input X% (0,t+ D] over a longer
time interval. From Theorem 3.11 we find that if the mean rate of the X’ is less
than C/D, then a queue with service rate C fed with X% (0, ¢+ D] still empties
with high probability, and so @) empties with high probability, and the results
of the last section apply. (Unfortunately, since the inputs to a queue are not
independent, we cannot use this to find an LDP for Y’ and thereby estimate
the probability of overflow.)

4.4.2 Decoupling of Flows

Consider two independent inputs X and Y to a router whose aggregate input
satisfies the conditions of Theorem 2.7, and is stationary with mean rate less
than the service rate. (The (L) notation has been dropped here.) We know
from the previous sections that in the limit, X has the same distribution as X,
and that Y has the same distribution as Y. We can also view X 4+ Y as a single
input to the queue, note that X + Y has the same distribution as X + Y, and
deduce that in the limit X and Y are independent.

It might be expected that traffic flows would influence each other. For ex-
ample, if X is very bursty and Y is smooth, one might expect X to be less
bursty and Y to be less smooth, and indeed this can happen when the router
only has a small number of inputs. But we have seen that in the many sources
limiting regime it is not the case. In other words, X and Y do not depend on
the traffic mix at the router (so long as the total mean input rate is less than
the service rate). This is known as decoupling.

Simulation results to illustrate decoupling are shown in Figure 4.2 on page 47.
There are two classes of traffic: one bursty, producing one unit of work ev-
ery third timestep, and the other smooth, producing 0.2 units of work every
timestep. The service rate is 0.6 and the buffer size is 1.1. When there is only
one traffic flow from each class, the outputs are coupled; but when there are
three traffic flows from each class, and the buffer size and service rate are scaled
up in proportion, the outputs are decoupled. As before we plot the effective
bandwidth functions of the various traffic flows.

4.4.3 Feedforward networks of routers

A feedforward network of routers is one in which the routers may be ordered in
such a way that for every flow the sequence of routers through which it passes
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is strictly increasing. In this section so far we have shown that a flow passing
through a router is essentially unchanged, even if several different types of flows
use the router. This can be applied to a feedforward network of routers, as long
as the network is scaled also.

Consider, for example, a simple network of two routers in tandem. Let the
first router have L independent inputs, each distributed like X(%). Let one of
the outputs X&) be fed into the downstream router, along with a further L — 1
independent copies of X&) from other upstream routers. Then the aggregate
input to the downstream router satisfies a sample path LDP with the same rate
function as that appearing in the LDP for the aggregate input to the upstream
router, so we can estimate the overflow probability of the downstream queue
with standard techniques.

For routers which are further downstream in the network, the proofs of
Section 4.3 still work, if the maximum delay incurred by a flow at a router,
B/C, is replaced by the maximum delay incurred by a flow in reaching the
router under consideration.

4.5 Discussion

The fundamental result in Section 4.3 was simply stated, and the proof was
not too long. But its consequences for networks, described in Section 4.4, are
far-reaching. In this section we elaborate, describing our results in the more
practical language of effective bandwidths. We also discuss their limitations
and extensions.

Effective bandwidths for networks

The idea of effective bandwidth from Section 3.6 will help us with the inter-
pretation. Recall that if a random traffic flow has effective bandwidth «(6,t)
then it can be replaced by a constant flow of rate a(é, t) without affecting the
loss rate at a router, where (é, ﬂ is the operating point of that router. We have
shown in this chapter that a flow has the same effective bandwidth function at
all points in a network (though the different routers will typically have different
operating points, so the values of the function will be different).

This means, for example, that the effective bandwidth of a flow in queueing
networks plays a similar role to the bandwidth of a call in loss networks. This
encourages the hope that well-understood techniques and insights from loss
networks (reviewed by Kelly [28]) can be applied to queueing networks.

It also makes it easier to understand feedback and rate control for adap-
tive traffic—that is, traffic which can alter its rate in response to congestion-
indicating signals from the network. It is natural to believe that feedback from
a router to a user should depend on the characteristics of the traffic from that
user, as seen by the router. If the effective bandwidth function changed along
the route, depending on interactions with other flows at other routers, then the
user might have difficulty in making effective use of the feedback signals, be-
cause she would not know how her traffic had been shaped by the intervening
routers. But it does not change, and so she can better interpret feedback.

The key idea is that we can meaningfully talk about the characteristics of,
say, video traffic, because the flow retains these characteristics regardless of its
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interactions with other flows in various routers throughout the network.

The network limit

The results in this chapter are considerably cleaner than earlier large deviations
results for networks. This is because we have taken limits as the structure of
the network changes. Most previous work, on the other hand, has kept the
structure of the network fixed and looked at limits where the traffic changes.

Neither approach is intrinsically better (except insofar as one gives cleaner
results). What matters practically is under what circumstances each is accurate.
Our limit seems better-suited to networks with what we call diverse routing, by
which we mean that many of the inputs at any router are reasonably indepen-
dent, though it is difficult to make such a vague claim precise.

We have not dwelt on the question of how many input processes are needed
for our limiting result to be accurate. Numerical simulation, illustrated in Fig-
ures 4.1 and 4.2, shows that in some cases only a small number of independent
inputs are needed to make the input and output look nearly identical. The
real question, though, is: how many input processes are needed for reasonable
convergence over the scale of interest? If we are interested in the probability
of overflow at a downstream router, we want reasonable convergence of the mo-
ment generating function at the critical timescale and spacescale for that router.
For fixed # and ¢, we noted in Section 4.3 that the difference between the mo-
ment generating functions for the input and output is bounded by a term which
decays exponentially in LI, where L is the number of inputs and [ is the rate
function for the event that the upstream queue is nonempty. The accuracy of
the large deviations estimate of Theorem 3.11 must also be taken into account;
this has been studied by Likhanov and Mazumdar [34].

Limitations and extensions

The core of the argument is Theorem 4.1, which proves that the limiting mo-
ment generating function of the output process is the same as that of the input.
It relies on the fact that when there are many independent sources, the queue
empties regularly, with high probability. That it empties regularly is a reason-
able engineering constraint for high-performance networks, in which delay and
cell loss probabilities should be small. This constraint is satisfied by any work-
conserving queue (that is, any queue which does not idle when there is work
waiting).

The theorem is proved for the case of a queue with a finite buffer. It seems
likely that the result still holds for queues with infinite buffers and for other
regimes like priority queues. The finiteness of the buffer is used to bound the
amount of work that can leave the queue over a period of time, to give uniform
integrability; for those other cases some other way of proving uniform integra-
bility would be needed.

Closely related to this is the problem of continuous time. In the continuous
time formulation, it is not true that at any instant in time the queue is over-
whelmingly likely to be empty—even in the simplest example of Poisson arrivals
and exponential service times there are likely to be small fluctuations in queue
size. What is true though is that at any instant in time it is overwhelmingly
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likely that the queue will shortly be empty, and so the queueing delay experi-
enced by any incoming work should be extremely small. Unfortunately we are
again left with the problem of uniform integrability: while this queueing delay is
extremely small with high probability it is nonetheless unbounded, so we cannot
use it directly to bound the amount of work that can leave the queue over a
period of time.

When feedforward networks are so simple, it is tempting to conjecture that
similar results might hold in networks with feedback. There are numerous exam-
ples of pathological behaviour in finite networks. But in large networks, under
this many sources regime, we expect that queues will still empty sufficiently
often, and the main result will still hold.

4.6 Summary

The conclusions of this chapter are very simple to state, at least in an imprecise
way. In a network with diverse routing, by which we mean that most of input
flows at a router are reasonably independent, the statistical characteristics of a
flow of traffic are the same at all points in the network.

More precisely, the distribution of a flow of traffic is preserved by passage
through a router, in the limit where the number of independent input flows to
that router increases and the service rate and buffer size increase in proportion.

This is a limiting result. But simulation suggests that it can still be rea-
sonably accurate even for a handful of independent sources. And the theory is
useful at least as much for the insights it gives as for numerical estimates.

It dramatically simplifies the analysis of networks of routers with different
classes of traffic.
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Figure 4.2: Decoupling. A router has two inputs flows, one bursty

(

A) and the other smooth (B). In passing through the switch together
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they become coupled: the bursty one is made smoother (C

smooth one is made burstier (D). However, if the system is scaled up

so that there are three input flows of the bursty type (E)

and three

input flows of the smooth type (F), and the service rate and buffer

size are increased in proportion, then the corresponding output flows

(G

and (H) are decoupled. The graphs plot the effective bandwidth

)

functions of the flows, all to the same scale. The effective bandwidth
of a flow is a convenient representation of its burstiness over different

timescales and spacescales.



Chapter 5

Congestion

In the preceding chapters, we have developed theory to model traffic as it travels
through a network and to explain how congestion arises. Now we use these ideas
to address a specific problem facing the Internet today: how routers should
respond to congestion.

Commonly, a router simply drops incoming packets when there is no space
for them in its buffer, and end-systems try to gauge from the frequency of drops
the rate at which they should be transmitting. But dropping packets in this
way is a very blunt sort of signal: it tends to give the wrong amount of feedback
to the wrong end-users; and anyway, it would be better if congestion could be
signalled before it became a problem.

The technical groundwork for fixing these problems has been laid by the
Internet engineering community with an RFC [48] which proposes a scheme
called Explicit Congestion Notification, or ECN. (RFC stands for Request For
Comments, the name given to documents proposing and specifying Internet
standards. This and other Internet acronyms are listed in the Glossary.) Under
the ECN proposal, routers can mark packets instead of dropping them, and
end-systems are expected to respond to marks as they would to drops. The
proposal leaves open the problem of what marking algorithm routers should
use.

Marks can be thought of as a technological solution to the problem of con-
gestion, but they can also be thought of economically as a pricing mechanism.
Prices in a market economy have a similar role to marks in the Internet: to
convey information and to direct consumption. So economic theory plays a
significant part in the study of marking algorithms.

In this chapter we consider the problem of what a marking algorithm should
do, paying particular attention to what it means to mark fairly. There have been
many different suggestions for marking and pricing schemes, and in Section 5.1
we describe some of them, before explaining in Section 5.2 what we think should
be the goals of a marking algorithm.

In Sections 5.3-5.5 we describe three different ways to define fairness and
efficiency in marking. In Section 5.3 we propose the EB definition, drawing on
effective bandwidth theory; in Section 5.4 we propose the AL definition, drawing
on economic efficiency theory, and in Section 5.5 we propose the SPSP definition,
drawing on economic ideas of fairness. In Section 5.6 we compare and reconcile
the three different definitions, and indicate why we believe spsp is the most
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appropriate.

Having explained how a marking algorithm ought to work, we go on in
Section 5.7 to study various algorithms that have been proposed, including the
RED algorithm designed by Floyd and Jacobson [22], and point out how they
can be unfair. The principal tool is the sample path large deviations principle
of Chapter 2, and the idea of the most likely path. It turns out that a few
simple changes to RED can make it significantly fairer, and we summarise them
in a new algorithm called ROSE. We conclude in Section 5.8 by making specific
comparisons between our results and what others have found.

5.1 Related work

Most traffic in the Internet today is controlled by the TCP algorithm. It con-
trols the rate at which packets are sent, as follows: when there is congestion
and packets are dropped, the rate is reduced; when no packets are dropped,
suggesting that it is lower than necessary, the rate is cautiously increased. The
algorithm was designed in 1988 by Jacobson [24] in response to congestion col-
lapse in the Internet, caused by end-systems which did not back off enough. It
has been extremely successful, and has lasted over a decade with only minor
modifications. But a decade is many generations in Internet time, and TCP is
beginning to show its age in two ways.

TCP was designed to work well when nothing is known about the network
beyond the trivial fact that it drops packets when overloaded. However, net-
works are becoming slightly more intelligent than they used to be, and this raises
the possibility of new and better ways of signalling congestion and of responding
to it. In the past, routers have only dropped incoming packets when there is
no space for them to be queued. It takes time for an end-system to detect the
drop and reduce its rate—so end-systems are only notified of congestion when
the time to prevent it has passed. It has long been recognised that routers
are well-placed to detect congestion and signal it before it becomes a problem,
though as Ramakrishnan and Jain [49] describe, early schemes did not catch
on. More recently, various router algorithms have been proposed which signal
incipient congestion by dropping packets before the buffer is full. The RED al-
gorithm by Floyd and Jacobson [22] has received much attention and has even
been implemented in commercial routers [8]. And ECN will mean that routers
can signal congestion without dropping packets, by marking them instead.

TCP is becoming dated in another way. It is a one-size-fits-all algorithm: the
rate-adaptation algorithm leads to one particular allocation of network capacity.
Applications which need more bandwidth have no way of indicating this (though
by disabling the rate-reducing part of TCP or by using multiple simultaneous
connections one can unscrupulously get a larger share). And applications for
which TCP is not appropriate, like streaming multimedia, may use an entirely
different sort of rate-adaptation algorithm—or none at all—and can compete
unfairly with TCP.

A lot of work has been done on how the network can provide different levels
of service—that is, how limited network resources should be divided between
competing users with differing requirements. This problem is natural material
for economic analysis. The economic approach to congestion control began
with an influential but impractical market-based proposal by MacKie-Mason
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and Varian [37] in which each user attaches prices to individual packets and
routers hold auctions to decide which packets get served. Since this there have
been many more proposals, all aiming to turn the technological problem of
congestion into an economic one of prices for users.

Typically it is assumed that each user sends work at some rate which he can
change in response to charges. For example, in the model of Low and Lapsley
[36], each user chooses a rate according to his preferences, and is charged, and
the charges are chosen so that social welfare is maximized subject to capacity
constraints. Chen and Park [6] let each user allocate his total rate among a class
of services and seek to maximize social welfare, measured in terms of constraints
on a fixed class of quality of service indicators such as average delay or loss.

The problem with these approaches is that they ignore the random bursty
nature of traffic, which is what causes most of the problem of congestion. By
contrast, Courcoubetis et al. [9] explicitly take random traffic flows into account
by using effective bandwidth as a basis for charging. Their model of user be-
haviour is well-suited to telephony-like networks with a fixed range of services,
but not so well-suited to networks like the Internet, in which users have complete
freedom to send their traffic however they like.

An elegant approach to the problems of marking and pricing has recently
been proposed by Gibbens and Kelly [23]. This chapter follows on from their
work, which we describe in more detail in the following sections.

We are not aware of any analysis of marking algorithms other than by sim-
ulation, and hence believe that our use of large deviations for this purpose is
unique.

5.2 The goals of marking

Most of this chapter is given to trying to define fairness in marking algorithms.
The ideas of fairness and justice in allocating resources and setting prices have
occupied thinkers since the beginning of civilisation; more recent thinkers range
from Sen [50] to John Paul IT [25]. Fairness has been taken to mean very different
things even in the limited arena of bandwidth allocation—and the very need for
fairness is not always recognised. We must therefore explain carefully what we
hope to achieve. We want marking algorithms to allocate marks according to
the amount of capacity that each flow consumes. This brief statement needs
considerable elaboration.

Why mark fairly?

The first concern of engineers who design congestion control mechanisms is
whether they are efficient: that is, whether better use could be made of the avail-
able resources. Efficiency too is the first thing that a modern microeconomist
looks for: the standard textbook on microeconomics by Varian [56] has much
to say about efficiency and nothing at all about fairness (though Varian himself
has made many contributions to the theory of superfairness [55]).

And yet nearly every paper proposing a new marking algorithm or a mod-
ification to TCP asks whether it is fair (though often with a simplistic idea of
what fairness means). In economics too, regulators and the public are often at
least as interested in fairness as in efficiency. The authors of two main economic
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books on fairness, Baumol [1] and Zajac [61], were both involved in US govern-
ment investigations of AT&T’s pricing policy. So at the very least we want to
know what it means to mark fairly.

Zajac describes very many cases in which fairness and efficiency are opposed.
Happily, in the problem of bandwidth allocation they are mostly aligned, and
this chapter is as much a study of efficiency as of fairness. In fact, the reason we
focus on fairness is because it turns out to be easier to define than efficiency. We
will give three different definitions of what a marking algorithm should achieve,
based on three different models for user behaviour. From these three definitions
we will distill a single notion of fairness, but it does not seem possible to do the
same for efficiency.

What fairness should not involve

Congestion control is performed in two places: at the periphery of a network (the
end users and their access points) and in its core; and it is crucially important
to properly divide responsibility between them.

In TCP all the responsibility rested with end-users, because the core was
assumed not to be intelligent enough to do anything more than drop packets.
Floyd and Jacobson in the design of RED sought a better division of respon-
sibility. They had the goal that their algorithm should mark flows fairly, and
expected that well-behaved flows at least should react accordingly. Lin and
Morris [35] go further in their design of the FRED algorithm. Their explicit goal
is to mark in such a way as to give a fair allocation of bandwidth, taking into
account that some flows respond less quickly than others.

The problem with this last approach is that routers are badly placed to de-
cide what users value and how they will react: only users know that. What
routers are well-placed for is measuring utilization and congestion—so the fo-
cus of this chapter is on routers, and how they can respond to congestion by
marking packets. We do not assume that users should be given an equal share
of bandwidth: we merely mark in proportion to the amount they have taken,
as we believe that trying to make routers do anything more would result in an
inflexible network with a limited range of services.

Of course, users ought to respond in some way to marks. We will not go
as far as the ECN proposal [48] in dictating the form of this response. For
example, if marks form the basis of a usage-sensitive pricing scheme, users may
be safely left to respond as they see fit. We postpone further discussion of how
users should be encouraged to respond until Section 5.8.

What fairness should involve

Floyd and Jacobson set the goal that RED should mark flows fairly. They note
that fairness is not well-defined, and design the algorithm to mark roughly
in proportion to a flow’s average bandwidth. Lin and Morris with FRED are
less circumspect, and explicitly seek an equal allocation of average bandwidth.
While it is certainly true that if the average bandwidth coming into a router is
higher than the service rate there will be congestion, the problems come mainly
from bursts in the traffic. We therefore seek to mark each flow in proportion to
how much of the resource it uses, taking account of its fluctuations.
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Another aspect of marking which has received only a little attention [27] is
its impact on routing. Ideally, a router should generate marks in proportion to
its congestion, so that users have a way to measure and an incentive to choose
the route with the least impact on the network. In other words, it is only fair
that a user using an uncongested resource should be marked less than a similar
user on a congested resource.

The marks given by a router to a flow should reflect
e how much of the capacity it uses, and
e the congestion at the router.

The hard part is in finding the right measure of how much capacity a flow
uses and of how congested the router is. There will inevitably be some degree
of judgement in trying to define such concepts, especially as there are several
different candidate definitions. In the next three sections we will give three
different definitions, EB, AL, and SPSP, drawing on effective bandwidth theory
and economics. We then reconcile them in Section 5.6.

5.3 Effective bandwidths and marking: EB

What Baumol describes as the ‘crudest but most direct approach ... to deter-
mine the fair set of prices’ is called full allocation of costs. To determine fair
prices, the total cost to a company is entirely divided between the products it
makes, and the fair price for a product is its allocated cost. He calls it crude
because the allocation of costs to products is generally arbitrary, and because
no account is taken of consumer preferences.

In this section we will give a definition of fairness and efficiency in marking
based on effective bandwidth theory. Our definition, which we will call EB, is a
way of fully allocating the costs of congestion to users. In the limited domain
of bandwidth allocation there are sound reasons for doing this, for example as
in the model of Courcoubetis et al. [9]. First we will recall the theory, which
was described in Section 3.6. For the purposes of fairness, what matters is the
following summary.

5.3.1 Effective bandwidth theory

The effective bandwidth function a(8,t) of a random traffic flow is a measure of
the capacity it consumes, somewhere between the mean and peak rates, encod-
ing all the important information about the flow’s burstiness. The convenient
feature is that the rate function for loss probability at a router is governed by
the sum of effective bandwidths of the input flows. So if a router has several in-
put flows of different types, then the effective bandwidth function measures the
tradeoff between them. For example, suppose that a router has inputs of types
A and B and at the operating point (é,ﬂ of the queue, aA(é,f) = 2043(@,1?).
Then replacing one flow of type A by two flows of type B will not affect the loss
probability.

We do not need the next result immediately, but it will be useful in Section
5.6. Recall that the most likely path to overflow is given by X in equation
(3.11), and that the amount of work produced by X in the busy period leading



CHAPTER 5. CONGESTION 53

to overflow is
0,1 = 2 pia(6,D) (5.1)
) 80 ) )
where the derivative is taken at 6.

5.3.2 Fairness

Effective bandwidth measures the impact of a flow at a resource, so the first
point of our goals of fairness in Section 5.2 would suggest marking in proportion
to effective bandwidth—or, equivalently, marking in proportion to fa(é, ﬂ which
has the right units—and we shall say that such a marking scheme satisfies the
EB definition of fairness. If one user of type A can be replaced by two users
of type B without affecting loss probability, it is fair that a user of type A be
charged twice as much as a user of type B. (We shall revisit this definition in
Section 5.6.)

We can also address the second point. The ECN proposal [48] requires that
one mark be equivalent to one dropped packet. We might loosen this a little,
and say that one dropped packet should be worth a fixed number of marks.
In either case, the large deviations interpretation is that the rate function for
overflow should be equal to the rate function for marking. To see this, let Iy,
be the rate function for marking and Ip the rate function for overflow. This
means that when the system is scaled up to have L users and the service rate
and buffer size are scaled up by L, the probability of marking is roughly e~%/m
while that of overflow is e~%7o . If the rate functions are not equal, then as the
system scales up the number of marks per dropped packet tends to either zero
or infinity.

We saw in Chapter 4 that the effective bandwidth of a flow is preserved as
it travels through a network, at least as long as routing is diverse. This makes
it easy to see that marking according to effective bandwidth is reasonable in
networks, not just in isolated routers, and we do not need to worry about flows
being made smoother or more bursty as they progress through the network.

5.3.3 Efficiency

Courcoubetis et al. [9] describe an economic model of user behaviour, under
which a social optimum is attained by charging in proportion to effective band-
width. We will not repeat their model here, as we look at social optima in
much more detail in the next section. We will simply note for the moment that
social optima are always economically efficient, so that in this model fairness
and efficiency are both served by charging in proportion to effective bandwidth.

5.3.4 Summary of EB

Large deviations and effective bandwidth theory suggest a full allocation of
costs, in which flows are marked according to their effective bandwidths.

Large deviations can give us a great deal of information. With it, for ex-
ample, we can model nearly any sort of random traffic (including long-range
dependent sources like fractional Brownian motion, Example 2.4 on page 14);
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we can calculate quantities such as the loss rate and the most likely path to
overflow; and we can analyse the behaviour of traffic in a network.

This comes at the price of loosing some details. For example, it does not
distinguish precisely how many marks correspond to a dropped packet. To give
a different perspective, we now take the economic view. This gives more precise
answers, but cannot answer as many questions.

5.4 Economics and efficiency

This and the following section describe an economic approach to marking.
Economists have developed ways to model the problem of individuals competing
for limited resources, which is exactly our problem of congestion control—they
treat prices as a mechanism for directing consumption, and we will treat marks
in just the same way. The difference with standard economic theory is that the
technological infrastructure of the Internet may, according to MacKie-Mason
and Varian [37], allow ‘breakthroughs ... in the area of in-line distributed ac-
counting.” The breakthrough that we are looking for is the ability to charge
users in a way which precisely reflects their actions, using only the very simple
mechanism of marking packets.

In this section we will look at the problem of efficiency. An allocation of
goods and prices is said to be efficient if there is no change that would si-
multaneously benefit someone and harm no-one, as measured by their utility
functions. In fact, we will concentrate on one particular sort of efficient al-
location: the social welfare optimum, in which the sum of everyone’s utility
functions is maximised.

This is a very simplistic approach to efficiency, and modern economists try
to steer clear of interpersonal comparisons of utility. Yet, as Baumol [1] and
others note, this sort of comparison is inherent in defining fairness. And in this
chapter we are as interested in fairness as we are in efficiency.

First, we briefly discuss in Section 5.4.1 the relationship between marking
and charging. In Section 5.4.2 we review the problem of marking when each user
sets the rate at which they send work, largely following Gibbens and Kelly [23].
They go on to consider how users should respond to such a marking scheme,
and Tan [53, 54] analyses the stability of the whole system. We however will
stay with the topic of marking algorithms, and in Section 5.4.3 we describe how
marking should work when users send random flows. This leads to a definition
of fair and efficient marking, which we call AL. (Here we only prove efficiency;
in Section 5.5 we explain why it can also be taken to define fairness.) Finally
in Section 5.4.4 we discuss some limitations of this definition.

5.4.1 Dropping, marking, and charging

First, a note on marking and charging. We will mainly refer to charging rather
than marking in the rest of this section, so it is important to make clear the
relationship between the two ideas.

Perhaps the most apparent costs in the Internet are infrastructure costs.
It is easy to put a price on a new fibre-optic cable or a new router. We are
not concerned here with this sort of cost: we are interested instead in costs
associated with congestion. Even when all the infrastructure has been paid for,
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congestion can still be a problem. The standard economic way of coping with
congestion is to levy extra charges on people who use congested resources.

Marking in the Internet is intended to achieve exactly the same things as
congestion-pricing in economics, which is why we will use the term charging
rather than marking. However, while people will naturally respond to monetary
charges, it is less clear what incentives there might be for responding to marks.
If users were charged say a millionth of a pence for each mark, the incentives
would be obvious. But even if the Internet is not yet ready for full-blown
congestion-based pricing, economic theory can still help us understand what
the cost of congestion is to users of the network, and how users’ demands for
more bandwidth can be reconciled with the network’s capacity constraints. We
will postpone further discussion of how to encourage and enforce good behaviour
until Section 5.8.

A user’s response to marks will be governed by what the marks signify. The
ECN proposal [48] specifies that users must respond to marks in essentially the
same way as they respond to dropped packets. The reasons for this are largely
historical; and while our discussion of marking refers the ECN mechanism, it is
based on very different premises. Nonetheless, we too will treat marks as akin
to drops. We will take the frequency with which a user’s packets are dropped
to be the primary measure of his dissatisfaction, and so it will be natural to
measure his charge in the same units.

In the rest of this section we will discuss pricing structures rather than
marking algorithms. In translating from charges into marks, it should be borne
in mind that a user ‘feels the cost’ of both marks and drops. For example, a
user who should incur charge P, of whose packets L are dropped, need only
have P — L of his remaining packets marked.

5.4.2 Efficiently marking fluid flows

Consider a network with a set R of resources and a set & of users. Identify
a user u € U with the set of resources v C R he wants to use. Suppose he
sends work at constant deterministic rate x, and has utility U,(z,) in doing
so. We will take one dropped packet to be our unit of utility. We also need a
utility term to indicate the cost of congestion: let Cp,(x) be the average loss
at resource r experienced by user u when the total load in that resource is z.
(The idea of average loss is left intentionally ambiguous for now. It will be made
clear when we go on to consider random flows in Section 5.4.3.) Write x for the
vector (z,)uey. Then each user will seek to

max Uy(y) — ZCru(yr) where vy, = Z Ty
* rEU w:reu

Let us consider the social welfare problem: to maximise the net utility. In
other words,

max Z Uu(zy) — Z Cr(y,) suchthat z,>0VY uvel (5.2)
ueU reR

where

Ypr = Z x, and C’T(yr) = Z Cru(yr)-

u:reu u:reu
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This can be solved with normal Lagrangian techniques. Define £ by
L= Uulza) = > Crlyr) + D Ar <y, -> :r;u> (5.3)
uel reR reR w:reu

and solve 0L/dy, = 0 and 0L/dzx,, = 0 (or =, = 0 and 0L/0x, < 0). This
gives

- dC, and
dyy (5.4)
dU, . '
dr. = TEEU A if z, > 0.

This solution can be written in an intuitively appealing way. Suppose that each
user can adjust his rate z,,, and for sending z,, is receives P,(x) marks. Then,
if he ignores the other users, he would act to maximise U, (z,) — Py (x). Let us
choose the shadow price

Py(x) =24 »_ A (5.5)

reu

Then the solution to the system of equations (5.4) coincides with the solution
to the welfare problem (5.2). (Actually, this charge should be reduced for users
who experience drops. It will be easier to see how when we go on to look at
random processes in the next section.)

The pricing structure (5.5) leads to a decentralised solution, in the following
sense. Each resource computes its own price per unit flow dC,(y,)/dy,, and
that price is communicated to everyone using that resource. Each user observes
the total price he is charged, and adjusts his bandwidth accordingly. By this
choice of prices, the interests of users are harnessed to achieve a social optimum.

One example, first described by Gibbens and Kelly [23], is especially worth
noting, as it leads to a very simple marking algorithm.

Example 5.1

As usual, assume a slotted time traffic model. Also assume for simplicity that
all packets are the same size. Consider a bufferless resource fed by Poisson
flows of packets. Specifically, suppose that each user u sends a Poisson flow of
packets of rate z,, and that C,(y,) is the expected number of dropped packets
at a bufferless resource of service rate C' when fed with an input Y,. which is
Poisson with parameter y,. (i.e., C,-(y,) = E(Y,, — C)*). Then it can be shown
that the correct expected charge given in (5.5) is attained by the following
marking algorithm: in a timeslot in which overflow occurs, mark every packet
that arrived in that timeslot (except for dropped packets, which do not need to
be marked.) ¢

5.4.3 Efficiently marking random flows: AL

The last section assumed fluid traffic flows, or at least traffic flows parameterized
by a scalar rate. But the optimization (5.2) can be interpreted another way, to
say how general random traffic flows should be marked. This will enable us to
draw links with effective bandwidth theory.
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Consider again a slotted time model in which all packets are the same size,
and a network of bufferless resources. Suppose that each user u transmits a
random amount of work at each timestep. Each user will have a probability
distribution controlling how much work is sent, and it is over these distributions
that we wish to optimise. So let x,, in (5.2) be a distribution over the nonnegative
integers, rather than a scalar as in the last section. This means that y, is also
a distribution, the distribution of the total amount of work arriving at resource
r in a single timestep. (To avoid problems with what happens upstream, we
could restrict attention to a single resource. It is easiest to deal what happens
upstream using effective bandwidths and the results of Chapter 4.) We can
now be clear about how we measure the cost of congestion: let C,,(z) be the
expected number of packets belonging to user w which are dropped at resource
r when the total load is z.

The notation becomes a little more complicated here, but the argument is
just the same as in the last section. Let us write Z for the random variable
with distribution z, and z(n) for P(Z = n). Let L,(Y) be the number of
packets dropped at resource r when fed with Y. Then C,(y.) = EL,(Y,),
which expands to ), L,(n)y,(n). Now the multipliers A, are measures on the
nonnegative integers, and the Lagrangian (5.3) becomes

L= Uulwy) =D EL, (V) + > ) A(n) (P(m =n)—P() Xu,= n)>.

Solving 0L/dy,(n) = 0 gives

_ OEL,.(Y;)

Mo =y = L)

and solving 0L/0x,(n) = 0 gives

Z A ]P) Z’U:T‘E’U Xy = m)

6:1:u Oxy(n)
:Z)\ P(Y " X, =m|X, =n)
reu,m virev
= > E(L(Y;)| Xy =n).

reu

Really, we should include constraints that ) z,(n) = 1 and 0 < z,(n) < 1.
But by parameterizing the distribution of X, differently, it can be shown that
these constraints do not affect the solution.

We can again construct the shadow prices which make the solutions to the
user problems coincide with the social optimum:

x) =Y zy(n) Y A(m =m|X, =n) =Y EL.(Y;)

rew,m TEU

In fact, this is a little bit silly, because even when the user sends nothing (i.e.
P(X, = 0) = 1) he is still charged. This has happened because the space of
probability measures for X, over which we are optimizing is affine, not linear.



CHAPTER 5. CONGESTION 58

So we might as well assert that when a user sends nothing he should be charged
nothing, which leads to the price

P,(x) = ZELT (V) — EL, (Y, — X,).

reu

This pricing scheme is naturally attained by charging L,(Y;.) — L, (Y, — X,) in
each instance. We will explain in the Section 5.5 why this can be considered
to be fair. We shall call it the AL pricing scheme, and say that any marking
algorithm which achieves it satisfies the AL definition of fairness.

It is true much more widely that this sort of pricing structure (total cost
with an individual minus total cost without that individual) will lead to a social
optimum. The only distinguishing feature of our probability model is that this
charge arises as a shadow price. Normally the shadow price comes out as a
derivative, as in (5.4) and (5.5).

So far we have assumed a bufferless model. The same argument works for
queues, though with a slight technical difficulty. The problem is that a queue
can overflow over any timescale, and so we would need to consider z, to be a
distribution of a stationary process indexed by the positive integers. This has
more than countably many sample points, so a more intricate analysis would be
needed. To avoid these problems, we can note that real queues only overflow over
a finite timescale, and only consider marginal distributions over this timescale.
This means that EL, (Y,.) —EL, (Y;.— X,,) is still the right charge to levy, where Y.
and X, are to be seen as entire processes. Henceforth we drop the r subscript
for simplicity and talk about single resources, remembering that marks from
different resources should be summed.

Recall that L(m) is the number of packets dropped at a queue when the
aggregate input is m. So AL says that the charge assigned to a user should
equal the difference in the total number of packets dropped between the case
where the user is present and the case where he is not. Over a long enough time
period, this gives the right expected charge.

5.4.4 Problems with AL

There are several concerns with AL, which we now note.

We have simplistically taken the social welfare function (5.2) to be the sum
of utilities of each of the users. This is an arbitrary way to balance the needs
of different users (though it is reasonable from the point of view of fairness). A
more general concept is the idea of Pareto efficiency: a Pareto efficient allocation
is one in which there is no change which harms no-one and strictly benefits
someone, as measured by their utilities

Uu(@u) — Z ELpy ().

reu

The problem with trying to characterize Pareto efficient allocations is that they
depend in detail on the loss function L,.,(Y;.), which depends on the exact order
in which packets arrive. This would require more precise assumptions than are
justified by the queueing models used in this thesis.

A more pressing concern is about strategic play. We have assumed that
each user will try to maximize his own utility, independent of other users. But
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we would expect that a strategic user would anticipate the effect of his actions
on prices and adjust his behaviour, leading away from the social optimum.
The idea of a Nash equilibrium describes what would happen when users play
strategically; but to find these equilibria we have to make further assumptions
about the options open to each user. Gibbens and Kelly [23] give some examples
of what might happen. A user who takes up a large fraction of the capacity
and who does not anticipate the effect of his actions would back off a certain
amount; if he did anticipate, he would back off more. Nonetheless, when there
are many small users, this should not be much of a problem.

There are also problems with defining what we mean by a user. The opti-
mization argument took a user to be an entity that values what it sends and can
shape its traffic in response to charges, and supposed that different users shape
their traffic independently. But what is a user? Is it an institution? a person
sitting at a computer? an application program? a flow of traffic from an applica-
tion? an individual packet? Sometimes each of these levels should be considered
a user, and sometimes they act together. Some preliminary discussion about
how these levels interact is given by Key et al. [31].

5.4.5 Summary of economics and efficiency

We have found a pricing scheme, AL, which maximises social welfare (and is
therefore efficient) assuming a particular model of user behaviour—namely, that
users have total freedom in choosing the distribution of the traffic they send,
and that their cost is measured by their expected loss. The pricing scheme we
found is that user u should be charged the shadow price EL(Y') — EL(Y — X,,).
This rule is summarized by make each user feel any loss he causes as though
it were his own. A pricing scheme like this is called a Pigovian tax. It is the
standard economic prescription for achieving a socially desirable outcome in the
presence of social costs.

This has several problems. The most significant is the problem of whom to
take to be a user. In the next section we go on to consider economic views of
fairness, and indicate how the problem may be remedied.

5.5 Economics and fairness

In Section 5.4 we found that the pricing scheme aL leads to an efficient allo-
cation of bandwidth (at least under the model of user behaviour given in that
section). It has the further virtue that it is fair by definition, or at least by one
of the definitions of fairness that economists have proposed. In Section 5.3 we
suggested charging in proportion to effective bandwidth, which is fair according
to another definition.

In this section we will review some of the different definitions of fairness
that economists have given. We will describe superfairness, the burden test,
incremental fairness and anonymous equity, and game-theory. And we will
introduce another pricing scheme, called spsp. The principal references are
Baumol [1] and Zajac [61].
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5.5.1 Superfairness

Perhaps the most mathematically developed idea of fairness is the theory of
superfairness. An individual A is said to envy individual B if he would rather
have B’s goods than his own. An allocation is fair if no-one envies anyone else,
and superfair if everyone strictly prefers their own goods.

Unfortunately this theory is of no use in congestion pricing, and we only
mention superfairness to dismiss it. Any pricing scheme would be fair by this
definition, because if A envies B then A can just start sending traffic with the
same distribution as B. We however want the price for a user to reflect the
amount of congestion he causes.

5.5.2 The burden test

The idea of a fair price arises in monopoly trials, when a company is charged with
cross-subsidising a product it sells in a competitive market by increasing the cost
of a different product in which it has a monopoly. One way of testing if there is
cross-subsidy is with the burden test, which says that product P constitutes no
burden on consumers of other products supplied by the same company, if the
total income from P exceeds the extra cost incurred by producing P. (Actually,
economists use two closely related tests: the burden test and the incremental
cost test. The distinction is not important for our purposes).

Standard economic models of companies and products do not fit very well
with the problem of bandwidth allocation, because it is hard to decide what the
product is. The fit is, however, good enough to describe the AL pricing scheme
as fair according to the burden test. The extra cost of carrying a user’s traffic
is precisely what AL charges, so we can say that AL fair. (But we shall revise
this conclusion in Section 5.6.)

5.5.3 Game theory and fairness

The standard way to apply game theory to fairness is with the idea of a core.
Suppose that a company supplies products to several consumers. Let the stand-
alone cost for a group of those consumers be the cost of supplying only them.
Then if any group is being charged more than its stand-alone cost, it has an
incentive to withdraw and take its custom elsewhere. The core is the set of
allocations and prices where there is no such group, and it is reasonable to call
the core fair. There are other closely related definitions of fairness, such as the
Shapley value.

These ideas are not appropriate for the problem of bandwidth allocation,
because there is no meaningful idea of stand-alone cost. But the inherent idea
of social equilibrium is useful. The core expresses the idea that a group of
individuals could form a coalition and act in their own interest as a group. In
the context of bandwidth allocation, a group of users could band together and
transmit their packets through a proxy to make it look as if they all came from
a single user. With the pricing scheme AL, a group of users who band together
(but do not otherwise alter their traffic characteristics) may lower but never
increase their net charge.

We would not want a pricing structure that encouraged users to band to-
gether and use proxies in this way to hide the characteristics of their traffic,
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because that would lead to complicated arrangements and extra traffic to con-
trol them. We would therefore describe AL as socially unstable. Further, if
many users banded together then they would constitute a significant proportion
of the traffic, and the problem of strategic play described at the end of Section
5.4 would become serious.

These problems in reaching social equilibrium are well-known. In economic
systems with external diseconomies (such as congestion, which is a problem for
all users) Shapley and Shubik [51] have shown that the core may not coincide
with the set of socially desirable outcomes, and in some cases it may not even
exist.

5.5.4 Incremental fairness: SPSP

The difficulties about users banding together, and also the problem described
in Section 5.4 of whom we should consider to be a user, arise because AL is
not incrementally fair, in the following sense: Suppose that a user sends some
packets in addition to what he sends normally. Then the extra price charged is
typically less than if a separate user had sent those additional packets. In other
words, increments are not charged a fair price. In this section we introduce
another pricing scheme, SPSP, which is incrementally fair.

Incremental fairness is closely related to the economic idea of anonymous
equity, described by Baumol in the context of stand-alone prices (which are
not meaningful in the problem of bandwidth allocation). We can define it in
another way though, as a generalisation of the burden test, which says that an
individual is not benefiting from cross-subsidisation if the amount he is charged
is enough to cover the incremental cost he causes. We may say that a pricing
scheme is anonymously equitable if no individual or part thereof benefits from
cross-subsidisation. In other words, each increment should be charged at least
its fair price.

We can now introduce our final fair pricing scheme, called Sample Path
Shadow Pricing (or spsp), first described by Gibbens and Kelly [23]. It works
as follows: mark a packet if removing it would result in one less packet being
dropped. In other words, when there is an overflow, mark every packet that
arrived between the start of the current busy period and that overflow; and
when there is more than one overflow in a busy period, mark every packet
that arrived between the start of the busy period and the last overflow. It
is illustrated in Figure 5.1. Clearly SPSP satisfies the condition of anonymous
equity, since it charges each individual packet its incremental cost.

This is not a proposal for a marking algorithm: after all, a packet may have
left the queue before we know whether or not it should be marked. So we will
simply say that a marking algorithm satisfies the spsp definition of fairness if
it marks the same number of packets from each flow as spsp.

It is interesting to note that this is precisely the marking scheme described in
Example 5.1 on page 56. There it arose as the efficient pricing scheme for Poisson
flows using a bufferless resource. So spsp can lead to an efficient allocation of
bandwidth, at least for certain models of user behaviour.

It is not surprising that incremental fairness (spsp) and fairness (ArL) dis-
agree. There is an example from superfairness theory, known as the Feldman-
Kirman consistency result, which stresses the difference: Starting from an allo-
cation which is fair, a change which is incrementally fair and beneficial to all
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Figure 5.1: Sample path shadow price marking. The squares repre-
sent packets, and the grey diagonal lines indicate the progress of a
packet through the queue. Shaded packets are those that would be
marked by spsp. This rule marks each packet whose removal would
result in one less packet being dropped.

parties may result in an allocation which is unfair to all parties.

5.5.5 Summary of economics and fairness

The two most important ideas in this section are fairness according to the burden
test and incremental fairness. The burden test says that it is fair to charge a
user the extra cost of carrying his traffic, which is precisely what AL specifies.
Incremental fairness says that each individual packet should be charged its fair
price (according to the burden test), and this is what spsp specifies. In addition
to these two we have the full allocation of costs definition of fairness, described
in Section 5.3, which suggests charging according to EB.

In the next section we compare these three definitions and explain how they
relate.

5.6 Different definitions of fairness

So far we have seen three different definitions of fairness in marking: EB, AL, and
spsp. Each can lead to an efficient allocation of bandwidth, with an appropriate
model for user behaviour. The situation is however not as confusing as it might
seem. In this section we will explain why the three definitions differ, and why
SPSP seems to be the most appropriate definition for marking algorithms for
routers.

Even if we decide to allow all three definitions of fairness, it is still possible
to point out what is unfair, since the three definitions agree for certain traffic
mixes. We call these traffic mixes anonymous scenarios, and we will describe
them in this section. Zajac suggests ten fairness maxims for aggrieved persons,
the first of which is ‘frame your initiative as a concrete unfairness issue’. We
will use anonymous scenarios heavily in Section 5.7, in pointing out how various
proposed marking algorithms can be unfair.

5.6.1 The different definitions

Recall the three definitions of fairness: EB, AL, and SPSP.

® EB says that flows should be marked in proportion to their effective
bandwidth to(6,t). This is fair in that it achieves a full allocation of
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costs, and efficient for the user model mentioned in Section 5.3.3.

e AL says that flows should be marked according to the number of extra
drops they cause, L(Y) — L(Y — X). This is fair according to the
burden test, and efficient for the user model of Section 5.4.3.

e SPSP says that a packet should be marked if removing it would lead to
one less drop. This is incrementally fair, and efficient for the user
model of Example 5.1 in Section 5.4.2.

These three definitions are different. First, EB is different to AL because
effective bandwidth is additive over independent flows, so EB would mark the
aggregate of two independent flows according to the sum of their individual
marks, while AL would typically give the aggregate fewer marks. Second, SPSP
marks every packet that arrives in the critical period before overflow, and expres-
sion (5.1) shows that this is related to the derivative of the effective bandwidth,
which is typically not in proportion to the effective bandwidth. Finally, AL gives
fewer marks than spsp, for example when a single packet is dropped and some
flow contributed two packets in the busy period leading up to the drop.

5.6.2 Anonymity

For a range of traffic mixes these three definitions agree, giving a single clear-
cut standard of fairness. While the range is very limited, it is broad enough to
show that certain algorithms like RED fail the standard. We call these traffic
mixes anonymous. We will first define anonymity in terms of effective band-
width, which is how we will use it in Section 5.7, then give the more natural
interpretation in terms of packets.

Anonymity is based on the requirement that at the critical point each flow X
looks as if it is made up of a number of independent copies of some base flow P.
Specifically, call a traffic mix anonymous if for each flow X there is a multiple k,
such that the effective bandwidth satisfies ax (8,f) = kyap(d,f) and the most
likely path to overflow satisfies %(0,#] = k.p(0,#], where (8,%) is the critical
point. One might think of P as a Poisson flow of very low rate, representing
an isolated packet. Since EB marks in proportion to effective bandwidth, and
spsP marks each copy of the p sample path identically, these two definitions of
fairness agree.

Now we interpret this definition in terms of packets. Think of P as repre-
senting an isolated packet. At the critical point, i.e. in the busy period leading
up to overflow, each aggregate flow X looks as if it is made up of independent
copies of P, i.e. of independent packets belonging to different users. This gives
a more natural way of expressing the assumption of anonymity: that all packets
arriving in the critical interval leading up to overflow are independent. This
means that AL marks them all, and so agrees with spsp. No two packets belong
to the same user, so there is no point classifying them, which is why we call this
scenario anonymous.

Another way of understanding anonymity is through the formal principle of
distributive justice: that equal cases should be treated equally, and unequals
unequally, in proportion to relevant similarities and differences. This is very
vague. But in anonymous scenarios, when each user is indistinguishable from
an aggregate of independent copies of a base flow, it is clear what the equal
cases and the relevant differences are.
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5.6.3 SPSP is best

Traffic mixes will rarely be anonymous, and the three definitions of fairness
will rarely agree. One way to cope with this would be to recognise that it is
technologically difficult to classify packets according to which flow they belong
to (at least in very high speed backbone routers), decide that since we cannot
classify packets we should just act as though the traffic mix were anonymous,
and be satisfied with any algorithm which is fair in anonymous scenarios.

We propose instead a different way of looking at the results of Sections 5.3—
5.5 which suggests that spsp is the right thing to do even when the traffic mix
is not anonymous.

First an analogy. I am sharing a cake (which represents capacity-when-
there-is-congestion) with several people. The others insist on having a certain
size piece which leaves me with half, which is what I want, though I am very
prepared to take less if necessary. Now if someone else were to come along,
the others would insist on keeping their share, but I would give up some of
my share. Should I be charged for taking half? Or should I be given a small
discount, to reflect the fact that I will be more flexible than the others if the
situation changes?

The first approach is taken by spsp, and the second by EB and AL. In-
deed, Gibbens and Kelly [23] introduced spsp for the very reason that it is the
straightforward measure of resource usage. Given a packet trace, we can easily
work out which packets used the resource when it was limited—they are exactly
the packets that sPsp marks.

How EB differs from SPSP

Marking according to EB tries to achieve something different. The whole idea
of effective bandwidths is to capture what happens when the system changes:
we say that two flows have the same effective bandwidth if replacing one by the
other does not change the loss probability. This is the right thing to study for
the purposes of controlling admission to the network, but it is not the same as
measuring resource usage.

However, the effective bandwidth theory of Section 3.6 tells us about resource
usage as well. It identifies the critical timescale £, and hence the limited capacity
B + Ct available over that timescale, such that the probability of overflow is
governed by the likelihood that the sources will consume that limited capacity.
When overflow does occur, expression (5.1) gives us #(0, £], which is the amount
of limited capacity consumed by source X. We can suggestively rewrite that
expression as

tox (6,1) = 2(0,4] — éf%ax 8,1). (5.6)

In words, the effective bandwidth measures the amount of limited capacity con-
sumed by a source, less a derivative term indicating how that source behaves
when the system changes.

In Section 3.6 we showed that loss probability is not changed when one flow
is replaced by another of the same effective bandwidth. The same equations
can tell us what happens to resource usage when this replacement is made. In
(3.9), a fraction § of the sources are replaced by constant rate sources of rate
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equal to the effective bandwidth of the sources they are replacing. The optimal
6 does change, by O(4), but because the loss rate involves a supremum over 6
it only changes by O(6%), and so the derivative of the loss rate I'(0) is zero.
Nonetheless, since the optimal 6 changes by O(d), the allocation of the limited
resource B + Ct does change by a nontrivial amount.

The fact that loss probability is not changed by this substitution makes
effective bandwidth the appropriate measure in certain circumstances. For ex-
ample, in admission control the aim is to only accept a call if doing so would not
increase the loss probability above a certain threshold. Courcoubetis et al. [9]
show how this leads to charging according to effective bandwidth. But if we are
only interested in measuring resource consumption, we should charge according
to (0, 7] instead.

How AL differs from SPSP

The differences between AL and SPSP also arise from whether we take into ac-
count how a user would respond to small changes. In our economic model, if the
system changes then users can change their behaviour too, potentially reshaping
their traffic or changing the amount they send, according to their utility func-
tions. The shadow pricing scheme AL charges them so that they have the right
incentives to reshape their traffic in a way that fits in which the social optimum.
Like EB, AL considers what would happen if the system were to change slightly,
and it charges accordingly. We can write the AL charge as

EL(Y) —EL(Y — X) = EAlpso — E(A — D)*

where A is the number of packets belonging to X that arrive in the critical
interval and D is the number of packets dropped. Again, the first term Alpsg
is the sample path shadow price, and the last term concerns reaction on the
part of the user: if A > D then there is no point reacting as much as if A < D.

(The difference between EB and AL is in their assumptions about what will
happen when the system changes slightly. The former assumes that the traf-
fic will not change but the critical point will shift slightly, whereas the latter
assumes that users will reshape their traffic flows.)

When EB, AL and SPSP agree

As we have already noted, if all the packets arriving in the interval leading up
to overflow belong to different users, i.e. there is some worth attached to each
individual packet and they are sent independently, then the three definitions of
fairness agree. This is because there is only limited scope for reshaping (you
either send the packet or you do not), and so the flexibility term does not come
into the price.

It is worth noting another case where they agree: when the queue is over-
loaded. In terms of effective bandwidths, suppose that the mean input rate is
very close to the service rate. This means that the optimal spacescale 6 will
be very small, and so the second term in (5.6) will be small and spsp and EB
will roughly agree. In terms of economics, suppose that the queue is overloaded
in that each user only sends a small number of packets compared to the total
number dropped. This means that removing the n packets belonging to a single
user would result in n fewer packets being dropped, and so SPSP and AL agree.
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This case of overloading is akin to the cake analogy in the situation where there
is not enough cake to even meet everyone’s minimum demand, so flexibility does
not come into the price.

5.6.4 Summary of the different definitions

In this section we have described how and why the three measures of fairness
differ. In anonymous scenarios they agree, and so there is a clear-cut standard
of fairness. In other scenarios, they differ because they are trying to measure
different things: SPSP purely measures use-when-there-is-congestion, while EB
and AL also take into account how the user might react and how elastic the
demand is.

A wuser’s reaction will depend on what he wants and what he is prepared
to do, and routers are badly placed to predict this. There is no single right
user model, and any algorithm that predicts how users react will eventually be
mistaken. We therefore suggest that SPsP is the best way to define fairness for
routers.

Deciding on efficiency is rather harder. Marking according to each of the
three definitions can lead to an efficient allocation for an appropriate user model,
and indeed it is impossible to define efficiency without modelling user behaviour.
So we shall content ourselves with having found a definition of fair marking.

Unfortunately the implementation of sPSP would require predicting the fu-
ture behaviour of the queue, since it is often unclear whether a packet should
be marked until after it has left the queue. In the next section we look at
algorithms for marking, and see how well they approximate Spsp.

5.7 Marking algorithms

In this section we will use the economical and mathematical insights we have
found in the first part of this chapter to design and analyse marking algorithms.
The goal will be to mark fairly. The best of our three definitions of fairness
is spsp. But we will point out unfairness in anonymous scenarios, when all of
them agree. We are all sensitive to being treated unfairly, even when we have
no definitive idea of what fair means!

We will illustrate the two main fairness pitfalls, then go on to show how RED
falls into both of them. Other algorithms we analyse include BLUE [20], FRED
[35] and Adaptive RED [21]. There are some simple modifications to RED which
make it perfectly fair in anonymous scenarios and approximately fair in others,
and we summarize them in a new marking strategy we call ROSE.

The main mathematical idea in analysing these algorithms is that of the
most likely sample path. Suppose X is a random input to a queue, and that a
rare event occurs. Then, in the many sources large deviations limit, the most
likely way for this to happen is if X had sample path x given in Theorem 3.12:
and this path is exponentially more likely than any other. We will calculate and
plot examples of these paths. See Chapter 3 and especially Examples 3.8 and
3.9 for details of the theory.
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5.7.1 Mark After Loss

The ideal marking algorithm SPSP is impossible to implement, as it requires
knowledge of future events. It is easy to describe what it would do, though:
in every busy period containing an overflow, mark every packet that arrives
between the beginning and the last overflow of that busy period. The problem
is that when a packet arrives at a router, we do not know if the queue will
overflow before it next idles.

To get around the problem, Gibbens and Kelly [23] suggest the following
marking algorithm. When the buffer overflows, mark everything inside the
buffer. Also keep track of how many packets should be marked according to
SPsP, and continue marking after the overflow so that in total the right number
of packets are marked. We will call this algorithm MAL.

They also suggest an even simpler approach, which is to mark all packets
leaving the queue from the time of packet loss until the queue becomes empty.
This is essentially very similar to the BLUE algorithm designed by Feng et al.
[20] which marks packets with a probability which is incremented whenever the
queue overflows and decremented when it idles. This mechanism was actually
designed with a very different goal to MAL—BLUE’s goal is to smooth out the flow
of marks, not to approximate spsP—but in the many sources large deviations
limit this goal is not apparent, and BLUE simply amounts to marking a fixed
proportion of those packets that arrive after a queue overflows and before it
next idles.

(In our slotted time model, it is not clear whether we should mark packets
that arrive in the timeslot in which overflow occurs or in the one after. The
problem is that real routers operate in continuous time, or at least as close as
their timing circuits allow. In fact, at this level of detail they do not even behave
entirely like queues. It is interesting to consider how accurate the slotted time
queueing model is, but hardly appropriate here. We will assume for simplicity
that work arrives evenly distributed throughout a timeslot, and that the marking
algorithm parameters are updated at the end of a timeslot.)

The problem with these algorithms is that they close the stable doors after
the horse has bolted, and then blame the horses left inside for running away!
The packets that arrived before overflow are the ones that caused the problem,
while the packets that arrive after are innocent. Hopefully there will be enough
of the guilty packets left in the buffer when the queue overflows, and not too
many innocent packets marked afterwards, for MAL not to be too bad. But if
for example the buffer is small and the most likely time to overflow is large,
then most of the guilty packets will have escaped.

The problem of marking innocent packets is illustrated in Figure 5.2, which
shows most likely path to overflow and indicates which packets are marked by
spsp, MAL and BLUE. There are two traffic flows: one (the darker) which pro-
duces an independent Normal amount of work each timestep, with mean 0.114
and variance 0.161; and another (the lighter) which is periodic and produces 2
units of work every 20 timesteps. The queue has service rate 0.34 and buffer
size 1.683. This leads to critical spacescale t = 1.4 and critical timescale { = 5.
These parameters were chosen so as to make the scenario anonymous.
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Figure 5.2: Sample paths and marks. The graphs plot the most
likely path to lead to overflow, giving the amount of incoming work
at each timestep, for a queue fed by two different traffic flows. The
shaded regions indicate how the different algorithms would mark.
The scenario is anonymous, so SPSP is perfectly fair, and it marks
the two flows equally. With MAL the darker flow gets 67% of the
marks, and BLUE does even worse, giving it 85%.

5.7.2 Mark in Virtual Queue

Gibbens and Kelly [23] suggest the following virtual queue algorithm, which
tries to detect congestion before it becomes a problem, and thereby avoid the
problem of marking after a loss occurs. The algorithm runs a virtual queue of
smaller buffer size and service rate in addition to the real queue, and feeds it a
copy of each incoming packet. Specifically, if the real queue has buffer size B
and service rate C' then let the virtual queue have buffer size kB and service
rate kC. From when the virtual queue overflows until it idles, mark all arriving
packets. The idea is that the virtual queue will overflow before the real queue,
and so the packets that cause overflow in the real queue might be marked. It is
appealing because it leaves some space in reserve for bursty flows.

The virtual queue algorithm starts marking after an overflow (in the virtual
queue), so it suffers from the same problem as MAL and BLUE. But there is
another problem which we wish to highlight, and to do this we will consider an
idealized version: instead of marking after the virtual queue overflows, we will
suppose that packets are marked in the virtual queue according to SPSP, even
though it is impossible to implement. Call this VIRTQ.

Even VIRTQ can still be unfair. This is because the critical point for over-
flow in the virtual queue is not the same as the critical point for overflow in the
real queue. Therefore the most likely path to lead to marking by VIRTQ will
be different to the most likely path to lead to overflow in the real queue. Since
VIRTQ and sPSP allocate marks in proportion to how much work each flow con-
tributes in these different paths, the two algorithms will mark flows in different
proportions. And since SPSP is fair, VIRTQ must be unfair.

The two algorithms will even have different marking frequencies: the virtual
queue is more likely to overflow than the real queue, so VIRTQ generates more
marks that spsp. However, this is not so clearly an issue of unfairness.

We illustrate this problem in Figure 5.3 with the same anonymous scenario
as in the last section. The mean arrival rate is 0.134 and the real service rate
is 0.34, and to stress the problem we will set k = 0.7, giving a virtual service
rate of 0.238. The (darker) Gaussian source has a much higher mean rate than
the (lighter) periodic source, but a smaller variance. In order for the real queue
to overflow, both flows have to put on a burst, and the high variance source
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will put on a bigger burst. So flows should be marked roughly in proportion
to their variances. The virtual queue has a lower service rate, so a small burst
in addition to the mean rate is sufficient to make it overflow. So in the virtual
queue, mean rates are more important in determining marking ratios.

SPSP VIRTQ

-5 0 5 10 15 20 -5 0 5 10 15 20

Figure 5.3: Virtual queues. The left graph shows the most likely path
to lead to overflow in the real queue: it plots the amount of incoming
work at each timestep. The shading indicates the marks that spsp
would give. The right graph shows the most likely path to lead to
overflow in the virtual queue, and the marks that VIRTQ would give.
The scenario is anonymous, so SPSP is perfectly fair, and it marks
the two flows equally; but VIRTQ gives the darker source 60% of the
marks. The problem is that overflow occurs in essentially different
ways, so the behaviour of the virtual queue is not a good indication
of the behaviour of the real queue.

This is a more subtle problem than that described in Section 5.7.1; and while
it is possible to construct scenarios in which it marks totally the wrong flow, it
does reasonably well in many cases where k is close to one.

5.7.3 Random Early Detect

We now consider the Random Early Detect (RED) algorithm. Actually, for
convenience, we will look at a version of RED in a slotted time model where all
packets are the same size. It may be described as follows. Keep track of the
exponentially weighted queue size, @ = wq; + (1 —w)@—1. When this is between
a threshold b and the buffer size B, mark arriving packets with a probability
which is an increasing piecewise linear function of g;.

The real algorithm has a mechanism to ensure that marks are allocated
regularly, but for large deviations neither this nor the form of the piecewise
linear function matter. Recall that the large deviations limiting regime has the
number of sources and the capacity of the resource increasing, and this leads to
the probability of overflow decaying to 0. In fact, the probability of reaching
level b + € conditional on reaching level b decays to 0 exponentially in the size
of the system. So while the probability of marking may increase linearly in g,
the likelihood of reaching that level decays much faster. So we will only look at
paths leading up to ¢ = b, and assume that when this happens packets arriving
in the next timestep are marked independently and randomly. Thereafter the
queue size decreases.

We do not mean to say that the increasing linear function is not important.
We merely claim that it is not as important as w or b. In this particular limiting
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regime only w and b matter, but real life systems are not arbitrarily large and
the other parameters will come into play.

Typical behaviour

Assume that the most likely path to lead to marking leaves the queue empty up
to time 0, that in (0,t] the queue does not idle, and that at ¢ there are marks.
This assumption is valid for certain sources with positive correlations, such as
fractional Brownian motion with H > % We will restrict attention to Gaussian
sources, to make the calculations easier. The average queue size at time ¢ when
the input is x is given by

G(x) =w'(x —C1)
where ws = 1 — (1 —w)tti=s
now: we simply solve

. It is easy to find the most likely path to marking

inf sup@-x—(\1-0+10'T0)
x:q(x)=b g

which is attained at

I'w

x=A1+ b+ (C-N1Tw) o

Marking happens at critical point ¢w rather than at 1. It happens in this way:
the average queue size just reaches b at time ¢, some packets are marked, and in
the very next timestep the average queue size decreases again. So RED marks a
fixed proportion of the packets that arrive at time £.

The behaviour of RED is illustrated in Figure 5.4. We could have chosen
the same anonymous scenario as in the two previous sections, but calculating
the most likely path to lead to marking is difficult for non-Gaussian sources, so
instead we consider the following non-anonymous scenario. A queue of service
rate 0.6 and buffer size 1 serves two traffic flows. One (the darker) sends work
according to a fractional Brownian motion with mean rate 0.3, variance 0.1
and Hurst parameter 0.7. (See Example 2.4 on page 14 for details.) The other
flow (the lighter) sends an independent amount of work each timestep, normally
distributed with mean 0.1 and variance 1. The RED parameters are w = 0.1 and
b = 0.5. This w is much larger than is advised by Floyd and Jacobson, but as
we shall show it is fairer to make w large.

The RED algorithm falls down in both the ways we have described so far.
First, it only marks packets that arrive after the problem has occurred so it
misses the packets that actually caused the overflow. Second, its marking is not
representative of overflow, because marking and overflow occur in essentially
different ways.

Lin and Morris [35] have described a modified version of RED called FRED
which is meant to be fairer. In the large deviations limit it works roughly as
follows. When the average queue size §; reaches the threshold b, whereas RED
would mark a sample of all arriving packets, FRED only marks or drops packets
from flows which have more than their fair share of packets in the queue, where
‘fair share’ means an equal allocation between all flows of the current average
queue size. In the example of Figure 5.4, when RED starts marking at time 13,
most of the work in the queue belongs to the darker flow: so FRED would only
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SPSP RED

Figure 5.4: How RED marks. The left graph shows the most likely
path to lead to overflow: it plots the amount of incoming work at
each timestep. The shading indicates the marks that spsp would
give. The right graph shows the most likely path to lead to marking
by RED, and indicates how much each flow is likely to be marked.
Marking and overflow occur in quite different ways, and anyway, RED
starts marking too late to catch the guilty packets. In this example,
sPsP would give the darker source 47% of marks, but RED gives it
76%.

drop that flow’s packets. In other words, in this example the unfairness of RED
has been exacerbated!

Setting RED parameters

It is widely accepted that the RED parameters must be set to match the traffic
characteristics. Feng et al. [21] describe one such scheme: they alter the piece-
wise linear function that determines marking probability, though as we have
noted this will not achieve anything in the large deviations limit.

We have developed enough theory now to tell us at least how w and b should
relate. Recall from Section 5.3 that the rate functions for marking and dropping
must be equal, if a drop is to be worth a fixed number of marks. The rate
function for marking is just a function Ipy = Ip(w,b), and we can work out
how to choose w and b to keep Iy fixed, or at least we can for a specific traffic
mix.

This is illustrated in Figure 5.5, for a queue with service rate 1.5 fed by an
first order autoregressive traffic flow with mean rate 1, autoregression coefficient
0.1 and variance 0.5. There is a tradeoff: the larger w is, the larger b should
be. This is hardly surprising, since if the current queue size is given a large
weighting we should accept fairly large fluctuations in the average queue size.

If one does not know the traffic mix then it is natural to set w and b adap-
tively. For example, one could fix w and then adjust b adaptively so that on
average the right number of packets are marked.

5.7.4 Reach Overload, Send FECN

The final algorithm we will look at is called ROSE, and we have designed it to
address the pitfalls described so far. It is basically a special case of RED with
some minor modifications.
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Figure 5.5: How to set some RED parameters. Each line indicates
a family of choices of w and b that lead to the same frequency of
marking, for a specific traffic distribution. To change the way the
system responds, without changing the value of a mark, w and b
should be changed together along one of these lines.

It is not intended as a concrete proposal. It is simply a demonstration that
it is possible to design algorithms which scale properly to large networks and
which are fair, at least in anonymous traffic mixes, and approximately fair in
many others. There are many such algorithms, and engineering judgement is
required in deciding between them. For example, the virtual queue algorithm
described in Section 5.7.2 would be fair if the virtual queue scaling factor xk was
set adaptively.

The ROSE algorithm

The ROSE algorithm works as follows. Whenever the queue size exceeds a thresh-
old b, mark everything in the queue. Adjust the threshold b as follows. For every
packet that would be marked by Spsp, decrease b by xe. For every packet that is
marked, increase b by €. Here, € is a fixed small quantity, and « is a fixed quan-
tity which indicates how many marks correspond to one drop. (As we discussed
in Section 5.4.1, the ECN proposal indicates that one drop should be worth one
mark. But it may be that the whole network can be made more robust if one
mark is only worth a fraction of a drop.)

This is rather like RED with w = 1, with an adaptive mechanism to set b,
and the modification that rather than just marking arriving packets, everything
in the queue is marked as well.

The two pitfalls

To see that ROSE addresses the issues raised so far, we need to answer two
questions. Does it marks packets that caused overflow, or does it mark inno-
cent packets that arrived later? Does it mark in essentially the same way that
overflow occurs—in other words, does marking have the same critical point as
overflow? The answer to both of these is Yes.

We will deal with the second point first. At a large deviations level, the
adaptive algorithm must settle on a value of b equal to the buffer size. We know
this because each drop is worth & marks, so the rate function for marking is equal
to the rate function for overflow, and the only value of b that would achieve this
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is b = B. This seems at first to be inconsistent with the adaptive mechanism,
which would set b < B. To explain the apparent inconsistency, recall that large
deviations is only concerned with limiting behaviour. This means that while b
will actually fluctuate and be a little smaller than B, this difference does not
grow as the network grows. This means that the most likely path to exceed the
threshold b is just the same as the most likely path to overflow, and therefore
the critical point for ROSE is the same as that for overflow. It is now easy to
deal with the first point. All the packets that ROSE marks did indeed contribute
to overflow, because it marks everything in the buffer when overflow occurs.

Fairness of ROSE

Thus ROSE addresses the problems we have described in the other algorithms.
Not only does it address those problems, but it is also perfectly fair in anonymous
scenarios, and approximately fair in many others.

First, we need to check that it marks in proportion to congestion. It does
indeed mark exactly the number of packets that sPsp marks (or a constant
multiple thereof) by construction. Next, we need to see if it marks flows in the
correct proportion. We consider anonymous scenarios first, then non-anonymous
scenarios.

Recall the effective bandwidth definition of anonymity: that at the critical
point, we treat each flow as if it were made up of a certain number of copies
of some base flow P. The number of copies of P that make up a flow X is
proportional to the effective bandwidth of X at the critical point. Now, since
they are identical, each copy of the base flow will leave the same amount of work
in the queue at the time of overflow. This means that, under anonymity, we
can treat the amount of work belonging to X caught in the queue at the time of
overflow as proportional to the effective bandwidth of X. In other words, under
anonymity, ROSE is fair.

When the traffic is not anonymous, we have to ask if ROSE agrees with SPsp.
By construction it marks the same number of packets in total. But it does
not always mark flows in the same proportions as SpSp, and one can construct
examples where it does arbitrarily badly by choosing sources with peculiar paths
to overflow. However, it will agree whenever the sample paths are such that the
contents of the buffer at overflow are representative of the work that arrived
during the critical congestion interval. This will often be approximately true,
and there is an important class of scenarios where it is precisely true: large
buffer asymptotics.

The large buffer asymptotic was described in Example 3.2. It refers to the
limiting regime in which the sources and the service rate are fixed and the buffer
size grows. It used to be a standard tool for estimating overflow probability;
it has since been superseded by the many sources asymptotic, but it is still a
good approximation for queues with large buffers. Importantly for us, it has the
property that the most likely sample paths to overflow are constant rate—this
is called having linear geodesics. This means that buffer contents at the time
of overflow precisely reflect the arrival rates of the different flows during the
critical time period, and so ROSE marks flows in the same proportion as SPSP.
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5.7.5 Summary of marking algorithms

Strictly speaking, all we have found is a collection of negative results. We
have several different definitions of fairness, which agree only in certain circum-
stances, so while we can decide if one algorithm is unfair we cannot firmly say
that another is fair.

And large deviations too only allows us to find negative results. Large devi-
ations is a good tool for modelling certain sorts of networks, in which there are
many independent users and correspondingly large amounts of resources and
in which overflow is rare. All we can decide with our analysis is whether an
algorithm is unfair in this regime.

These tests are enough to decide that most of the algorithms that have been
proposed are unfair. In fact, only a small class of algorithms (including ROSE)
pass them both. We expect that studying the characteristics of this class will
be of considerable help in designing better marking algorithms.

5.8 Frequently Asked Questions

A FAQ is a frequently asked (or answered) question, and a list of FAQs and their
answers is the canonical form of Internet document for collecting and storing
information on a given topic. In that spirit, we compare our findings to previous
work by listing FAQs.

What modelling assumptions do you make?

We make no assumptions about the nature of the sources, except for some very
minor mathematical restrictions which will be satisfied by most sources that
average out in the long run, including bursty sources like fractional Brownian
motion. Most importantly, we do not assume that the sources use TCP. Our
definition of fairness makes no modelling assumptions at all. The large devi-
ations analysis of marking algorithms assumes that the system is large, with
many independent flows.

To avoid bias against bursty sources, should not the marking algo-
rithm use a weighted average, as RED does?

There are two ideas behind this claim, and they are both wrong. The first is
that sources should be marked in proportion to their mean rates, and weighted
averaging is needed to achieve this. But it is not the mean rate that causes
queue overflow, rather it is the bursts; and so the marking algorithm ought to
penalise bursts. The second idea is that short-term fluctuations in bursty traffic
which do not cause overflow should be accommodated, and the way to achieve
this is to use a weighted average. But there are other ways to achieve this, for
example by increasing the marking threshold b when the traffic is bursty, as
ROSE does.

Since these algorithms mark everyone, will they not lead to synchro-
nization and instability?

Many of the algorithms we have suggested mark a group of successive pack-
ets. If the users to whom these packets belong all respond at the same time
by reducing their rate, there might be a much larger decrease in aggregate rate
than is necessary, followed by a collective increase in rate, and so on. This is
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called synchronization, and it makes the network see-saw unstably. But the
general issue of stability is much more complicated than this, and so far there
are only preliminary results. Tan [53] gives cases in which, with reasonable user
behaviour, algorithms similar to SPSpP are stable. The issue here is that stability
depends on how users behave. If they are reasonable, and do not respond to
marks too suddenly, any decent marking scheme should be stable. If they are
perverse, any marking scheme can be unstable.

How does ROSE scale?

The large deviations underpinning these arguments are designed to work in large
networks, and indeed the larger the network the better the approximation. It
is in small networks that the approximations may break down.

Are there simulation results to support your claims?

We are proposing not merely an improved mechanism but a better definition
of fairness, so it would be premature to report simulation results. There are
ongoing experiments [5, 30, 58] to see how users might respond if faced with fair
marking, and anyone with access to the Internet can take part.

How do you make marking fair for users with long round trip times?
This question is based on what we call a social idea of fairness. This says that
certain classes of users, such as those who cannot respond quickly because of
long delays, or even those from troubled social backgrounds, ought to receive
fewer marks because they are less able to compete or deserve more bandwidth.
Our definition, which might be called technical fairness, says that users should
be marked in proportion to the impact they have. The issue of social fairness is
a genuine one, but routers are absolutely the wrong part of the network to deal
with it.

How do you account for the fact that the number of marks given can
be wildly different from the number of drops?

To make the objection concrete, we give an example due to Kelly. Suppose there
are two routers: router A is fed by smooth traffic flows, so a small increase in
traffic causes a large increase in loss; and router B is fed by fluctuating flows,
so a small increase in traffic does not cause such a large increase in loss. Then
it is reasonable to run A at a lower loss rate than B, for example if the goal is
to minimize loss rate per unit throughput. Marking according to spsp would
encourage this, because A would have a critical timescale that is longer than
that for B, and so more marks would be generated at A; whereas marking in
proportion to loss would mean that A generates fewer marks than B. In general,
marks reflect marginal costs (and thus how users should respond) rather than
average costs (which are only relevant to the router).

How does your definition of fairness compare to max-min fairness?

The idea of max-min fairness can be traced back to Rawls, and further. He pro-
posed that social and economic inequalities be arranged to the greatest benefit
of the least advantaged. It is easy to say what this means when considering a
simple allocation of capacity subject to a constraint on the total, and assum-
ing that benefit is measured simply by mean bandwidth: everyone should be
allocated the same bandwidth. But it is unclear how to extend it to incorpo-
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rate demand for different services, and to cope with random traffic flows—the
objects of study for this thesis—where the idea of mean bandwidth is not very

relevant. The algorithms we have suggested owe more to proportional fairness,
described by Gibbens and Kelly [23].

How do you enforce responsiveness from unresponsive flows?

Some router algorithms have been designed to drop packets from flows that do
not respond to marking, or even from flows that do not respond as quickly as
TCP does. It is hard to see what else can be done in the Internet today. The
problem with this is that it does not take account of different preferences: some
users might want to pay more so that they do not have to back down, while
others would happily take a smaller share of the bandwidth. In a private in-
tranet, users can be expected to cooperate and so marking should be sufficient
incentive. In the Internet, the obvious solution would be to charge a user for
every marked packet he receives; but this sort of pricing is a long way off. A
more workable solution might be for Internet Service Providers to police traffic
flows, reducing the rate at which the user can send when he receives very many
marked packets. The problem of unresponsiveness should if at all possible be
dealt with at the boundary of a network, close to users, and not in the network
core. See the ECN proposal [48] for some more discussion of incentives.

How could users be encouraged to respond to marks?

Suppose a user is charged for every marked packet he receives. This is appeal-
ing, since it fits so well with the economic model of Section 5.5. Internet Service
Providers could collect charges from users for marked packets, and could in
turn pay upstream network operators according to how many marked packets
they receive. There are problems with this, as with all Internet pricing mecha-
nisms around today. For example, sometimes it should be the sender who pays
rather than the receiver, such as in viewing advertisements. Some users might
also be reluctant to put up with a variable bill, even though most cope well
enough with variable telephone and electricity bills. Even if users demanded
fixed prices, this could be achieved through intermediaries who take on the risk
and charge a premium, just like insurance agents. Key et al. [31] discuss further
the use of marks as a pricing mechanism, and MacKie-Mason and Varian [38]
discusses usage-based pricing in general.

5.9 Summary

In this chapter we have sought to define what is meant by marking fairly, taking
into account the average bandwidth and the burstiness of each traffic low. We
have found several candidate definitions of fairness: spsp, EB and AL, from
effective bandwidth theory and economics. They all measure resource usage,
but the latter two additionally take into account how the user might behave
when the system changes; and they differ because they have different models of
how users behave. When the traffic mix is what we call anonymous, the three
definitions agree. Otherwise, we choose spsp as the most useful definition,
because it is intrinsically difficult for routers to model user behaviour.

We have used large deviations to model the behaviour of marking algorithms.
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We have seen that RED can be unfair, even in anonymous scenarios. We have
described a variant, called ROSE, which is fair in anonymous scenarios and ap-
proximately fair in many others.



Glossary

Admission control. In order to keep congestion within fixed bounds, some
networks can decide whether or not to accept a new flow based on current traffic
levels. This is called admission control.

Bandwidth. The bandwidth of a traffic flow is a measure of the rate at which
data is transmitted, measured in bits per second.

Congestion collapse. When there is congestion and packets are dropped,
end-systems typically retransmit the dropped packets. If they do this too sud-
denly they cause more congestion, leading to more drops. This vicious circle is
called congestion collapse, and it was first noticed in the Internet in October
1986 [24].

Drop. A packet that is discarded inside the network is said to have been
dropped. Packets are dropped when they arrive at a router which has no space
to store them. See page 1.

ECN. Explicit Congestion Notification. This is a scheme whereby a router
can mark packets to indicate that it is experiencing congestion. See page 48.

Effective bandwidth. The effective bandwidth of a random traffic flow is a
measure of the impact it has, lying between its mean and peak bandwidth, and
measured in the same units. See page 32.

Efficiency. An economic system is said to be Pareto-efficient if there is no
change which would simultaneously make someone better off and no-one worse
off.

End-system. This refers to any sort of device that can generate and receive
Internet traffic. Most end-systems are computers, but the term can also cover
telephones, video cameras, and many other appliances.

Externality. An externality is an economic factor that affects your welfare
but is under the control of someone else. An external diseconomy is an exter-
nality which detracts from your welfare. Pollution is an example of an external

diseconomy.

FAQ. Frequently Asked Question. Also, a list of such questions.
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Intranet. An intranet is a network which is internal to an organisation but
operates in the same way as the global Internet.

LDP. Large Deviations Principle. A particular type of probability estimate.
See page 2 for an example and page 7 for a full definition.

Marginal cost. The marginal cost of a good is the cost of producing one
extra unit.

Mark. A mark on a packet is an indication that it has passed through a
congested router. Marks are set by ECN algorithms such as RED.

Packet. A packet is the basic unit in which data is sent through the Internet.
See page 1.

Pigovian tax. Pigovian taxes, proposed at the beginning of this century
by the economist Pigou, are taxes on externalities, designed to lead to socially
desirable outcomes.

Rate function. A rate function is part of a large deviations principle (LDP).
Informally, we say that an event has rate & if in a system scaled up in a specified
way by factor L, the probability of that event is e *L.

RED. Random Early Detect. This is an algorithm which tells ECN-enabled
routers how to mark packets. See page 69.

RFC. Request for Comments. This is the democratic name given to notes
about the Internet. Specifications of the Internet Engineering Taskforce are
published as RFCs. For a full list, see http://www.rfc-editor.org/.

Router. A router or switch is a device that routes packets. See page 1.

Streaming traffic. For certain sorts of traffic, such as live audio, packets are
transmitted as soon as they are generated. This is called streaming.

Switch. See Router.
TCP. Transmission Control Protocol. This is an algorithm that end-systems

can use to control the rate at which they send packets, so as not to cause too
much congestion. See page 49.
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