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Preface

How to read this thesis

The progression of chapters in this thesis mirrors the progression in the title�
from abstract probability to applied modelling of the Internet� Accordingly� each
chapter concludes with a summary of what is used in those that follow� The
queueing model in Chapter � should be read before the remaining chapters� but
otherwise they can be read in any order� and indeed it might be more interesting
to start with the applications and read backwards�
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Chapter �

Introduction

If written �ve years ago� the title of this thesis would probably have been Large
Deviations and Queueing Theory� However� the Internet is one of the most
important queueing networks there is today� Last year it was directly involved
in hundreds of billions of dollars of economic activity� and each year its size
more than doubles� It should be of interest to mathematicians because it raises
interesting mathematical questions� and because good and timely answers to
those questions can feed back into better design�

Congestion is currently a major problem in the Internet� It leads to unreli�
able performance� and it is holding back the deployment of new services� If the
Internet is to evolve into a high�performance network� suitable for forms of com�
munication that are richer than simple �le�transfers� we must understand how
congestion arises and �nd ways to keep the network operating within its capac�
ity� These are our topics in this thesis� and our main tool is the mathematical
theory of large deviations�

��� Internet Congestion

The Internet is bewilderingly vast� and draws on the expertise of designers at all
levels from physicists studying �bre�optics to legislators regulating access� We
will be concerned with the level of trac generation� transmission� and control�

Here are some �gures� obtained from transmitting this thesis across the At�
lantic to www�wischik�com in July �


� There are roughly ��	��� characters
to transmit� grouped into packets of ���� characters� Each packet takes �����
milliseconds to reach its destination� travelling through �� di�erent way�stations
or routers� In the evening� when the Internet is lightly loaded� the entire oper�
ation takes just under � seconds� In the afternoon� when there is congestion� it
can take over �� seconds� The reason it takes so long is that the source computer
waits between sending packets� so as not to overload the network�

The router� connected by cables to other routers and to users� is the basic
building block of the Internet� Each packet of data from a user is labelled with
its destination and sent out to the �rst router on its path� at a router� each
incoming packet is examined and sent out on the appropriate cable� either to
the next router in its path or to its �nal destination�

When too many packets arrive at a router they are queued until they can

�
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be processed� But a router only has enough bu�er space for a limited number
of packets to queue� and when the bu�er is full further incoming packets are
dropped� that is� discarded� An end�system will eventually detect the drop� and
would typically respond by reducing its transmission rate �and by resending the
dropped packet�� The frequency of packet drops is thus the primary measure of
congestion�

For the past decade Internet congestion has been controlled in this way�
relying on users� computers to detect congestion and to back o�� As the Internet
becomes more commercially important� this consensus arrangement is likely to
fail� Engineers have recently proposed new mechanisms for signalling congestion�
and economists have begun to look at usage�sensitive pricing schemes� But
without a clear mathematical understanding of the phenomenon of congestion�
it is hard to see how these approaches can be understood and integrated� This
is where large deviations theory can help�

��� Large deviations

Since the Internet operates as a network of queues� the tools of queueing the�
ory can be used to study it� This is not a simple question of applying well�
understood mathematical results� getting an answer� and rewording it to refer
to the Internet� Rather� there is an ongoing development of the mathematics�
driven by the particular needs of this application�

In this thesis we develop the large deviations theory of queueing networks�
Large deviations theory is a modern branch of probability� concerned with es�
timating the probabilities of rare events� This makes it well�suited to studying
high�performance communications networks� in which dropping a packet should
be a rare event� The Internet is not always a high�performance network� as
anyone who has tried to use it in the early afternoon will know� but we believe
that techniques like those described here will help improve things�

More precisely� large deviations theory is concerned with limiting regimes� In
queueing problems� while precise equations can be written down� it is very rare
that they can be solved exactly� so instead one seeks limiting results� A typical
result would be that for a router used by L trac �ows of a speci�ed type�
with capacity to serve CL packets a millisecond� the probability of dropping a
packet is roughly e��L� where � can be calculated� and where the approximation
is accurate in the limit as L tends to in�nity� �In other words� its accuracy
improves as the number of trac sources increases�� This estimate is called
a large deviations principle for the probability of dropping a packet� and � is
called its rate�

Large deviations estimates are governed by the principle of the largest term�
which means that if a rare event occurs� it is overwhelmingly likely that it occurs
in just one way� If we can calculate which is the most likely way� we know the
typical behaviour of the system� This means that many of the details which
make it hard to obtain exact answers to queueing problems disappear� With
this generality comes� of course� some loss of accuracy� we will not investigate
that here�

Large deviations theory has been widely studied� and much work has been
done on large deviations in queueing theory� What makes this work di�erent is
the limiting regime we look at� We consider the many sources limiting regime�
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exempli�ed above� in which the number of trac �ows increases� This limiting
regime is well�suited to the Internet� which has many thousands of simultaneous
trac �ows in its core�

��� Large deviations and Internet congestion

We will use large deviations queueing theory to study congestion in networks�
Our study has four parts� In the �rst� we use large deviations to model trac
coming into a router� In the second� we �nd the way in which a router�s bu�er
over�ows� In the third� we model trac travelling through the network� In the
fourth� we analyse algorithms for signalling and controlling congestion�

Large deviations and tra�c modelling

Before one can begin to analyse congestion� one must be able to model trac�
and we do this using large deviations theory and the many sources limiting
regime�

The rate at which data is sent by a computer program typically varies with
time� For example� in sending a video clip� action sequences take more data
than static shots� The natural way to model this variability is to take the trac
�ow to be a random process� Data is sent in myriad di�erent ways� from many
di�erent types of computer application� so we make only very weak assumptions
about the characteristics of the process�

Others have already developed a comprehensive theory to describe large
deviations for random processes� under the large bu�er limiting regime� in which
bu�er size of a router increases but the number of �ows stays �xed� In Chapter
� we develop a full theory for the many sources regime� We also illustrate how
this theory is more applicable than the large bu�er theory to �ows which exhibit
the long�range dependence characteristics seen in real Internet trac�

Formally speaking� we establish a Large Deviations Principle for random
processes under the many sources limiting regime� This Principle gives estimates
for the probability of any event associated with the aggregate of many trac
�ows�

This chapter is mathematically involved� But the work is largely technical�
and it is summarized by a single theorem�

How queues �ll up

Congestion happens when bu�ers over�ow� so in Chapter � we use large de�
viations to study over�ow� We can estimate the probability of over�ow using
the Contraction Principle� as follows� we rewrite �the queue over�ows� as �the
incoming trac is such as to make the queue over�ow�� This is an event associ�
ated with the aggregate input trac� the probability of which we can estimate
using the Large Deviations Principle from the previous chapter� We will give
estimates for several other events associated with over�ow� some of which have
been found before and others of which are new�

We can do more than estimate the probability that a queue over�ows� we
can also calculate how over�ows occur� The Principle of the Largest Term says
that all that matters is the most likely path to lead to over�ow� and that when
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over�ow occurs it is overwhelmingly likely that it occurs in this way� The idea of
the most likely path will play a vital part in our analysis of congestion�signalling
mechanisms in Chapter ��

Networks of queues

Chapter � explains how to model trac as it enters a network�but what really
matters is how trac behaves as it travels through the network� In Chapter � we
prove the new and surprising result that the statistical characteristics of a �ow
of tra�c are essentially unchanged as it passes through a router� This makes
it meaningful to talk about the intrinsic characteristics of� say� video trac as
opposed to audio trac� it is not necessary to consider either the routers that
a �ow passes through� or the other �ows that it interacts with�

Earlier work on networks has reached di�erent conclusions� The reason for
the di�erence is that these are all limiting results� and earlier work has con�
sidered di�erent limiting regimes� For example� under the large bu�er regime�
the characteristics of a �ow of trac change along its route in ways which are
complicated and do not lend themselves to general principles� Our choice of lim�
iting regime allows a much cleaner conclusion� We consider the many sources
regime� in which the number of �ows of trac increases� and make the additional
assumption that di�erent �ows follow diverse routes through the network�

Our result has a straightforward mathematical formulation� but its impli�
cations are signi�cant and merit a good deal of interpretation� It dramatically
simpli�es the analysis of congestion in networks�

Signalling congestion

While the results of the previous chapters are framed with the Internet in mind�
they apply in principle to any queueing network� In the last chapter however
we address a question which has arisen speci�cally from the needs of the In�
ternet engineering community� How should routers signal congestion to users�
There are actually two parts to this� What should be the goals of a congestion�
signalling algorithm� and What sort of algorithm can achieve these goals�

Both of these questions have been looked at� though mainly in isolation�
economists have considered the �rst� and engineers the second� But without
a mathematical model of the phenomenon of congestion� economists cannot
devise pricing structures to prevent it� and without a theory which explains
how congestion occurs� engineers cannot analyse their algorithms� Only recently
have mathematicians begun to study these issues� In Chapter � we address both
questions� using the large deviations tools developed in the previous chapters�

First� we de�ne what it means for a router to signal congestion fairly and
e�ciently� This involves a large deviations analysis of the impact of a user
on the network� It also involves economic modelling of how users behave�a
congestion signalling mechanism has the same purposes as a pricing scheme in
a market economy� to convey information and to direct consumption�

We then study algorithms for signalling congestion� Recently it has been
proposed that Internet routers should be able to mark certain packets with a
congestion experienced tag� and that users should respond to marked packets as
they would to drops� The proposal leaves open the question of what marking
algorithm a router should use� We analyse several di�erent algorithms� including
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one which has been implemented in commercial routers� using the idea of the
most likely path� This is� as far as we are aware� the �rst theoretical analysis
of these algorithms� It turns out that they are all unfair and economically
inecient� We go on to suggest improvements based on principles from large
deviations theory�

This chapter is more discursive� as it takes some e�ort to frame an appro�
priate mathematical question� Once that is done� the tools of queueing theory
can be powerfully applied�

��� Summary

The Internet raises interesting mathematical issues� Using a limiting regime
suggested by the structure of the Internet� we have been able to prove a result
which signi�cantly simpli�es the analysis of networks of queues�

Mathematical study is also of bene�t to the Internet� If the Internet is to
ful�l its promise of revolutionising the way we communicate� it needs to evolve
new ways of coping with congestion� The �rst step must be to understand
the nature of congestion�how it occurs and how it a�ects trac�and the
tools of queueing theory can help with this� Then there must be some way to
signal congestion� Signalling mechanisms are just beginning to be developed
and built into routers� and insights from economics and large deviations can
help in their design� A good signalling mechanism will be fundamental to the
future of congestion control�
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Tra�c

Consider a queue fed by several di�erent input processes� Many quantities of
interest in queueing theory� such as the amount of work in the queue� can be
expressed as functions of the sequence of variables �xt�t�N� where xt is the total
amount of work received t timesteps ago�

The sequence �xt� will typically live in a space on which the quantity of
interest is a continuous function� For example� let X� be the space of real�valued

sequences x � �xt� for which t��
Pt

i�� xi � � eventually� Then the amount of
work Q in a queue with an in�nite bu�er and �xed service rate C � � is given
by

Q�x� �

�
sup
t��

� tX
i��

xi � Ct
���

The principal result of this chapter is a large deviations principle �LDP� for
a sequence of processes XL� in X� equipped with a topology which makes Q
continuous�

This can be used to understand the large deviations behaviour of a wide
range of queueing systems� Consider a sequence of queueing systems� in which
the Lth system has input XL� In Chapter � we will use the Contraction Principle
to deduce� from the LDP for XL� LDPs for various quantities of interest such
as Q�XL��

We will be motivated by one particular limiting regime� in which XL is the
average of L processes� This is known in queueing theory as the many sources
asymptotic� It is well�suited to modern telecommunications networks� in which
a router may have thousands of di�erent input �ows� However� in this chapter�
XL can be any sequence of processes�

Before proving the result� we introduce our notation� explain what a large
deviations principle is� and review related work� After� we give some examples�

��� Large deviations for averages of processes

We will be concerned with the set X of real�valued processes indexed by the
natural numbers f�� �� � � �g� Throughout this thesis� t will represent a natural
number� Denote a process in X by x������ and its truncation to the set fs �

�
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� � � � tg by x�s� t for s � t� When the meaning is unambiguous� x����� and
x��� t may be written x� Let � be the constant process taking value � at each
time step� Denote by xt the value of the process at time t� and by x�s� t the
cumulative process x�s� t �

Pt
i�s�� xi� with x�t� t � ��

We will prove results about the limit of a sequence of random processes
�XL � L � � � � ���� Think of XL as the average of L independent� identically
distributed processes� The principal result of this chapter is a sample path large
deviations principle for XL�

For a full introduction to the theory of large deviations� and details of the
tools and de�nitions we will be using� see Dembo and Zeitouni !�� � For the
moment� we will content ourselves with explaining what is meant by a large
deviations principle�

A sequence of random variables XL in a Hausdor� space X with Borel ��
algebra B is said to satisfy a Large Deviations Principle �LDP� with good rate
function I if for any B � B�

� inf
x�B�

I�X� � lim inf
L��

�

L
logP�XL � B�

� lim sup
L��

�

L
logP�XL � B� � � inf

x� �B
I�X�� �����

where I � X � R
� �f�g has compact level sets� If X is a process� this is called

a sample path LDP� The left and right hand sides of this inequality are referred
to as the large deviations lower and upper bounds�

��� Related work

The many sources limiting regime was described in an early paper of Weiss !�� �
It has more recently been studied by Botvich and Dueld !� and Courcoubetis
and Weber !�� and others� whose work will be described in Chapter ��

Another limiting regime which has been much more widely studied is the
large bu�er asymptotic� in which XL is a speeded�up version of a base process
X� XL��� t � L��X��� Lt � Sample path large deviations for this regime have
been described by O�Connell !�� � and the proof of the LDP in this chapter is
similar in outline� It turns out� as we will show� that the large bu�er LDP arises
as a special case of the many sources LDP� Puhalskii and Whitt !�� have also
proved a large bu�er sample path LDP in a similar setup�

��� Proving the LDP

We want to �nd a sample path LDP for XL in a space appropriate for queueing
applications� This will be done in four steps� The �rst step� Section ������ is
to �nd an LDP for �nite truncations of the process� If XL is the average of
L processes� a �nite truncation is just the average of L vectors� and there are
standard tools for dealing with this� The next step� Section ������ is to extend
the LDP to the entire process� This is done by taking projective limits� again
a standard step� The third step� Section ������ takes most of the work� Many
queueing functions of interest are not continuous with respect to the projec�
tive limit topology� so we need to strengthen the LDP to a more appropriate
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topology� O�Connell !�� has introduced a suitable topology� that given by the
uniform norm

kxk � sup
t��

����x��� t 

t

���� � �����

As well as choosing this �ner topology we need to restrict the LDP by incorpo�
rating a notion of stability� this is the �nal step� in Section ������

We will �nd conditions under which XL satis�es an LDP� in a subset of X
equipped with the uniform topology� and with good rate function

I�x� � sup
t��

sup
��Rt

� � x��� t ��t���� �����

where �t��� is the moment generating function

lim
L��

�

L
log E exp�L� �XL��� t ��

����� An LDP for truncated sequences

The following lemma establishes an LDP for any �nite truncation of the process�
It is a direct restatement of the G"artner�Ellis theorem for the average of vectors
in R

t �see Dembo and Zeitouni !�� Theorem �������

Condition � �Finitetime regularity�
De�ne the logarithmic moment generating function �L

t ��� for � � R
t by

�L
t ��� �

�

L
log E exp�L� �XL��� t ��

Assume that for each t and �� the limiting moment generating function

�t��� � lim
L��

�L
t ���

exists as an extended real number� and that the origin belongs to the interior of
the e�ective domain of �t� Assume further that �t is an essentially smooth�
lower semicontinuous function�

Lemma ��� Under Condition �� for any �xed t� the sequence XL��� t satis�es
an LDP with good rate function

��t �x��� t � � sup
��Rt

� � x��� t ��t����

Throughout this thesis� we have in mind the following example�

Example ��� 	Many Sources

Let XL be the average of L independent copies of the process X� Then

�t��� � �L
t ��� � log Ee� �X���t��

and so Condition � is automatically satis�ed� �



CHAPTER �� TRAFFIC 


����� The Projective Limit

Now we extend the LDP from �nite truncations X��� t to the full process
X������ We need a little more care than this in stating the result� because
the de�nition of large deviations principle relies on open and closed sets and
there are several useful topologies on the space of processes X � We will use
the topology of projective limits� i�e� the topology of pointwise convergence of
sequences� The following lemma is a direct application of the Dawson�G"artner
theorem for projective limits �see Dembo and Zeitouni !�� Theorem �������

Lemma ��� Under Condition �� the sequence XL satis�es an LDP in X under
the topology of pointwise convergence� with good rate function

I�x� � sup
t
��t �x��� t �� �����

The topology of pointwise convergence is however not directly useful for
many queueing applications� For example� if xt is the amount of work arriving
at a queue at time �t� and the queue is served at constant rate C� then the
queue size at time � is

Q�x� � sup
t��

x��� t � Ct

and this function is not continuous with respect to the topology of pointwise
convergence� To see this� set xLt � C for t � L� xLL � C � �� and xLt � � for
t � L� Then xL converges pointwise to the constant process of rate C� for which
Q � �� but Q�xL� � � �� ��

We need to show that the LDP holds in a �ner topology� one which will
make Q continuous� This is done in the next section�

����� Strengthening the topology

The uniform topology ����� de�ned above allows one to analyse a wide range
of queueing problems� The idea is that it controls what happens over very
large timescales� We will show that the sample path LDP of Lemma ��� can be
extended to it� under an additional assumption on the large timescale behaviour
of the process XL�

The results in the following chapters do not actually need a topology as
strong as the uniform topology� The only properties of the topology they use
are that it is stronger than the projective limit topology� and that it makes the
queue size function continuous� There are weaker topologies that have these
two properties� such as the weak queue topology� de�ned by the metric

d�x�y� � jQ�x��Q�y�j�
�X
t��

� 	 jxt � ytj
�t

�

This will be useful in Chapter �� But the uniform topology makes it easier to
follow the proofs in this chapter� so we will stick with it for now�
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Condition � �Large timescale characteristics�
A scaling function is a function v � N � R for which v�t�� log t��� For some
scaling function v� de�ne the scaled cumulant moment generating function

#L
t �	� �

�

v�t�
�L
t ��	v�t��t��

for 	 � R� From Condition �� for each t there is an open neighbourhood of the
origin in which the limit

#t�	� � lim
L��

#L
t �	�

exists� Assume that there is an open neighbourhood of the origin in which these
limits and the limit

#�	� � lim
t��

#t�	�

exist uniformly in 	�
We also know from Condition � that for 	 in some open neighbourhood of

the origin� the limit #L
t �	��#t�	� � � is uniform as L��� Assume that for

	 in some open neighbourhood of the origin� the limits
v�t�

log t

�
#L
t �	� � #t�	�

�
� � �����

is uniform in 	 as t� L � �� that is� given 
 � � there is a t� and a L� such
that for t 
 t� and L 
 L� and 	 in the neighbourhood of the origin� expression
����� is within 
 of ��

Theorem ��� �Samplepath LDP for process averages�
Suppose XL satis�es Conditions � and �� Then it satis�es an LDP in the space
of real�valued sequences X equipped with the uniform topology ������ with good
rate function I given by ������

Example ��� 	Many Sources

In the case of Example ���� when XL is the average of L independent processes
with common distribution X� the uniformity of the limit ����� is guaranteed�
since �L

t � �t� �

Proof of Theorem ��� The processes XL take values in the space X of real�
valued sequences� Write �X � p� for X equipped with the projective limit topol�
ogy� and �X � k�k� for X equipped with the uniform topology� The identity map
from �X � k�k� to �X � p� is continuous� and we know that XL satis�es an LDP in
�X � p� with rate function I� So� by the Inverse Contraction Principle �see Dembo
and Zeitouni !�� Theorem ������� if XL is exponentially tight in �X � k�k�� then
it satis�es an LDP in �X � k�k� with the same rate function�

It remains to show that XL is exponentially tight in �X � k�k�� in other words
that there exist compact sets K� in �X � k�k� such that

lim
���

lim sup
L��

�

L
logP�XL �� K�� � ���
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Choose the sets K� as follows� For each t� let �t � #�t���� let dt �
p

log t�v�t��
let

K��t� �
n
x � X �

x��� t 

t
� !�t � �dt� �t � �dt 

o
�

and choose

K� �
�
t�N

K��t��

Exponential tightness with these K� will be shown in the following two lemmas�
�

Lemma ��� The sets K� are compact in the uniform topology�

Proof� Because we are working in a metric space� it suces to show that the sets
K� are sequentially compact� So� let xk be a sequence of processes� Since the
T �dimensional truncation of

T
t	T K��t� is compact in R

T � the intersection K�

is compact under the projective topology� That is� there is a subsequence xj�k�

which converges pointwise� say to x� It remains to show that xj � x under the
uniform topology�

Given any 
� since dt � � as t � �� we can �nd t� such that for t 
 t��
�dt� � 
� And since x and all the xj are in K��

sup
t�t�

����xj��� t t
� x��� t 

t

���� � 
�

Also� since the xj converge pointwise� there exists a j� such that for j 
 j��

sup
t�t�

����xj��� t t
� x��� t 

t

���� � 
�

Putting these two together gives the result� �

Lemma ���

lim
���

lim sup
L��

�

L
logP�XL �� K�� � ���

Proof� First� note that if

lim
���

lim sup
L��

L�� log yL� � ���

and the same is true of zL� � then it is also true of yL� � zL� � by the principle of
the largest term� Also note that

P�XL �� K�� �
X
t

P�XL��� t �t � �t � �dt� �
X
t

P�XL��� t �t � �t � �dt��
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We will adopt the strategy of breaking the in�nite sums up into several parts�
several �nite timescale parts� and a long�timescale in�nite part� Finite timescale
parts are easy to deal with individually� and with the uniform topology we
can control the behaviour of XL over long timescales� This strategy is also
at the core of proofs for related large deviations results� proved directly by
Courcoubetis and Weber !�� and Botvich and Dueld !� �

First� �x t and consider lim supL L
�� logP�XL��� t �t � �t ��dt�� By Cher�

no��s bound�

P�XL��� t �t � �t � �dt� � exp
h
�Lv�t�

	
	��t � �dt�� #L

t �	�

i

for any 	 � �� So the expression we are interested in is bounded above by
lim supL�v�t��	��t � �dt� � #L

t �	��� Choosing any 	 for which #t�	� is �nite�
it is clear that this quantity tends to �� as ����

Now for the remaining terms� We have assumed that the limits #L
t �	� �

#t�	� and #t�	� � #�	� exist uniformly in 	 in an open neighbourhood of the
origin� Since #L

t is a cumulant moment generating function it has a power
series expansion� and so the coecients in the power series also converge� Let
#L
t �	� � 	�Lt � �

		
	sLt � O�	
�� and denote the coecients of #t and # by

dropping the superscripts and subscripts appropriately�
For �xed t�� consider the remaining terms

lim
���

lim sup
L��

�

L
log

X
t�t�

exp
h
�Lv�t�

	
	��t � �dt�� #L

t �	�

i
� �����

Assume for the moment that s � �� and pick 	 depending on L and t� 	Lt �
�dt � 
Lt ��sLt � where 
Lt � �t � �Lt � This gives as the typical exponent

�Lv�t�

��
�dt � 
Lt �	

�sLt
�O�dt � 
Lt �



�
�� �

sLt
dt�dt � 
Lt �

�
�

Because of our assumption on the uniformity of convergence ������ there exists
a t� and L� such that for t 
 t� and L 
 L�� 	

L
t is positive� and because dt � ��

the term in brackets f�g is also positive� �If s � �� pick 	Lt � dt � 
Lt � then the
same conclusion holds��

So the typical exponent in ����� is bounded above by

�Lv�t�

�
�� �

sLt
dt�dt � 
Lt �

�

for suciently large t and L� Indeed� for suciently large t and L we can bound
it by �Lv�t����� ��d	t for some constant � � �� Therefore� by our choice of dt�
for t� suciently large� expression ����� is bounded above by

lim
���

lim sup
L��

��� ���

L
log

X
t�t�

t�L�

It is easy to check that this is equal to ��� �
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����� Stability

We have achieved the goal of a sample path LDP for averages of processes� But
it is still not directly useful for queueing applications� because the queue size
function is still not continuous on X � even with respect to the �ner topology� The
problem is that there is no notion of stability� If the mean arrival rate is higher
than the service rate� the queue will be unstable� Mathematically speaking� the
queue size function is only continuous on the subspace of processes for which
the mean arrival rate is less than the service rate� Similar stability conditions
crop up again and again� so it will be useful to give the following theorem� which
shows that the sample path LDP holds in this restricted space of processes�

De�nition � �Stability� De�ne the mean rate of the XL to be the derivative
#����� Say that XL is stationary if the limiting moment generating functions
�t correspond to a stationary process�

Note that if XL is stationary� then the mean rate is simply limL�� EXL
� �

Theorem ��� Under Conditions � and �� the LDP of Theorem �� holds on
the space X�� which has the uniform topology and is given by

X� �
n
x � X �

x��� t 

t
� � eventually

o
�

for any � greater than the mean rate of the XL�

Proof� By Dembo and Zeitouni !�� Lemma ������ it suces to show that fx �
I�x� ��g � X�� and for L suciently large� P�XL � X�� � ��

Recall that I�x� � supt�
�
t �x��� t �� Let � � #���� � 
� and pick 	 � � such

that #�	� � 	��� �
	
�� Now if x��� t �t � �� then for suciently large t�

��t �x��� t � � sup
�

� � x��� t ��t��� 
 	v�t�
�x��� t 

t
� ��� �

	
�
�

 �

		v�t�
�

So if x �� X� then this inequality holds for in�nitely many t� and since v�t� is
unbounded� I�x� � ��

Second� since #L
t �	� � #t�	� uniformly for t suciently large� and #t�	� �

#�	�� there exists 	 � � such that for L and t suciently large� #L
t �	� � 	�� �

�
	
�� Then� by Chebychev�s inequality�

�X
t��

P

�
XL��� t 

t
� �

�
�

�X
t��

exp

�
�Lv�t��	�� #L

t �	��

�

which is �nite for L suciently large� So� by the Borel�Cantelli lemma� P�XL �
X�� � �� �

��� Examples

We have already given the example of the many sources asymptotic� in whichXL

is the average of L independent processes� We now give three more examples�
The �rst shows how large bu�er results can be obtained from the same theorems
�though they usually turn out to have a less rich structure��
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Example �� 	Large Bu�er

Given a base process X� let XL��� t � f�L���X��� f�L�t � This is the large
bu�er asymptotic regime� For a variety of processes X it is possible to choose
a normalising function f�L� such that Condition � is satis�ed� Often� the nor�
malising function is just f�L� � L� and the limit �t has the simple linear form
�t��� �

Pt
i�����	i�� For an account of conditions under which this occurs�

see Dembo and Zajic !�� � In Example ��� below� the normalising function is
not linear and �t has a more complicated form�

Suppose for now that �t has the simple linear form� this gives as the rate
function I�x� �

P
t�

�
��xt�� Then Condition � is satis�ed� To see this� choose

v�t� � t� so that #�	� � ���	�� Since #L
t �	� is given by

#L
t �	� �

�

Lt
log E exp

	
	X��� Lt 



�

and we have assumed that this converges as L��� we can by choosing t and
L suciently large make #L

t �	� � #t�	� arbitrarily small� Thus the limit �����
is uniform as t� L � �� O�Connell !�� describes sample path large deviations
under the large bu�er asymptotic in more detail� �

The second example is of fractional Brownian motion� a process with long�
range dependence� by which we mean that the sum of covariance coecientsP�

i�� Cov�X�� Xi� is in�nite� This makes it both appealing as a model for In�
ternet trac� since this phenomenon has been observed empirically by Leland
et al� !�� and others� and also a problem for the standard large bu�er asymp�
totic� But under the many sources asymptotic� it looks just like any other
process�

Example ��� 	Fractional Brownian Motion with Many Sources

As an illustration of the many sources asymptotic� let XL be the average of
L independent copies of the process X� de�ned by X��� t � �t � �Zt where
Zt is a fractional Brownian motion with Hurst parameter H � Then �t��� �
�� � � � �

	�
	� � St�� where the t � t matrix St is given by �St�ij � �

	 �jj � i �
�j	H � jj � i� �j	H � �jj � ij	H�� and so �t�	�� � �	t � �

	�
			t	H �

To check that Condition � is satis�ed� choose the scaling function v�t� �
t	���H�� so that #L

t �	� � �	 � �
	�

			� This does not depend on L or t� so it is
also equal to #t�	� and #�	�� �

Example ��� 	Fractional Brownian Motion with Large Bu�er

To contrast the many sources and the large bu�er asymptotic� consider the large
bu�er version of fractional Brownian motion� Let X be a fractional Brownian
motion with Hurst parameter H � as in the previous example� Choose the scaling
XL��� t � f�L���X��� f�L�t with f�L� � L��	���H�� This gives �L

t �	�� �
�t�	�� � �	t � �

	�
			t	H � the same expression as before� This is not linear in

t� so �t��� does not have the simple linear form described in Example ����
For Condition �� as with any large bu�er example the limit ����� is uniform

for any scaling function v� and as in Example ��� we can choose v�t� � t	���H��
Applying the results in Chapter � to the LDP we obtain from this� we can

rederive a result of Dueld and O�Connell !�
 for the workload in a queue fed
by a single fractional Brownian motion source� �
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The �nal example is of Moderate Deviations� This refers to a family of
results somewhere between the Central Limit Theorem and Large Deviations�
There is not yet a standard reference for moderate deviations� see de Acosta
!�� and Deo and Babu !�� for related results�

Suppose that XL is the average of L independent processes distributed like
X� and let � � EX� The central limit theorem looks at the limiting behaviour
of L��	�XL � ��� it produces estimates based on the normal distribution and
involving only the mean and covariance� Large deviations on the other hand can
be thought of as looking at the limiting behaviour of �XL � ��� the estimates
it produces involve the entire distribution� but they are simple because they
depend only on the most likely path�

Moderate deviations sits between these� it looks at the limiting behaviour
of L��	�XL��� for � �  � �� and produces estimates involving only the mean
and covariance and depending only on the most likely path� To be precise� let
us say that XL satis�es a moderate deviations principle if

�

L���
logP�L��	�XL � �� � B� �����

satis�es the upper and lower large deviations bounds ������ with a good rate
function which depends only on the covariance structure�

Example ��� 	Moderate Deviations

Let

YN �
p
N��������XN������� � ���

If YN satis�es the conditions of Theorem ��� we obtain estimates of the quantity
������ where L � N��������

Further� we know that the log moment generating function for XL��� t does
not depend on L since XL is assumed to be the average of independent copies
of X� Let it be

�L
t ��� � � � �t � �

	� � $t� � � � � �
Then the log moment generating function for YL��� t is

ML
t ��� � �

	� � $t� �O
	
��
p
L



and so the rate function� which depends on the limit Mt� only involves the
covariance structure $t� �

We shall revisit this example in the next chapter� to see what moderate
deviations tells us about queue size�

��� Summary

For most of the rest of this thesis� all that matters from this chapter is the
following� a restatement of Theorem ���� In Chapter � we need to pay a little
more attention to the conditions under which this theorem is satis�ed� but for
the rest all we need is the notation and the result�

Consider the space X of real�valued processes x � �x�� x	� � � � � indexed by
the natural numbers� Write x��� t for �x�� � � � xt�� and x��� t for x� � � � �� xt�
Consider a sequence of random processes XL in X �



CHAPTER �� TRAFFIC ��

Theorem ��� �Sample path LDP� Under Conditions � and � 	on pages �
and ��
� XL satis�es a large deviations principle with good rate function

I�x� � sup
t��

sup
��Rt

� � x��� t ��t����

where �t��� is the moment generating function

lim
L��

�

L
log E exp

	
L� �XL��� t 



�

in the space

X� �
n
x � X �

x��� t 

t
� � eventually

o
�

equipped with the uniform norm

kxk � sup
t��

����x��� t 

t

���� �
for any � greater than the mean rate of the XL 	De�nition  on page �
�

This result will be used to study the large deviations behaviour of a variety of
queueing systems� It lets us estimate the probabilities of events we are interested
in� and also gives a good idea of how those events are likely to occur� Some of the
systems can easily be studied directly�but the indirect route� via this sample
path LDP� can give more insight� It also means there is less additional work for
each di�erent application�
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Queues

In this chapter we use the sample path LDP of Chapter � to study large de�
viations in three di�erent queueing problems� in Section ��� we study over�ow
in standard �rst�in%�rst�out queues with �nite and in�nite bu�ers� in Section
��� we study the sample paths that lead to over�ow� and in Section ��� we
study over�ow in queues which give some �ows priority over others� There are
many other possible applications� for example� in Chapter � we use it to analyse
control algorithms for routers�

The common approach will be to take the sample path LDP and then apply
the Contraction Principle to �nd an LDP for the quantity of interest� The
contraction principle says that if XL satis�es the sample path LDP in X� with
rate function I� and if f is a continuous function on X�� then f�XL� satis�es a
LDP with good rate function I�y� � inffI�x� � x � X�� f�x� � y�g� See Dembo
and Zeitouni !�� Theorem ����� for a proof�

In Section ��� we describe our results in the more practical language of
e�ective bandwidths� First� though� we relate the abstract setting of the last
section to queueing models� and describe the limiting regime�

��� The queueing model

Consider a sequence of queues� indexed by L� in which the Lth queue has service
rate C and bu�er size B� Let XL

t be the total amount of work arriving at the
Lth queue at time �t� �Depending on the context� X will variously be called
an input process� a source� or a trac �ow��

There are several ways in which we can interpret this� depending on what
XL represents� though none of the results in this section rely on a particular
interpretation� Here are three possibilities� corresponding to three examples
from the previous chapter�

The �rst example is the one we have in mind throughout this thesis� when
the total input �ow is the aggregate of many independent input �ows� This
sort of scaling is well�suited to modern telecommunications networks� in which
a router may have thousands of inputs�

Example �� 	Many Sources

In the many sources asymptotic� XL is the average of L independent identically
distributed �ows� So the Lth queue can be thought of as multiplexing together

��
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L di�erent �ows� with its resources growing in proportion� it has service rate
LC and bu�er size LB� �

The next example has been much more widely studied� For Markov modu�
lated �uid sources and for many others� the probability of loss decays exponen�
tially in bu�er size� so a good way to reduce loss is to make the bu�ers larger�
and it is natural to study asymptotic regimes in which the bu�er size increases�
The observation that this is largely inaccurate when there are many input �ows
or when the sources exhibit long�range dependence �see Choudhury et al� !� 
and Leland et al� !�� for example� has prompted some of the work on the many
sources asymptotic�

Example �� 	Large Bu�er

In the large bu�er asymptotic� described in Example ���� XL is a speeded up

version of a base process� XL��� t � f�L���X��� f�L�t � So the Lth queue can
be thought of as having a single input X and �xed service rate C� but increasing
bu�er size f�L�B� �

The �nal example looks at a di�erent sort of limit� in which the impacts
of the mean arrival rate and burstiness are treated di�erently� It has some
appealing features� the probability of over�ow depends on the input processes
only through their mean and covariance structure� which makes calculations
easier�

Example � 	Moderate Deviations

Moderate deviations theory� described in Example ���� lies between large devi�

ations theory and the central limit theorem� Let XL �
p
M�YM � �� where

YM is the average of M independent stationary sources distributed like Y�
� � �� � EY� and M � L�������� So the Lth queue can be thought of as having
L independent input �ows each distributed like Y� service rate L��L�����	�C
and bu�er size L�����	�B� �

��� Related work

The work in this chapter and the one preceding was motivated by the results
of Courcoubetis and Weber !�� and Botvich and Dueld !� � who �nd large
deviations rate functions for the amount of work in a queue and the event
of over�ow� Dueld !�� has treated separately the case of nonlinear scaling
functions� These authors proved their results directly� but we will start with
the sample path LDP and apply the contraction principle� Ours is a more
general method� and it lets us �ll in some gaps� in particular� we give the large
deviations rate function for workload in a queue with a �nite bu�er� Simonian
and Guibert !�� obtain similar results for a special class of input processes�
Markov�modulated �uid sources� Botvich and Dueld describe both continuous
time and discrete time models� but we will restrict our attention to the discrete
case�

The large deviations estimates for over�ow probability can be re�ned using
the Bahadur�Rao improvement as described by Likhanov and Mazumdar !�� �
Their techniques involve a lot more technical details and give only a little extra
insight� so we stick with large deviations�
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Another bene�t of the sample path LDP approach is that it tells us the most
likely sample path to over�ow� Weiss !�� � who introduced the many sources
asymptotic� obtained similar results for the special case of an on�o� Markov
source using direct methods� and Mandjes and Ridder !�� have too for Markov�
modulated sources and periodic sources� Our results hold much more generally�

The contraction principle approach has been applied widely to the large
bu�er asymptotic� described in Example ���� See O�Connell !��� �� � Dueld
and O�Connell !�
 and Paschalidis !�� for examples� We will see that under
the many sources regime� large deviations often possess a richer structure�

The �nal queueing problem studied in this chapter� that of the priority
queue� has been studied by Berger and Whitt !� � who independently obtained
similar results for the large bu�er asymptotic� Related queueing models under
that asymptotic are described by Kulkarni et al� !�� and O�Connell !�� �

��� Bu�er size in a queue

In this section we look at a standard queue with a constant service rate� The
following results have previously been proved directly� but it is instructive to
see the techniques used in deriving them from the sample path LDP� as these
same techniques will be used in the following sections�

Consider a queue with constant service rate C fed with input process x� The
amount of work in the queue at time�s may be de�ned to be limt��Qs�x��� t ��
where Qs�x��� t � is given by the Lindley recursion

Qs�� �
	
Qs � xs � C


�
� Qt � ��

If the input is a stationary process� the stationary queue size may be written as

Q�x� � sup
t
x��� t � Ct�

Lemma ��� shows that this function is continuous on X� for any � � C� By
the Contraction Principle� this immediately gives Corollary ���� an LDP for
workload in queues with in�nite bu�ers� which when simpli�ed duplicates the
results of Botvich and Dueld !� for linear scaling functions v�t�� of Dueld
!�� for general scaling functions� and of Simonian and Guibert !�� for the
special case of Markov�modulated �uid sources�

Corollary ��� Under the conditions of Theorem ���� if XL has mean rate less
than C then Q�XL� satis�es an LDP with good rate function

I�b� � inf
x�XC �Q�x��b

I�x��

Proof� The only point to note is that the in�mum is taken over XC � But it
might as well have been taken over X� for any � greater than the mean rate and
less than C� since the rate function will be in�nite on XCnX� by Corollary ���� �

We can do the same thing for queues with �nite bu�ers� The queue size &Q
in a queue with a �nite bu�er B is de�ned similarly to Q� except that it cannot
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�ll to greater than B and any excess work is discarded� This is expressed by
the recursion

&Qs�� �
	

&Qs � xs � C

� 	 B� &Qt � ��

Lemma ��� also shows that &Q is a continuous function of the input process� and
so we obtain Corollary ���� an LDP for workloads in queues with �nite bu�ers�

Corollary ��� Under the conditions of Theorem ���� if XL has mean rate less
than C then &Q�XL� satis�es an LDP with good rate function

&I�b� � inf
x�XC � �Q�x��b

I�x��

These expressions for the rate functions are not very informative� and so
Theorem ��� gives a more manageable expression for I�b�� In fact� if the process
is stationary� then for b � B� &I�b� and I�b� are identical �and for b � B�
&I�b� � ��� this is shown in Theorem ���� The proofs of these theorems are
deferred to the end of this section�

Theorem ��� Under the conditions of Theorem ���� if ��t�	�� � Ct at 	 � �
for all t� then I�b� is increasing in b and is given by

I�b� � inf
x�XC �Q�x��b

I�x� �����

� inf
t

inf
x�Rt�x���t��b�Ct

��t �x��� t � �����

� inf
t

sup
	
	�b � Ct���t�	��� �����

Theorem ��� If I�b� is �nite� then the optimal timescale 't and the optimizing

path 'x��� 't are both attained� and if the optimal spacescale '	 is attained then

'x��� 't � r��t�
'	���

For a queue with a �nite bu�er B and stationary input whose mean rate is less
than C� if b � B then &I�b� � I�b� and the same path 'x is optimal�

The optimal '	 and 't appearing in Theorems ��� and ��� are called the oper�
ating point or the critical spacescale and timescale of the queue� Courcoubetis
et al� !�� give a detailed account� with simulation results� of how they are af�
fected by the trac mix and the queue parameters under the many sources
asymptotic regime�

Examples

To illustrate the di�erent forms that this rate function can take� we will go back
to the three examples of Section ����the many sources asymptotic� the large
bu�er asymptotic� and moderate deviations�paying particular attention to the
interpretation of the critical timescale�
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Example �� 	Many Sources

As in Example ���� consider a sequence of queues indexed by L in which the

Lth queue QL is fed by an aggregate LXL of L independent inputs and has
service rate LC� and suppose the event of interest is that the queue size reaches
Lb� As in Example ���� let each source be a fractional Brownian motion with
mean rate � and Hurst parameter H � We can calculate the critical spacescale
and timescale�

'	 �
b� �C � ��'t

�	't	H
and

't �
b

C � �

H

��H

�or rather� 't is an integer close to this value� but we will ignore this minor
complication�� This gives rate function

I�b� �
�

��	
b	���H��C � ��	H

�
H

��H

�	���H�
�

H	

and large deviations approximation

logP
	
QL�LXL� � Lb


  �LI�b� for large L�

�

Under the large bu�er asymptotic the rate function is exactly the same� but
it has a very di�erent interpretation� as we now illustrate�

Example �� 	Large Bu�er

Instead of a sequence of queues we will consider a single queue with �xed service
rate C and fed by a single input �ow X� as in Example ���� Let the input �ow
again be a fractional Brownian motion� and consider the event that the queue
size reaches f�L�b� where f�L� � L��	���H��

As we saw in Example ���� the moment generating function �t is exactly the
same as for the many sources asymptotic� and so the rate function I�b� is the
same too� This similarity disguises the fact that the results have very di�erent
interpretations� To see this� note that b is just a scaling factor so we may as well
set b � �� and let � � f�L�� Then the large deviations approximation amounts
to

logP
	
Q�X� � �


  ��	���H�I��� for large ��

Notice that when H � �
	 the decay is exponential in �� many other sources

including Markov�modulated �uid sources share this exponential decay� But
when H � �

	 the source has long�range dependence and the decay is less than
exponential� which means that increasing the bu�er size does not give as much of
a reduction in loss probability� This phenomenon was observed in real network
trac by Leland et al� !�� � and it has stimulated much interest in long�range
dependent trac models� But as we saw in the last example� it makes no
di�erence to the many sources approximation whether H � �

	 or H � �
	 � �

There are some noteworthy di�erences between the many sources and large
bu�er asymptotics as regards the critical timescale 't identi�ed in Theorem ����
We illustrate the di�erences in the next example�
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Example �� 	Timescales

In the many sources asymptotic� the timescale 't is easy to interpret� it is the
length of time which the bu�er is most likely to take to �ll from empty to a given
level Lb� In the large bu�er asymptotic� 't has a slightly di�erent interpretation�
It is a scaling parameter which relates the bu�er level f�L�b to the time taken
to reach that level� f�L�'t�

In the latter case� the time taken to �ll the bu�er tends to in�nity and so
the rate function I�b� depends only on the in�nite�time characteristics of the
source� For Markov�modulated �uid sources �and many other sources which
satisfy conditions described by Dembo and Zajic !�� �� it is appropriate to take
f�L� � L and so �t�	�� � t limL�� L�� log E exp�	X��� L �� Then the rate
function I�b� simpli�es to I�b� � sup	 	b� where the supremum is taken over all
	 such that ���	� � C�

By contrast� under the many sources asymptotic the rate function depends
on the characteristics of the source log E exp�	X��� t � over all timescales t� �

Our �nal example is a moderate deviations result for fractional Brownian
motion� The distinguishing feature of moderate deviations results is that the
rate function I�b� depends only on the mean and covariances of the source�
but since Gaussian sources are completely characterized by their means and
covariances this feature is not apparent here� We wish instead to draw attention
to the way that in moderate deviations the mean and the covariances are treated
di�erently�

Example �� 	Moderate deviations

As in Example ��� consider a sequence of queues indexed by L� where the Lth

queue is fed by L independent sources and has service rate L� � L�����	�C �
and suppose the event of interest is that the queue size reaches L�����	�b� As
before� let each source be a fractional Brownian motion of mean rate � and
Hurst parameter H �

As noted in Example ��� the generating function �t depends only on the
covariance structure� and one can calculate �t�	�� � �

	�
			t	H � This gives a

rate function I�b� similar to that in Example ���� but without the ��
The reason for this di�erence is that in setting the service rate to L� �

L�����	�C we are assuming that the queue is already provisioned to cope with
the mean rate� and so any loss is attributable to the variance of the input� �

More LDPs

There are actually three more LDPs which are useful� but which are easily
confused with Corollaries ��� and ���� The �rst gives the probability that a
queue with an in�nite bu�er is non�empty� At �rst sight� we can �nd this from
Corollary ���� just consider the event b � �� But the large deviations upper
bound we get is useless� because it involves the closure of this set�which is
b 
 �� the entire space� So for a better bound� we can go back to the sample
path LDP and look at the closure of the set of sample paths for which Q�x� � ��
now not the entire space� The same technique can be used for the events that
a queue with a �nite bu�er is non�empty or over�ows� The in�nite bu�er result
has been proved by Botvich and Dueld !� � and the �nite bu�er results have
been proved by Courcoubetis and Weber !�� � The proof of Corollary ��� is
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deferred to the end of this section� The proof of Corollary ��� is similar� and is
omitted�

Corollary ��� Under the conditions of Theorem ���� if XL has mean rate less
than C� then the event fQ � �g has large deviations lower bound �I���� and
upper bound �I����� If in addition B � � then the event f &Q � �g has the same
large deviations bounds� Here� I�b�� � lima
b I�b� and I���� is given by

I���� � sup
	
	C ����	���

Corollary ��� Under the conditions of Theorem ���� if XL is stationary and
has mean rate less then C� then the event that &Q over�ows has large deviations
lower bound �I�B�� and upper bound �I�B� 	or �I���� if B � �
�

Proofs

The rest of this section is given over to proofs�

Lemma ��� The queue size functions Q and &Q are continuous on X�� if � � C�

Proof� Consider a sequence of processes xk � x in X� under the uniform
topology� That is� given 
� there is a k� such that for k 
 k��

sup
t

����xk��� t 

t
� x��� t 

t

���� � 
�

And since x � X�� there is a t� such that for t 
 t��

x��� t �t � ��

Then for k 
 k� and t 
 t�� choosing 
 � C � ��

xk��� t �t � C

and the same holds for x� So the expression for queue size Q simpli�es� for
k 
 k�� Q�xk� � Q�xk��� t� �� and the same holds for x� Thus for k 
 k��

jQ�xk��Q�x�j � j sup
t	t�

�xk��� t � Ct�� sup
t	t�

�x��� t � Ct�j

which tends to � as k ���
Now for &Q� Since Q�x� � Q�x��� t� �� the in�nite�bu�er queue must empty

at some time in !�t�� � � For suppose it does not� Let s � t� be the last time
at which the queue� started from empty at �t�� is empty� then Q�x��� t� � �
Q�x��� s � � x��� s �Cs� But Q�x� � q� x��� s �Cs where q � � is the queue
size at time �s� leading to a contradiction�

So Q empties at some time in !�t�� � � So too must &Q� because &Q � Q� In
other words� &Q�x� � &Q�x��� t� �� The same holds for xk for k suciently large�
and so we deduce that &Q is also continuous� �

Proof of Theorem �� If b � �� then ����� and ����� take the value � at t � ��
Now consider the sample path given by x��� t � r�t�
�� This is constant�
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taking the value of the mean arrival rate� so Q�x� � �� And it has rate I�x� � ��
so ����� also takes the value �� So restrict attention to the case b � ��

Note that because b � Ct is greater than ��t�	�� at 	 � �� we may take the
supremum only over 	 
 �� thus ����� is increasing in b�

First� ����� � ������ Fix t� Then XL��� t � � is just a real�valued random
variable� and from Condition � it satis�es an LDP with good rate function given
by the expression in ������ Another way of �nding this is by contracting from
the sample path LDP for XL��� t � which gives as rate function the expression
in ������ By the uniqueness of the rate function� these are equal�

Next� ����� 
 ������ It will be helpful to introduce some new notation� For
a �nite process x and an in�nite process y� write x �� y for the concatenation of
the two� And recall that we may replace XC in ����� with X� for any � greater
than the mean arrival rate and less than C� because by Theorem ��� the sample
path rate function is in�nite on XC n X��

Suppose that ����� is �nite �otherwise the inequality is trivial�� The sample
path rate function I is good� so an optimal path 'x is attained� Now Q�'x� �
supt 'x��� t �Ct � b� and this supremum must be attained since otherwise there
is a sequence tn for which 'x��� tn �tn � C� which cannot happen in X�� So
'x � 'x��� 't �� 'y for some 'y� with 'x��� 't � b � C't and Q�'y� � �� Clearly
��t �x��� t � is increasing in t for any x� so

I�'x� � sup
s
���t�s�'x �� 'y��� s � 
 ���t �'x��� 't ��

Taking the in�mum over t and x��� t gives the result�
Finally� ����� � ������ Assume that ����� is �nite �since otherwise the in�

equality is trivial�� For a given t� an optimal 'x��� 't is attained by goodness
of the rate function ��t � And an optimal 't is also attained� For suppose not�
and take a sequence tn � � and xn��� tn with xn��� tn �tn � C and ��tn�xn�
bounded above by K say� By the contraction principle and the goodness of the
rate function I� we can extend xn��� tn to xn������ with I�xn� � K� Since I
is good it has compact level sets� so the xn have a convergent subsequence� say
xk � x� also with I�x� � K� But then x��� tk �tk � C also� and so I�x� � ��
giving a contradiction�

By the contraction principle and the goodness of the rate function� we can
extend 'x��� 't to 'x � 'x������ where I�'x��� 't � � I�'x�� If Q�'x� � b the inequality
is proved� So suppose Q�'x� � b� � b� Then there is some s � 't with 'x��� s � b��
But then

inf
t

inf
x�x���t��b�Ct

��t �x� 
 inf
s�t

inf
x�x���s��b��Cs

��s�x� 
 inf
s�t

inf
x�x���s��b�Cs

��s�x��

where the last inequality is because for �xed t� ����� is increasing in b� The in�
equalities must then both be equalities� We can repeatedly apply this argument
until we �nd an optimal 'x such that Q�'x� � b� For otherwise� as in the previous
paragraph� there are arbitrarily large optimal 't� leading to a contradiction� �

Proof of Theorem ��� First� we prove that &I�b� � I�b�� If I�b� is in�nite
then &I�b� must certainly be in�nite� as any path which makes &Q�x� � b makes
Q�x� 
 b� So suppose I�b� is �nite� and let the optimizing path in Theorem ���
be 'x��� 't � We may assume that this path never causes the bu�er to exceed level
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b� For suppose that under 'x the bu�er reaches level b� � b at time �s� Consider
the truncated process (x��� s � x�'t�s� 't � By stationarity� ���t �'x� 
 ��s�(x�� And

��s�(x� 
 inf
x�Rs�x���s��b��cs

#�s�x� 
 inf
x�Rs�x���s��b�cs

#�s�x��

where the second inequality follows because ����� is increasing in b� Because the
optimal path does not cause the bu�er to exceed level b� it is also optimal for
the �nite bu�er case� and so &I�b� � I�b��

Now �x t and suppose that '	 is optimal in ������ By Condition �� �t must be

di�erentiable at '	�� Set 'x � r�t�'	��� Di�erentiating ����� gives 'x �� � b�Ct�
But by Dembo and Zeitouni !�� Lemma ����
� ��t �'x� is equal to ������ and so
'x is optimal� �

Proof of Corollary ��� Let F be the event that Q � �� For the large deviations
lower bound we will prove that infx�F I�x� � limb
� I�b�� and for the large
deviations upper bound�

inf
x� �F

I�x� � inf
t��

inf
x�x���t��Ct

I�x�� �����

This reduces to

inf
t��

sup
	
	Ct��t�	��

as in Theorem ���� By convexity� �t�	�� � ���	��� so the optimum is attained
at t � � and we are left with I�����

Since F � �b��fQ � bg� infx�F I�x� � infb�� I�b�� But because I�b� is
increasing� this is limb
� I�b��

LHS � RHS in ������ Suppose x��� t � Ct for some t � �� For 
 � �� let
x
 � �x� � 
� x	� � � � �� Then Q�x
� � � so x
 � F � But as 
 � �� x
 � x� so
x � &F � Thus fx � �t � �� x��� t � Ctg � &F � Taking the in�mum of I over these
sets gives the result�

LHS 
 RHS in ������ Let x � &F � Then there exist xn � x in F � and
Q�xn� � Q�x� by Lemma ���� If Q�x� � � then

I�x� 
 inf
b��

I�b� 
 inf
t��

sup
	
	Ct��t�	��

because the optimal 't in ����� must be strictly positive for b � ��
So suppose Q�xn� � �� As in Lemma ���� there exist an n� and t� such that

for n 
 n��

Q�xn� � sup
t	t�

xn��� t � Ct�

And because Q�xn� � �� the supremum must be attained at t � �� Some t
must be repeated in�nitely often as n��� for that t� x��� t � Ct� Taking the
in�mum over such x gives the result�

Now for f &Q � �g� If &Q�x� � � then Q�x� � � also� so the same upper bound
works� And as for Q � �� the lower bound is straightforward� �
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��� Paths to Over�ow

The expression for the rate function in Corollary ��� tells us more than just the
probability that the queue size reaches a certain level� it tells us how the queue
reaches that level� Because the rate function I is good� the in�mum in

I�b� � inf
x�C�Q�x��b

I�x�

is attained� And Theorems ��� and ��� tell us what that sample path looks like�
'x is the path most likely to make the queue �ll from empty to level b� and it
takes time 't to do so� Furthermore� the sample path LDP tells us the likelihood
of any deviation from this path�

The problem of most likely paths to over�ow under the many sources asymp�
totic has been studied before using direct methods� Weiss !�� solves it for
two�state Markov�modulated �uid sources� and Mandjes and Ridder !�� solve
it for general Markov sources and for periodic sources� The advantage of our
sample path LDP method is that it can be applied very easily to general input
processes�

Example �� 	Markov�modulated �uid source

Let XL be the average of L independent sources distributed like X� where X is
a Markov chain which produces an amount of work h each timestep while in the
on state and no work while in the o� state� and which �ips from on to o� with
probability p and from o� to on with probability q� If 	 and t are the critical
space and time scales� then the most likely path to over�ow is given by

xs � r�t�	�� �
E�Xse

	X���t��

E�e	X���t��
�

We may compute E�e	X���t� jX�� by conditioning on X�� By reversibility� this is
equal to E�e	X�t��� jX��� and by stationarity it is equal to E�e	X��t�jXt �� This
lets us compute E�Xse

	X���t�jXs� and hence xs� For s � ��� t the solution is

xs �
qhe	hAt�sAs��
qAt � pBt

where

�
At
Bt

�
�

�
��� p�e	h p

qe	h �� q

�t
�
�

�
�

�

If p�q � � the path to over�ow s �� xs is concave over s � ��� t � the sources
start slowly� then conspire to produce lots of work in the middle of the critical
timeperiod� then slow down again at the end� �If p � q � � it is convex�� An
example is illustrated in Figure ���� The parameters of the process are p � ����
q � ���� h � �� The service rate for the queue is C � � and the bu�er size is
B � ���� giving critical spacescale 	 � ���	� and critical timescale t � ��

Multistate Markov models exhibit more varied behaviour� �
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Figure ���� A sample path to over�ow� The source is a Markov�
modulated on�o� source	 as described in Example ��
� The most
likely path to over�ow is convex� the sources start slowly	 then con�
spire to produce lots of work in the middle of the critical timeperiod	
then slow down again at the end�

Example �� 	Gaussian sources

Suppose XL is the average of L independent Gaussian processes� each with
mean � and covariance structure Cov�X�� Xi� � i� It is easy to work out the
optimal path� r�t�	�� � ��� 	V �� where Vij � ji�jj�

Consider the earlier fractional Brownian motion example� Example ���� For
this process� i � �

	�
	
	
�i���	H��i	H ��i���	H



� and so the most likely path

to over�ow is given by

xi � � � �
		�

	
�
i	H � �i� ��	H � �t� i� ��	H � �t� i�	H

�
�

If H � �
	 � the source exhibits long�range dependence� and the most likely input

path x leading to over�ow is concave� whereas if H � �
	 � the path to over�ow is

convex�
Now let X be a single�step autoregressive process� Xt � � � a�Xt�� � �� �

���a	�
t� where 
t � N��� �	� and jaj � �� Then t � �	at� and the most likely
path to over�ow is

xi � � � 	�	
�

� �
�� ai

�� a
�

�� at�i��

�� a

�
�

If a � � then path to over�ow is concave� whereas if a � �� it starts and �nishes
at a high rate and in between it oscillates� An example is illustrated in Figure
���� The parameters of the process are � � ���� a � ����� and �	 � �� The
service rate for the queue is C � ��	 and the bu�er size is B � ��
� giving
critical spacescale 	 � ����� and critical timescale t � �� �

Example ��� 	Large Bu�er

By contrast� in the large bu�er asymptotic it is often the case that the process X
leads to a limiting generating function �t with the simple linear form �t��� �P
���	i�� �See Dembo and Zajic !�� for conditions under which this is so��

Then� because �� is convex� the most likely path x to over�ow is constant� and
so the queue �lls up at a steady rate� �
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Figure ���� A sample path to over�ow� The source is a �rst�order au�
toregressive process with negative correlation coecient	 as described
in Example ���� This means that the most likely sample path to over�
�ow is oscillatory and the queue �lls up in an irregular fashion	 over
the critical time period ��� ���

��� Priority Queues

The sample path LDP for the average of processes can be applied to a wide
variety of queueing models� We have seen in the last two sections how it gives
over�ow probabilities and sample paths to over�ow for a standard queue� As
a further illustration of the power of the technique� in this section we look at
another queueing discipline� the priority queue� This has been studied under
the large bu�er regime by Berger and Whitt !� � and related queueing models
have been studied by Kulkarni et al� !�� and O�Connell !�� �

Consider a sequence of priority queues� indexed by L� The Lth queue has
two inputs� LXL and LYL� and service rate LC� Think of XL and YL as the
averages of L processes� The two �ows are assumed to be independent� The
�rst �ow XL has high priority� the second �ow YL has low priority� Let QL

and RL be respectively the stationary amounts of high�priority and low�priority
work waiting to be served�

Kelly !�
 notes that the amount of high�priority trac Q is exactly the
amount of work in a standard queue with service rate C and only the high�
priority input X� and that the total amount of work Q � R is the amount of
work in a standard queue with service rate C and the aggregate input X �Y�
Therefore� results from Section ��� can be applied directly to �nd the high�
priority loss probability and the aggregate loss probability� But this leaves
some open questions� such as how much low�priority work there is in the queue�
Such questions can be answered with methods very similar to those of Section
����

Theorem ��	 Suppose that XL and YL satisfy the conditions of Theorem ���
with limiting moment generating functions �t and Mt respectively� Suppose
also that the sum of the mean arrival rates for XL and YL is strictly less than
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C� Then the pair �QL� RL� satis�es an LDP with good rate function

I�q� r� � inf
x�XC �y�XC �

Q�x��q�R�x�y��r

sup
t
��t �x��� t � � sup

t
M�

t �y��� t �� �����

This is bounded below by

inf
t

inf
s	t

sup
	��

	�q � Cs� � ��r � C�t� s����t�	���� s � ���s� t � �Mt�����

�����

Let I��� r� � infq�� I�q� r�� This is bounded below by

inf
t

sup
	
	�r � Ct���t�	���Mt�	��� �����

Proof� Let IX�x� � supt�
�
t �x�� and de�ne IY similarly� Because XL and YL

are independent� the pair �XL�YL� satis�es an LDP with good rate function
I�x�y� � IX �x� � IY �y�� Let � and � be the mean rates for XL and YL� Since
��� � C� we can pick an 
 � � such that �����
 � C� then by Theorem ����
�XL�YL� satis�es the LDP on �X��
�X��
�� and the rate function I is in�nite
outside this space� So if we can show that �Q�R� is continuous on this space�
then using the Contraction Principle we can deduce the LDP for the priority
queue�

Now Q depends only on the high priority process� it is de�ned as though
there were no other inputs to the queue� So by Lemma ���� it is continuous
on X��
� Also� Q � R is the aggregate workload� and does not depend on
the structure of the queue� so again by Lemma ���� Q � R is continuous on
X��
 �X��
� Thus �Q�R� is continuous�

The bound on the rate function I�q� r� may be obtained by noting a few
properties of the optimal paths to over�ow� If I�q� r� is �nite the optimal paths
must be attained� because the rate function is good� As in Theorem ���� there
must be a last time �t at which the high priority and low priority queues are
both empty� And there must be a last time �s 
 �t at which the high priority
queue is empty� Because Q�x� � q� it must be that x��� s � q � Cs� And
because R�x�y� � r� it must be that x�s� t � y��� t � r � C�t� s�� So

I�q� r� 
 inf
t

inf
s	t

inf
x�y�Rt�

x���s��q�Cs�
x�s�t��y���t��r�C�t�s�

��t �x� �Mt�y�� ���	�

Now �x s and t� As in Theorem ���� the pair �XL��� s � XL�s� t � Y L��� t � is
just an R

	 �valued random variable� and by Assumption � it satis�es an LDP
with a good rate function which simpli�es to the expression in ������ An�
other way of �nding this LDP is by contracting from the sample path LDP
for �XL��� t �YL��� t � which gives as rate function the expression in ���	�� By
the uniqueness of the rate function� these are equal�

We can obtain the lower bound on I��� r� in a similar way� by noting that if
R�x�y� � r then there exists a last time �t at which both queues were empty�
and since then x��� t �y��� t 
 r�Ct� The argument of the previous paragraph
can be applied to paths for which x��� t � y��� t � q � r � Ct� The resulting
expression is increasing in q �it is a special case of ����� which is increasing in



CHAPTER �� QUEUES ��

b�� and setting q � � yields the result� �

To help interpret this result� we will give an alternative description in terms
of the service seen by the low priority �ow� A sensible �rst guess would be that
the service is a random amount� the service rate C less a random amount of high
priority work� More thought would throw up various complications about queue
sizes and leftover workloads� In fact� it turns out that in some cases the �rst
guess is correct and in other cases these complications do arise� and a system
can switch from one regime to the other as its parameters change� We will give
an example to illustrate this transition�

In making precise the idea of the service seen by the low priority �ow� we
will use the theory of e�ective bandwidths� The e�ective bandwidth ��	� t� of a
�ow is a measure of the impact it has at a queue� It lies between the mean and
peak bandwidths� and is de�ned by

��	� t� �
�

	t
�t�	���

E�ective bandwidths are described more fully in Section ���� where we show the
following� if a queue is fed by many input �ows of e�ective bandwidth ��	� t�

and has critical point �'	� 't�� then replacing a small number of the input �ows by

�ows of constant rate ��'	� 't� does not a�ect the loss probability�
E�ective bandwidths can also describe the service seen by the low priority

�ow� Consider a single queue fed by a process with e�ective bandwidth ��	� t��
but where the service is an independent stochastic process (C with e�ective
bandwidth (C�	� t�� As above� if the critical space and time scales are '	 and 't�

replacing a small part of the service with constant service of rate (C�'	� 't� does not
a�ect the operation of the queue� and so we will call (C�	� t� the e�ective service
rate� Before we use this idea to describe the service seen by the low priority
�ow� we had better check that it actually exists� that is� that the appropriate
cumulant moment generating functions converge�

Lemma ��� �E�ective Service� Under the assumptions of Theorem ��� the
service seen by the low priority queue has an e�ective service rate�

Proof� O�Connell !�� shows that the departure map �which maps the aggre�
gate input process to the aggregate departure process� is continuous under the
uniform topology� Let d be the departure process from the high priority queue�
The service seen by the low priority queue is (C where (Ct � C � dt� Since the
departure map is continuous� the service map is also continuous� Therefore the
service process satis�es a large deviations principle� say with good rate function
J�

Applying Varadhan�s Integral Lemma �Dembo and Zeitouni !�� Theorem
������� and using the fact that the service process is bounded� we �nd that

lim
L��

�

L
log EeL� �

�C���t� � sup
c�Rt

� � c� J�c��

In particular� the limit exists� �
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We are now in a position to make precise the earlier claim about the service
seen by the low priority queue� The e�ective service rate is dicult to deal with
analytically� but fortunately we can avoid doing so by using Theorem ��	� The
following corollary is a restatement of the bound ������ The terminology is due
to Berger and Whitt !� � who independently obtained the corresponding result
for the large bu�er asymptotic regime� As noted in Example ���� large bu�er
results can be deduced from a special case of the corresponding many sources
results�

Corollary ���
 �Empty Bu�er Approximation� The e�ective service rate
seen by the low priority queue is bounded below by the empty bu�er approxima�
tion to the service rate� (C�	� t� � C � ��	� t�� in the following sense�

I��� r� 
 EI �r� � inf
t

sup
	
	�r � t (C�	� t��� 	t��	� t��

where ��	� t� is the e�ective bandwidth of the low priority source�

This is just the usual rate function ����� for over�ow in a single queue� but
with the service rate C replaced by the e�ective service rate (C� It is called the
empty bu�er approximation because it is the rate function for the event that
total workload reaches r�so if the most likely way for this to happen leaves the
high priority bu�er empty� then EI �r� will agree with I��� r��

Berger and Whitt stress the point that this approximation gives a simple
admission control region� It is also interesting to consider the conditions under
which the inequality is strict� When there is equality� the two queues operate
essentially independently� But when the inequality is strict� the low priority
queue gets extra bene�t from the sharing arrangement� Such an arrangement
seems desirable from an engineering perspective� The following example illus�
trates how the queue and trac parameters control whether or not there is extra
bene�t to the low priority trac�

Example ��� 	Phase transition in priority queues

It is often hard to simplify rate functions like I�q� r� because the queue could
over�ow over any timescale� But for periodic processes� the queue can only
over�ow over timescales less than the period� so the calculations are easier�

Consider a sequence of priority queues indexed by L� Let the high priority
�ow XL be the average of L independent copies of a stationary periodic process
of random phase� which produces � units of work every second timestep� Let
the low priority �ow YL be the average of L independent copies of the process
that independently at each timestep produces � unit of work with probability
p and no work with probability � � p� Let the service rate C be in the range
!�� ���

These �gures are chosen so that the entire queue empties every second
timestep� so that if it over�ows it must do so in a single timestep� This means
that the only sample paths we need consider in ����� are those over a single
timestep� So

I��� r� � inf
�	x	C

����x� �M�
��r � C � x�

I�q� r� � ����q � C� �M�
��r� �for q � ���



CHAPTER �� QUEUES ��

Since q � C is greater than the mean rate of �� ����q � C� 
 ����C�� and so
I��� r� � I��� r�� Now for the empty bu�er approximation� Since EI �r� is the
rate function of the sample path most likely to give total queue size r�

EI �r� � inf
�	x	C�r

����x� �M�
��r � C � x��

Clearly I��� r� 
 EI �r�� When is this inequality strict� Let g�x� � ����x� �
M�

��r � C � x�� It is easy to calculate that for r � ��

g�x� � h�x�� j���� � h�r � C � x j p��

where h�xjp� � x log�x�p� � ��� x� log��� x����� p�� and to show that g�x� is
convex� So I��� r� � EI �r� if and only if g��C� � �� where

g��C� �
�

�
log

C

�� C
� log

r

�� r
� log

p

�� p
�

In other words� there is extra bene�t to the low priority trac when the
service rate is small� or when the low priority bu�er is large� or when there is
little low priority work� �

��	 E�ective Bandwidths

In this section we will not prove any new results about queues� Instead� we
will express the results of the earlier sections in a di�erent way� The e�ective
bandwidth of a �ow is a convenient and intuitive description of its impact on a
queue�

Kelly !�
 gives a comprehensive survey of e�ective bandwidth results� Here
we do not attempt to be comprehensive� Rather we extend the de�nition of
e�ective bandwidth and suggest a new way of looking at it� This lets us explain
various results in the following chapters more conveniently�

As usual� let X be a real�valued random process indexed by the natural
numbers� For t 
 � and � � R

t � de�ne the e�ective bandwidth of X at � to be

�X��� �
�

� � ���� t 
log E exp

	
� �X��� t 



�

It is trivially true that all queueing behaviour depends on the e�ective band�
widths of the input �ows� because the e�ective bandwidth encodes the entire
distribution� What is less obvious is that often only a small part of the distri�
bution matters�

First we will explain how e�ective bandwidths arise in admission control at
queues� and why they are so called� Then we will describe other circumstances
in which they are useful� Finally we discuss their use as approximations�

E�ective bandwidths and loss probability

Consider �rst a standard queue with service rate C and bu�er size B� as de�
scribed in Section ���� fed by input process X� From Corollary ��� we know
that the rate function for over�ow is

I � inf
t

sup
	
	�B � Ct�� 	t�X

	
	���� t 



�
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�This is shorthand for the following� Consider a sequence of queues indexed
by L� where the Lth queue has service rate LC and bu�er size LB� and is fed by
LXL� where XL satis�es the conditions of Theorem ���� Let �X be the e�ective
bandwidth function arising from the limiting moment generating function ��
Then the large deviations upper bound for the event that the queue over�ows
is �I � We will often use this shorthand��

Consider replacing a small proportion � of the L input �ows by �ows which
produce work at a constant rate a� these have e�ective bandwidth a� The rate
function for over�owing is now

I��� � inf
t

sup
	
	�B � Ct�� 	t

�
��� ���X

	
	���� t 



� �a

�
� ���
�

If the optimizing parameters in I are '	 and 't� and under appropriate di�eren�
tiability conditions� the value of a that makes I ���� � � is a � �X�'�� where
'� � '	���� 't � In other words� an input �ow has the same e�ect on the queue

as would a constant �ow of rate �X�'��� This is why � is called the e�ective

bandwidth function� The value '� is called the operating or critical point of the
queue�

The standard de�nition of e�ective bandwidth is �X�	� t� � �X�	���� t ��
This is because the operating point for over�ow is always of the special form
'� � '	���� 't �

If there are multiple input �ows of di�erent types� then the e�ective band�
width function measures the tradeo� between di�erent types� For example� if
at the operating point the e�ective bandwidth of a �ow of type A is twice that
of a �ow of type B� then replacing a small number of �ows of type A by twice
that number of �ows of type B will not a�ect the probability of over�ow�

E�ective bandwidths for other purposes

Suppose we are interested not in the event that the queue over�ows but in some
general event E� The large deviations rate for this event is

I�E� � inf
x�E

I�x� � inf
x�E

sup
t

sup
��Rt

� � x��� t � � � ���� t �X����

All the events we are interested in in this thesis have the form E �
S
tEt

where Et is of the form x �wt � at for some wt � R
t � For example� the event the

queue over�ows can be written there exists a time t such that x��� t � B �Ct�
In such cases� the rate function is

I�E� � inf
t

inf
x�Et

sup
��Rt

� � x� � � ���� t �X���

� inf
t

sup
	
	at � 	wt � ���� t �X�	wt��

�The proof of the second equality is just the same as that of ����� � ����� in
Theorem �����

If the event E is closed and I�E� is �nite� as will typically be the case� then
since I is a good rate function the optimal path 'x will be attained and so will
the optimal 't� Usually the optimal '� is attained too�
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When the critical point '� is attained� as in Theorem ��� the optimal path 'x
is given by

'x��� t � r� � ���� t �X���� ������

where the derivative is taken at 	s � '	s for � � s � 't and 	s � � otherwise�
We will use these ideas extensively in Chapter �� to analyse the behaviour

of various queue algorithms� The event E will be some mechanism is triggered
and ������ will tell us the most likely way for it to be triggered�

E�ective bandwidth as an approximation

We have described how e�ective bandwidths can be interpreted formally� in a
limiting regime in which the number of independent identically distributed input
�ows increases and the service rate and bu�er size increase in proportion� But
the intention is that they should be thought of as approximating �nite systems�
For example� if a queue has bu�er size B and service rate C and is fed by input
�ows X��� � � �X�n�� then we approximate

� logP�over�ow�  inf
t

sup
	
	�B � Ct�� 	t

nX
i��

�X�i��	� t��

This approximation should be good when C and n are large� �To measure how
good� one can �nd �ner approximations !�� or perform simulations !�� ��� �� ��

What the e�ective bandwidth approximation does is pick out the most im�
portant part of the distribution� the critical point� and make a zero�order ap�
proximation to the �ow at the critical point� ��'� � �� � ��'�� � � � � � much as
one would approximate a real�valued function f�x� by f�x � 
� � f�x� � � � � �
The other terms do matter� but the zero�order term is most important� and in
the large deviations limit� it is only the zero�order term that matters�

��
 Summary

A sample path large deviations principle is an LDP factory� it makes it easy to
study large deviations in a wide range of queueing problems� First we recall the
queueing model� and then we describe the results that will be used in the rest
of this thesis�

Consider a sequence of queues indexed by L� Let the Lth queue have service
rate LC and bu�er size LB� where B � �� and let it be fed by LXL� which
will typically be the aggregate of L independent copies of some base �ow X�
Let &Q�XL� be the amount of work in the queue� Assume that XL satis�es
the conditions for the sample path LDP �Theorem ����� and has limiting log
moment generating functions �t� Using the Contraction Principle we can show
the following�

Theorem ���� �Rate functions for queues� Suppose that XL satis�es the
conditions of Theorem ��� and is stationary with mean rate strictly less than C�
Let

I�b� � inf
t��

sup
	�R

	�b � Ct���t�	���
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let I�b�� � lima
b I�a�� and let I���� � sup	�R 	C ����	���
Then &Q�XL� satis�es an LDP with good rate function I�b�� Also� the event

f &Q � �g has large deviations lower bound �I���� and large deviations upper
bound �I����� and the event that &Q over�ows has large deviations lower bound
�I�B�� and large deviations upper bound �I�B��

Theorem ���� �Path to over�ow� Under the conditions of the previous the�
orem it is also the case that

I�b� � inf
x�XC � �Q�x��b

I�x�

� inf
t

inf
x�Rt�x���t��b�Ct

sup
��Rt

� � x��t����

If I�b� is �nite� the optimal 'x and 't are attained� If the optimal '� is attained�

it has the form '	� and

'x��� t � r�t��� ������

where the derivative is taken at 	s � '	s for s � ��� t and 	s � � otherwise�

The optimal '� �or the optimal �'	� 't� pair� is called the critical point of the
queue�

These are limiting results� and they are intended to be used as approxima�
tions for �nite systems� We will talk about a queue with service rate C and
bu�er size B fed by aggregate input X� and we will approximate

P�over�ow�  exp
�
� inf

t
sup
	
	�B � Ct���t�	��

�
�

�Often the large deviations upper and lower bounds agree�� This approximation
should be good when X is the aggregate of many independent �ows�
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Networks

A router or switch is a device that routes trac� A router has several input
�ows of trac� each of which is routed to a speci�ed destination� and inside
the router� work from all the input �ows is queued together� Routers are the
building blocks of the Internet� It is by describing their behaviour that queueing
theory can tell us about telecommunications networks�

The behaviour of isolated queues has been much studied� The preceding
chapters have used large deviations to characterize the input trac� to esti�
mate the probability that the queue over�ows� and to study di�erent queueing
regimes� In this chapter� we study networks of routers� The fundamental result
is that� under the many sources limiting regime� the statistical characteristics
of a �ow of trac are not changed by passing through a router�

This result dramatically simpli�es the analysis of networks� It means that
the techniques for describing isolated queues can be applied inductively to feed�
forward networks� It also means that it is useful to talk about the characteristics
of a type of trac� without bothering how many routers the �ow has passed
through or what other �ows it has interacted with�

The theory of large deviations is concerned with limiting regimes� and it
is our choice of limiting regime which makes possible such clean results for
networks� We study the many sources limiting regime� in which the number of
independent �ows coming into a router increases� and the bu�er size per �ow
and service rate per �ow stay �xed� We suppose that of the di�erent �ows
coming into a router� only a small number stay together when they leave�it is
after all the function of a router to route trac to di�erent destinations�

The rest of this chapter is arranged as follows� In Section ��� we describe
the network model and set up the notation� In Section ��� we prove the funda�
mental result� that the large deviations characteristics of a �ow are not changed
by passing through a router� In Section ��� we extend this to networks� In Sec�
tion ��� we describe these results in terms of e�ective bandwidths� and discuss
limitations and extensions� First we review related work�

��� Related work

Kelly !�� describes queueing networks in which all input trac �ows are Poisson
and service times are exponential� These networks admit a very simple solution�

��
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at any instant in time� the di�erent queues are independent� and the distribution
of queue sizes can be written down explicitly� Furthermore the distribution of
a �ow when it leaves the network is the same as when it entered �though inside
the network� the distribution may be di�erent�� These are best�possible results�
and they break down when the input processes are more general� Our results
are weaker� in that they only concern limiting regimes� but they do cope with
general input processes� And they are complementary in a curious way� we can
calculate the distribution of a �ow at any point inside the network and show
that it is the same as when the �ow entered� though we cannot calculate queue
size distributions �except in feedforward networks� because trac �ows within
the network are not independent�

Tra�c limits

The limiting regime we are interested in is the many sources limiting regime� in
which the number of independent inputs to a router increases� Another limiting
regime�one which has been more widely studied�is the large bu�er regime�
described in Example ���� in which the number of input �ows is �xed and the
bu�er size increases� We call this a tra�c limit� because it is mathematically
equivalent to a limiting regime in which the router is �xed but the trac is
speeded up� In the large bu�er regime� clean results for networks are hard to
come by�

It is possible to prove a large deviations principle for the aggregate output
of a router� simply by noting that the map from aggregate input to aggregate
output is continuous and using the contraction principle� It can also be shown
that the map from the set of inputs to an individual output is continuous� and
in this way O�Connell !��� �� and Majewski !�
 � �nd LDPs under the large
bu�er limiting regime for the individual output processes� Most of the work in
obtaining this sort of result is in de�ning the queueing model and in proving
continuity� The outcome is an LDP with a rate function which is the solution
to a complicated variational formula�

It can be seen from this variational formula that the aggregate output is
smoother than the aggregate input� It is hard to draw any other general conclu�
sions� For example� when there are several input �ows� it sometimes happens
that some are made burstier while others are made smoother� This has been
investigated further by de Veciana et al� !�� � They found that if the service
rate is suciently high then the outputs decouple� By this they mean that the
e�ective bandwidth of a �ow is the same when it leaves the router as when it
came in� at least for low values of the spacescale 	� In other words� as long
as we are not interested in extreme behaviour� the statistical characteristics of
a �ow of trac are not altered by passing through the router� Unfortunately�
their arguments only apply to the �rst router in a network� because the output
�ows do not satisfy the conditions that would enable their results to be applied
inductively� We will prove a much stronger form of decoupling� We will show
that the e�ective bandwidth of the output is the same as that of the input
whatever the spacescale or timescale� for any service rate larger than the mean
input rate� and that this is true throughout the network� and further that in
the limit the di�erent output �ows are independent�

There has also been some work on the output of a router under the many
sources limiting regime� Dueld and Low !�	 give a large deviations principle
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for the aggregate output using the contraction principle� just as has been done
for the large bu�er regime� Because the many sources regime has a richer
structure than the large bu�er regime� it produces variational formulae that are
even more complicated�

A di�erent way of looking at networks� which does not face these problems�
is taken by Paschalidis !�� and Bertsimas et al� !� � They still have complicated
optimization formulae for the output processes� but they eliminate the problem
of coupling by assuming that any work leaving a router chooses its destina�
tion randomly� However� we will assume that each �ow is routed to a speci�c
destination�

Network limits

What all these approaches have in common is that they take a �xed network and
look at various sorts of trac limit� We have been able to prove much cleaner
results by looking at a di�erent sort of limit� one in which both the trac and
the structure of the network change�

Many di�erent sorts of network limit have been looked at in the past� though
mostly this has been to help answer questions about routing rather than about
trac characteristics� and the analysis has mostly involved tools other than
large deviations theory� There has nonetheless been some work on how the
characteristics of trac change in various network limits� for example� Mount�
ford and Prabhakar !�� have studied the limiting form of trac as it passes
through more and more queues� and found conditions under which it converges
to a �xed point�

In our network limit the number of trac �ows and the number of routers
both increase� but along the path of a single �ow the number of routers stays
�xed� This seems well�suited to the Internet� in which the number of users has
increased dramatically but the length of a typical path has not�

All of this work� like our own� deals only with feedforward networks� Feed�
back raises considerable theoretical challenges�

��� The network model

We are still using the queueing model described in Chapter �� Consider a
standard �rst�in%�rst�out queue with constant service rate LC and �nite bu�er
size LB� and let any work that arrives when the queue is full be lost� We will be
concerned with the behaviour of a queue fed with input process LXL� where XL

satis�es the conditions for the sample path large deviations principle� Theorem
����

Suppose that XL is the average of L independent identically distributed
�ows� Let X�L� be a typical input �ow� and let (X�L� be the corresponding
output �ow� �In later sections we will allow XL to be the aggregate of several
such averages�� The generating function for the aggregate input is therefore

�L
t ��� � log E exp�� �X�L���

Similarly� the moment generating function for the aggregate of independent
copies of a typical output is

(�L
t ��� � log E exp�� � (X�L���
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These are the mathematical quantities we will be dealing with� and it is
worth explaining what they represent� We consider the moment generating
function (�L because it is the natural way to describe the behaviour of a single
output from an upstream queue� But large deviations does not tell us about the
behaviour of a single output� so in order to understand the following theorems
it can be helpful to think of (�L as describing the aggregate of independent
copies of (X�L�� One could think of L di�erent upstream queues each fed by L
independent copies of X�L� and each contributing a single output �ow�

Our fundamental result is that if �L satis�es the conditions of the sample
path LDP� Theorem ���� then (�L also satis�es the sample path LDP� with the
same rate function� We will discuss the meaning and applications of this result
in Sections ��� and ���� But �rst we must prove it�

��� The output of a router

Suppose that �L satis�es Conditions � and � of Theorem ���� and that �L � ��
Then the theorem tells us that XL satis�es a sample path LDP with a good
rate function which can be calculated from ��

What we would like to show is that that (�L satis�es the same conditions
and converges to the same limit� If this were true� (XL would satisfy exactly
the same LDP as XL� in other words� the statistical characteristics of a �ow of
trac would be unchanged by passing through the router�

The �rst condition can be proved� The key idea in its proof is this� that
the probability that the queue is empty over a �xed interval tends to one� by
Theorem ����� and so the probability that the amount of work arriving in that
interval is equal to the amount of work leaving in that interval tends to one also�
There is not only convergence in probability but also convergence in expectation�
this is shown in Theorem ����

We would also like to show that (�L satis�es Condition �� which is a tech�
nical condition on the uniformity of convergence� In fact that condition is not
satis�ed� and we have not been able to establish Theorem ��� for the output�
This is not actually a problem� A sample path LDP still holds� under a weaker
topology which we call the weak queue topology� and as noted in Section �����
this is sucient to obtain all the results of Chapter �� We prove the sample
path LDP in Theorem ����

In the same way that in Section ����� we restricted the sample path LDP to
take account of the mean arrival rate� so we do here for the output process� in
Theorem ����

Before proving the theorems� we give simulation results to illustrate them�
Figure ��� shows two cases� in the �rst a router handles a single trac �ow� and
in the second a router with three times the capacity handles three identical and
independent �ows� In the �rst case the �ow is signi�cantly smoothed by passing
through the router� but in the second the smoothing is negligible� The �ows
illustrated are periodic� sending one unit of work every fourth timestep� The
service rate per �ow is ��� and the bu�er size per �ow is ���� �The �gure shows
the e�ective bandwidth of the �ow before it enters the router and after it leaves�
The e�ective bandwidth function ��	� t� is a convenient representation of the
moment generating function� �	t����t�	��� E�ective bandwidths are described
more fully in Section �����
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Figure ���� The output of a router� A single �ow �A� passes through a
router and is made smoother �B�� But when the router is fed by three
identical �ows �C� and its service rate and bu�er size are increased
in proportion	 any smoothing is negligible �D�� The graphs plot the
e�ective bandwidth functions of the �ows	 all to the same scale� The
e�ective bandwidth of a �ow is a convenient representation of its
burstiness over di�erent timescales and spacescales�

Theorem ��� �Finitetime characteristics of the output�
If the input X�L� satis�es Conditions � and �� and is stationary with mean rate
strictly less than C� then the output (X�L� satis�es Condition �� with the same
limiting moment generating function as X�L�� In other words�

lim
L��

log E exp�� � (X�L���� t � � �t����

Proof� First note that (X�L���� t � X�L���� t� bB�Cc � since any work arriving
before �bB�Cc� even if it �nds the queue full� must have left by time �� In
what follows� we drop the b�c notation�

For �xed t� the collection fexp�� � (X�L���� t �g is uniformly integrable� since
� � �� (X�L���� t � max j	ijX�L���� t�B�C � and X�L���� t�B�C is Lp�bounded
for some p � � �because the limiting moment generating function exists� by
Condition ���

For any � � s � t� P� (X
�L�
s �� X

�L�
s � is bounded by the probability that the

queue is non�empty at either s� � or s� By Theorem ����� this tends to �� So
exp�� � (X�L���� t �� exp�� �X�L���� t � converges to � in probability�

Thus E exp�� � (X�L���� t �� E exp�� �X�L���� t � � �� and taking logarithms
gives the result� �

De�nition � �Weak queue topology�
Recall the weak queue topology wq de�ned on X by the metric

d�x�y� � jQ�x��Q�y�j �

�X
t��

� 	 jxt � ytj
�t

�����



CHAPTER �� NETWORKS ��

and d�x�y� � � if Q�x� � � or Q�y� � ��

Theorem ��� �Large timescale characteristics of the output�
If the input X�L� satis�es Conditions � and �� and is stationary with mean rate
strictly less than C� then the output (X�L� satis�es satis�es an LDP in �X �wq�
with good rate function I as in Theorem ����

Proof� First� by the Dawson�G"artner theorem for projective limits �see Dembo
and Zeitouni !�� Theorem ������� the �nite time LDPs of Theorem ��� can be
extended to the full space X equipped with the projective limit topology� with
good rate function I� The projective limit topology corresponds to pointwise
convergence of sequences� and can be made into a metric space with the metric
given by the second term in ������ Denote this topology by p�

We want to strengthen this LDP from �X � p� to �X �wq�� To do this we
will use the Inverse Contraction Principle �Dembo and Zeitouni !�� Theorem
������� Since wq is stronger than p� the identity map from �X �wq� to �X � p� is
continuous� And (X�L� satis�es an LDP in �X � p� with rate function I� So if
(X�L� is exponentially tight in �X �wq� then it satis�es an LDP in �X �wq� with
the same rate function� and that rate function is good�

It remains to show that (X�L� is exponentially tight in �X �wq�� in other
words that there exist compact sets K� in �X �wq� such that

lim
���

lim sup
L��

logP� (X�L� �� K�� � ��� �����

Let � be the mean rate of the XL� let dt �
p

log t�v�t� where v�t� is the scaling
function from Condition �� and choose the sets

K� �

�
x � � � x��� t 

t �B�C
� � � �dt�B�C � t


�

First� to show that K� is compact� Since X is a metric space� it suces
to show that it is sequentially compact� So let xk be a sequence of processes�
Since the T �dimensional truncation of K� is compact in R

t � the intersection
K� is compact under the projective topology� That is� there is a subsequence
xj�k� which converges pointwise� say to x� It remains to show that xj � x
under the weak queue topology� But if x � K�� there exists a t� such that for
t � t�� x��� t �t � C� and this t� can be chosen independently of x� Therefore
the queue size is just Q�xj� � supt	t� x

j��� t �Ct� which converges because the

xj converge pointwise� Thus K� is compact�
Next� to show the equation ������ Since (X�L���� t � X�L���� t � B�C � the

left hand side is bounded above by the expression in the statement of Lemma
���� which is there shown to equal ��� �

Theorem ��� �Output stability�
If the input X�L� satis�es Conditions � and �� and is stationary with mean
rate strictly less than C� then for any � greater than the mean rate� the output
process (X�L� satis�es a sample path LDP in X� equipped with the weak queue
topology� with good rate function I�
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Proof� We want to restrict the LDP of Theorem ��� to X�� By Dembo and
Zeitouni !�� Lemma ������ it suces to show that I�x� � � if x �� X��

and that P� (XL � X�� � �� The proof of the �rst is identical to Theorem
���� For the second� that theorem also shows that for 
 suciently small�
P�XL��� t �t � � � 
 eventually� � �� and since (XL��� t � XL��� t � B�C �
we obtain the result� �

Before using these results to describe more interesting network models� we
make a brief note about speed of convergence� We have shown that the input
and output have essentially the same statistical characteristics� for large L� and
it is interesting to know how large L needs to be for this to be accurate�

The idea behind the proof of Theorem ��� is that the probability that the
queue is empty tends to one� and so X�L���� t � (X�L���� t converges to zero
in probability� And large deviations gives us an estimate for the probability
that the queue is nonempty� If I is the rate function for this event� as given
in Theorem ����� then for any 
 � � there exists an L� such that for L 
 L��
P�QL � �� � exp�L�I � 
�� Therefore

P�X�L���� t �� (X�L���� t � � �t � ��e�L�I�
��

For �xed 	 and t� the di�erence in log moment generating functions �t�	�� and
(�t�	�� can be bounded similarly� So the error decays exponentially in LI at
least�

��� Tra�c mixes� decoupling� and networks

The results of the previous section can tell us a great deal about networks�
Those results only applied to a single trac class at a single router� but in this
section we extend them to describe multiple trac classes on multiple paths�
The most signi�cant result is decoupling� which means that di�erent trac �ows
sharing a router do not in�uence each other�

����� Tra�c Mixes

In Section ��� we assumed that the aggregate input XL to the router was the
average of L independent identically distributed input processes� This was used
in two ways� First� it gave a large deviations estimate for the probability that
the queue is non�empty� Second� it let us describe a typical input using the
moment generating function for the aggregate� �L

t �
We can still estimate the probability that the queue is non�empty and de�

scribe a typical input� even when the aggregate input is not made up of inde�
pendent identically distributed �ows� Let YL be the aggregate input� and let
X�L� be the single input we are interested in� De�ne the moment generating
functions ML

t ��� � �
L log E exp�� �YL� and �L

t ��� � log E exp�� �X�L��� Sup�
pose that M and � satisfy the conditions of Theorem ��� and are stationary�
and that the mean rate of the aggregate input is less than the service rate� Then
M gives a large deviations estimate for the event that the queue is non�empty�
and � describes the input we are interested in� Theorems ���%��� go through
unchanged� except that the rate I will depend on M rather than on ��
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There are many di�erent ways of scaling the system to meet these condi�
tions� with di�erent numbers of inputs of di�erent types� For example� let the
aggregate input be made up of a mix of trac types� L��j� copies of X�L��j� for
j � � � � � J � each trac type satisfying the conditions of Theorem ���� Then M
is just a linear combination of the moment generating functions for the di�erent
trac types�

Another example is when the aggregate input is made up of L �ows that
were independent and identical when they entered the network� but which have
passed through several queues before reaching the queue Q we are considering�
Allow each �ow to follow a di�erent route� possibly involving feedback and
interaction with other �ows� This is interesting because it makes the �ows
neither independent nor identical� Let the maximum delay that each �ow can
incur before reaching Q be less than D � �� Let the aggregate input to Q be
Y L��� t � this is less than the original aggregate input XL��� t�D over a longer
time interval� From Theorem ���� we �nd that if the mean rate of the XL is less
than C�D� then a queue with service rate C fed with XL��� t�D still empties
with high probability� and so Q empties with high probability� and the results
of the last section apply� �Unfortunately� since the inputs to a queue are not
independent� we cannot use this to �nd an LDP for YL and thereby estimate
the probability of over�ow��

����� Decoupling of Flows

Consider two independent inputs X and Y to a router whose aggregate input
satis�es the conditions of Theorem ���� and is stationary with mean rate less
than the service rate� �The �L� notation has been dropped here�� We know
from the previous sections that in the limit� (X has the same distribution as X�
and that (Y has the same distribution as Y� We can also view X�Y as a single
input to the queue� note that (X� (Y has the same distribution as X�Y� and
deduce that in the limit (X and (Y are independent�

It might be expected that trac �ows would in�uence each other� For ex�
ample� if X is very bursty and Y is smooth� one might expect (X to be less
bursty and (Y to be less smooth� and indeed this can happen when the router
only has a small number of inputs� But we have seen that in the many sources
limiting regime it is not the case� In other words� (X and (Y do not depend on
the trac mix at the router �so long as the total mean input rate is less than
the service rate�� This is known as decoupling�

Simulation results to illustrate decoupling are shown in Figure ��� on page ���
There are two classes of trac� one bursty� producing one unit of work ev�
ery third timestep� and the other smooth� producing ��� units of work every
timestep� The service rate is ��� and the bu�er size is ���� When there is only
one trac �ow from each class� the outputs are coupled� but when there are
three trac �ows from each class� and the bu�er size and service rate are scaled
up in proportion� the outputs are decoupled� As before we plot the e�ective
bandwidth functions of the various trac �ows�

����� Feedforward networks of routers

A feedforward network of routers is one in which the routers may be ordered in
such a way that for every �ow the sequence of routers through which it passes
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is strictly increasing� In this section so far we have shown that a �ow passing
through a router is essentially unchanged� even if several di�erent types of �ows
use the router� This can be applied to a feedforward network of routers� as long
as the network is scaled also�

Consider� for example� a simple network of two routers in tandem� Let the
�rst router have L independent inputs� each distributed like X�L�� Let one of
the outputs (X�L� be fed into the downstream router� along with a further L� �
independent copies of (X�L� from other upstream routers� Then the aggregate
input to the downstream router satis�es a sample path LDP with the same rate
function as that appearing in the LDP for the aggregate input to the upstream
router� so we can estimate the over�ow probability of the downstream queue
with standard techniques�

For routers which are further downstream in the network� the proofs of
Section ��� still work� if the maximum delay incurred by a �ow at a router�
B�C� is replaced by the maximum delay incurred by a �ow in reaching the
router under consideration�

��� Discussion

The fundamental result in Section ��� was simply stated� and the proof was
not too long� But its consequences for networks� described in Section ���� are
far�reaching� In this section we elaborate� describing our results in the more
practical language of e�ective bandwidths� We also discuss their limitations
and extensions�

E�ective bandwidths for networks

The idea of e�ective bandwidth from Section ��� will help us with the inter�
pretation� Recall that if a random trac �ow has e�ective bandwidth ��	� t�

then it can be replaced by a constant �ow of rate ��'	� 't� without a�ecting the

loss rate at a router� where �'	� 't� is the operating point of that router� We have
shown in this chapter that a �ow has the same e�ective bandwidth function at
all points in a network �though the di�erent routers will typically have di�erent
operating points� so the values of the function will be di�erent��

This means� for example� that the e�ective bandwidth of a �ow in queueing
networks plays a similar role to the bandwidth of a call in loss networks� This
encourages the hope that well�understood techniques and insights from loss
networks �reviewed by Kelly !�	 � can be applied to queueing networks�

It also makes it easier to understand feedback and rate control for adap�
tive trac�that is� trac which can alter its rate in response to congestion�
indicating signals from the network� It is natural to believe that feedback from
a router to a user should depend on the characteristics of the trac from that
user� as seen by the router� If the e�ective bandwidth function changed along
the route� depending on interactions with other �ows at other routers� then the
user might have diculty in making e�ective use of the feedback signals� be�
cause she would not know how her trac had been shaped by the intervening
routers� But it does not change� and so she can better interpret feedback�

The key idea is that we can meaningfully talk about the characteristics of�
say� video trac� because the �ow retains these characteristics regardless of its
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interactions with other �ows in various routers throughout the network�

The network limit

The results in this chapter are considerably cleaner than earlier large deviations
results for networks� This is because we have taken limits as the structure of
the network changes� Most previous work� on the other hand� has kept the
structure of the network �xed and looked at limits where the trac changes�

Neither approach is intrinsically better �except insofar as one gives cleaner
results�� What matters practically is under what circumstances each is accurate�
Our limit seems better�suited to networks with what we call diverse routing� by
which we mean that many of the inputs at any router are reasonably indepen�
dent� though it is dicult to make such a vague claim precise�

We have not dwelt on the question of how many input processes are needed
for our limiting result to be accurate� Numerical simulation� illustrated in Fig�
ures ��� and ���� shows that in some cases only a small number of independent
inputs are needed to make the input and output look nearly identical� The
real question� though� is� how many input processes are needed for reasonable
convergence over the scale of interest� If we are interested in the probability
of over�ow at a downstream router� we want reasonable convergence of the mo�
ment generating function at the critical timescale and spacescale for that router�
For �xed 	 and t� we noted in Section ��� that the di�erence between the mo�
ment generating functions for the input and output is bounded by a term which
decays exponentially in LI � where L is the number of inputs and I is the rate
function for the event that the upstream queue is nonempty� The accuracy of
the large deviations estimate of Theorem ���� must also be taken into account�
this has been studied by Likhanov and Mazumdar !�� �

Limitations and extensions

The core of the argument is Theorem ���� which proves that the limiting mo�
ment generating function of the output process is the same as that of the input�
It relies on the fact that when there are many independent sources� the queue
empties regularly� with high probability� That it empties regularly is a reason�
able engineering constraint for high�performance networks� in which delay and
cell loss probabilities should be small� This constraint is satis�ed by any work�
conserving queue �that is� any queue which does not idle when there is work
waiting��

The theorem is proved for the case of a queue with a �nite bu�er� It seems
likely that the result still holds for queues with in�nite bu�ers and for other
regimes like priority queues� The �niteness of the bu�er is used to bound the
amount of work that can leave the queue over a period of time� to give uniform
integrability� for those other cases some other way of proving uniform integra�
bility would be needed�

Closely related to this is the problem of continuous time� In the continuous
time formulation� it is not true that at any instant in time the queue is over�
whelmingly likely to be empty�even in the simplest example of Poisson arrivals
and exponential service times there are likely to be small �uctuations in queue
size� What is true though is that at any instant in time it is overwhelmingly
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likely that the queue will shortly be empty� and so the queueing delay experi�
enced by any incoming work should be extremely small� Unfortunately we are
again left with the problem of uniform integrability� while this queueing delay is
extremely small with high probability it is nonetheless unbounded� so we cannot
use it directly to bound the amount of work that can leave the queue over a
period of time�

When feedforward networks are so simple� it is tempting to conjecture that
similar results might hold in networks with feedback� There are numerous exam�
ples of pathological behaviour in �nite networks� But in large networks� under
this many sources regime� we expect that queues will still empty suciently
often� and the main result will still hold�

��	 Summary

The conclusions of this chapter are very simple to state� at least in an imprecise
way� In a network with diverse routing� by which we mean that most of input
�ows at a router are reasonably independent� the statistical characteristics of a
�ow of trac are the same at all points in the network�

More precisely� the distribution of a �ow of trac is preserved by passage
through a router� in the limit where the number of independent input �ows to
that router increases and the service rate and bu�er size increase in proportion�

This is a limiting result� But simulation suggests that it can still be rea�
sonably accurate even for a handful of independent sources� And the theory is
useful at least as much for the insights it gives as for numerical estimates�

It dramatically simpli�es the analysis of networks of routers with di�erent
classes of trac�
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Figure ���� Decoupling� A router has two inputs �ows	 one bursty
�A� and the other smooth �B�� In passing through the switch together
they become coupled� the bursty one is made smoother �C�	 and the
smooth one is made burstier �D�� However	 if the system is scaled up
so that there are three input �ows of the bursty type �E� and three
input �ows of the smooth type �F�	 and the service rate and bu�er
size are increased in proportion	 then the corresponding output �ows
�G� and �H� are decoupled� The graphs plot the e�ective bandwidth
functions of the �ows	 all to the same scale� The e�ective bandwidth
of a �ow is a convenient representation of its burstiness over di�erent
timescales and spacescales�
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Congestion

In the preceding chapters� we have developed theory to model trac as it travels
through a network and to explain how congestion arises� Now we use these ideas
to address a speci�c problem facing the Internet today� how routers should
respond to congestion�

Commonly� a router simply drops incoming packets when there is no space
for them in its bu�er� and end�systems try to gauge from the frequency of drops
the rate at which they should be transmitting� But dropping packets in this
way is a very blunt sort of signal� it tends to give the wrong amount of feedback
to the wrong end�users� and anyway� it would be better if congestion could be
signalled before it became a problem�

The technical groundwork for �xing these problems has been laid by the
Internet engineering community with an RFC !�	 which proposes a scheme
called Explicit Congestion Noti�cation� or ECN� �RFC stands for Request For
Comments� the name given to documents proposing and specifying Internet
standards� This and other Internet acronyms are listed in the Glossary�� Under
the ECN proposal� routers can mark packets instead of dropping them� and
end�systems are expected to respond to marks as they would to drops� The
proposal leaves open the problem of what marking algorithm routers should
use�

Marks can be thought of as a technological solution to the problem of con�
gestion� but they can also be thought of economically as a pricing mechanism�
Prices in a market economy have a similar role to marks in the Internet� to
convey information and to direct consumption� So economic theory plays a
signi�cant part in the study of marking algorithms�

In this chapter we consider the problem of what a marking algorithm should
do� paying particular attention to what it means to mark fairly� There have been
many di�erent suggestions for marking and pricing schemes� and in Section ���
we describe some of them� before explaining in Section ��� what we think should
be the goals of a marking algorithm�

In Sections ���%��� we describe three di�erent ways to de�ne fairness and
eciency in marking� In Section ��� we propose the eb de�nition� drawing on
e�ective bandwidth theory� in Section ��� we propose the �L de�nition� drawing
on economic eciency theory� and in Section ��� we propose the spsp de�nition�
drawing on economic ideas of fairness� In Section ��� we compare and reconcile
the three di�erent de�nitions� and indicate why we believe spsp is the most

�	
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appropriate�
Having explained how a marking algorithm ought to work� we go on in

Section ��� to study various algorithms that have been proposed� including the
red algorithm designed by Floyd and Jacobson !�� � and point out how they
can be unfair� The principal tool is the sample path large deviations principle
of Chapter �� and the idea of the most likely path� It turns out that a few
simple changes to red can make it signi�cantly fairer� and we summarise them
in a new algorithm called rose� We conclude in Section ��	 by making speci�c
comparisons between our results and what others have found�

��� Related work

Most trac in the Internet today is controlled by the TCP algorithm� It con�
trols the rate at which packets are sent� as follows� when there is congestion
and packets are dropped� the rate is reduced� when no packets are dropped�
suggesting that it is lower than necessary� the rate is cautiously increased� The
algorithm was designed in �
		 by Jacobson !�� in response to congestion col�
lapse in the Internet� caused by end�systems which did not back o� enough� It
has been extremely successful� and has lasted over a decade with only minor
modi�cations� But a decade is many generations in Internet time� and TCP is
beginning to show its age in two ways�

TCP was designed to work well when nothing is known about the network
beyond the trivial fact that it drops packets when overloaded� However� net�
works are becoming slightly more intelligent than they used to be� and this raises
the possibility of new and better ways of signalling congestion and of responding
to it� In the past� routers have only dropped incoming packets when there is
no space for them to be queued� It takes time for an end�system to detect the
drop and reduce its rate�so end�systems are only noti�ed of congestion when
the time to prevent it has passed� It has long been recognised that routers
are well�placed to detect congestion and signal it before it becomes a problem�
though as Ramakrishnan and Jain !�
 describe� early schemes did not catch
on� More recently� various router algorithms have been proposed which signal
incipient congestion by dropping packets before the bu�er is full� The red al�
gorithm by Floyd and Jacobson !�� has received much attention and has even
been implemented in commercial routers !	 � And ECN will mean that routers
can signal congestion without dropping packets� by marking them instead�

TCP is becoming dated in another way� It is a one�size��ts�all algorithm� the
rate�adaptation algorithm leads to one particular allocation of network capacity�
Applications which need more bandwidth have no way of indicating this �though
by disabling the rate�reducing part of TCP or by using multiple simultaneous
connections one can unscrupulously get a larger share�� And applications for
which TCP is not appropriate� like streaming multimedia� may use an entirely
di�erent sort of rate�adaptation algorithm�or none at all�and can compete
unfairly with TCP�

A lot of work has been done on how the network can provide di�erent levels
of service�that is� how limited network resources should be divided between
competing users with di�ering requirements� This problem is natural material
for economic analysis� The economic approach to congestion control began
with an in�uential but impractical market�based proposal by MacKie�Mason
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and Varian !�� in which each user attaches prices to individual packets and
routers hold auctions to decide which packets get served� Since this there have
been many more proposals� all aiming to turn the technological problem of
congestion into an economic one of prices for users�

Typically it is assumed that each user sends work at some rate which he can
change in response to charges� For example� in the model of Low and Lapsley
!�� � each user chooses a rate according to his preferences� and is charged� and
the charges are chosen so that social welfare is maximized subject to capacity
constraints� Chen and Park !� let each user allocate his total rate among a class
of services and seek to maximize social welfare� measured in terms of constraints
on a �xed class of quality of service indicators such as average delay or loss�

The problem with these approaches is that they ignore the random bursty
nature of trac� which is what causes most of the problem of congestion� By
contrast� Courcoubetis et al� !
 explicitly take random trac �ows into account
by using e�ective bandwidth as a basis for charging� Their model of user be�
haviour is well�suited to telephony�like networks with a �xed range of services�
but not so well�suited to networks like the Internet� in which users have complete
freedom to send their trac however they like�

An elegant approach to the problems of marking and pricing has recently
been proposed by Gibbens and Kelly !�� � This chapter follows on from their
work� which we describe in more detail in the following sections�

We are not aware of any analysis of marking algorithms other than by sim�
ulation� and hence believe that our use of large deviations for this purpose is
unique�

��� The goals of marking

Most of this chapter is given to trying to de�ne fairness in marking algorithms�
The ideas of fairness and justice in allocating resources and setting prices have
occupied thinkers since the beginning of civilisation� more recent thinkers range
from Sen !�� to John Paul II !�� � Fairness has been taken to mean very di�erent
things even in the limited arena of bandwidth allocation�and the very need for
fairness is not always recognised� We must therefore explain carefully what we
hope to achieve� We want marking algorithms to allocate marks according to
the amount of capacity that each �ow consumes� This brief statement needs
considerable elaboration�

Why mark fairly	

The �rst concern of engineers who design congestion control mechanisms is
whether they are ecient� that is� whether better use could be made of the avail�
able resources� Eciency too is the �rst thing that a modern microeconomist
looks for� the standard textbook on microeconomics by Varian !�� has much
to say about eciency and nothing at all about fairness �though Varian himself
has made many contributions to the theory of superfairness !�� ��

And yet nearly every paper proposing a new marking algorithm or a mod�
i�cation to TCP asks whether it is fair �though often with a simplistic idea of
what fairness means�� In economics too� regulators and the public are often at
least as interested in fairness as in eciency� The authors of two main economic
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books on fairness� Baumol !� and Zajac !�� � were both involved in US govern�
ment investigations of AT�T�s pricing policy� So at the very least we want to
know what it means to mark fairly�

Zajac describes very many cases in which fairness and eciency are opposed�
Happily� in the problem of bandwidth allocation they are mostly aligned� and
this chapter is as much a study of eciency as of fairness� In fact� the reason we
focus on fairness is because it turns out to be easier to de�ne than eciency� We
will give three di�erent de�nitions of what a marking algorithm should achieve�
based on three di�erent models for user behaviour� From these three de�nitions
we will distill a single notion of fairness� but it does not seem possible to do the
same for eciency�

What fairness should not involve

Congestion control is performed in two places� at the periphery of a network �the
end users and their access points� and in its core� and it is crucially important
to properly divide responsibility between them�

In TCP all the responsibility rested with end�users� because the core was
assumed not to be intelligent enough to do anything more than drop packets�
Floyd and Jacobson in the design of red sought a better division of respon�
sibility� They had the goal that their algorithm should mark �ows fairly� and
expected that well�behaved �ows at least should react accordingly� Lin and
Morris !�� go further in their design of the fred algorithm� Their explicit goal
is to mark in such a way as to give a fair allocation of bandwidth� taking into
account that some �ows respond less quickly than others�

The problem with this last approach is that routers are badly placed to de�
cide what users value and how they will react� only users know that� What
routers are well�placed for is measuring utilization and congestion�so the fo�
cus of this chapter is on routers� and how they can respond to congestion by
marking packets� We do not assume that users should be given an equal share
of bandwidth� we merely mark in proportion to the amount they have taken�
as we believe that trying to make routers do anything more would result in an
in�exible network with a limited range of services�

Of course� users ought to respond in some way to marks� We will not go
as far as the ECN proposal !�	 in dictating the form of this response� For
example� if marks form the basis of a usage�sensitive pricing scheme� users may
be safely left to respond as they see �t� We postpone further discussion of how
users should be encouraged to respond until Section ��	�

What fairness should involve

Floyd and Jacobson set the goal that red should mark �ows fairly� They note
that fairness is not well�de�ned� and design the algorithm to mark roughly
in proportion to a �ow�s average bandwidth� Lin and Morris with fred are
less circumspect� and explicitly seek an equal allocation of average bandwidth�
While it is certainly true that if the average bandwidth coming into a router is
higher than the service rate there will be congestion� the problems come mainly
from bursts in the trac� We therefore seek to mark each �ow in proportion to
how much of the resource it uses� taking account of its �uctuations�
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Another aspect of marking which has received only a little attention !�� is
its impact on routing� Ideally� a router should generate marks in proportion to
its congestion� so that users have a way to measure and an incentive to choose
the route with the least impact on the network� In other words� it is only fair
that a user using an uncongested resource should be marked less than a similar
user on a congested resource�

The marks given by a router to a �ow should re�ect
� how much of the capacity it uses� and
� the congestion at the router�

The hard part is in �nding the right measure of how much capacity a �ow
uses and of how congested the router is� There will inevitably be some degree
of judgement in trying to de�ne such concepts� especially as there are several
di�erent candidate de�nitions� In the next three sections we will give three
di�erent de�nitions� eb� �L� and spsp� drawing on e�ective bandwidth theory
and economics� We then reconcile them in Section ����

��� E�ective bandwidths and marking EB

What Baumol describes as the �crudest but most direct approach ��� to deter�
mine the fair set of prices� is called full allocation of costs� To determine fair
prices� the total cost to a company is entirely divided between the products it
makes� and the fair price for a product is its allocated cost� He calls it crude
because the allocation of costs to products is generally arbitrary� and because
no account is taken of consumer preferences�

In this section we will give a de�nition of fairness and eciency in marking
based on e�ective bandwidth theory� Our de�nition� which we will call eb� is a
way of fully allocating the costs of congestion to users� In the limited domain
of bandwidth allocation there are sound reasons for doing this� for example as
in the model of Courcoubetis et al� !
 � First we will recall the theory� which
was described in Section ���� For the purposes of fairness� what matters is the
following summary�


���� E�ective bandwidth theory

The e�ective bandwidth function ��	� t� of a random trac �ow is a measure of
the capacity it consumes� somewhere between the mean and peak rates� encod�
ing all the important information about the �ow�s burstiness� The convenient
feature is that the rate function for loss probability at a router is governed by
the sum of e�ective bandwidths of the input �ows� So if a router has several in�
put �ows of di�erent types� then the e�ective bandwidth function measures the
tradeo� between them� For example� suppose that a router has inputs of types
A and B and at the operating point �'	� 't� of the queue� �A�'	� 't� � ��B�'	� 't��
Then replacing one �ow of type A by two �ows of type B will not a�ect the loss
probability�

We do not need the next result immediately� but it will be useful in Section
���� Recall that the most likely path to over�ow is given by 'x in equation
������� and that the amount of work produced by 'x in the busy period leading
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to over�ow is

'x��� 't �
�

�	
	't��	� 't�� �����

where the derivative is taken at '	�


���� Fairness

E�ective bandwidth measures the impact of a �ow at a resource� so the �rst
point of our goals of fairness in Section ��� would suggest marking in proportion
to e�ective bandwidth�or� equivalently� marking in proportion to 't��'	� 't� which
has the right units�and we shall say that such a marking scheme satis�es the
eb de�nition of fairness� If one user of type A can be replaced by two users
of type B without a�ecting loss probability� it is fair that a user of type A be
charged twice as much as a user of type B� �We shall revisit this de�nition in
Section �����

We can also address the second point� The ECN proposal !�	 requires that
one mark be equivalent to one dropped packet� We might loosen this a little�
and say that one dropped packet should be worth a �xed number of marks�
In either case� the large deviations interpretation is that the rate function for
over�ow should be equal to the rate function for marking� To see this� let IM
be the rate function for marking and IO the rate function for over�ow� This
means that when the system is scaled up to have L users and the service rate
and bu�er size are scaled up by L� the probability of marking is roughly e�LIM

while that of over�ow is e�LIO � If the rate functions are not equal� then as the
system scales up the number of marks per dropped packet tends to either zero
or in�nity�

We saw in Chapter � that the e�ective bandwidth of a �ow is preserved as
it travels through a network� at least as long as routing is diverse� This makes
it easy to see that marking according to e�ective bandwidth is reasonable in
networks� not just in isolated routers� and we do not need to worry about �ows
being made smoother or more bursty as they progress through the network�


���� E�ciency

Courcoubetis et al� !
 describe an economic model of user behaviour� under
which a social optimum is attained by charging in proportion to e�ective band�
width� We will not repeat their model here� as we look at social optima in
much more detail in the next section� We will simply note for the moment that
social optima are always economically ecient� so that in this model fairness
and eciency are both served by charging in proportion to e�ective bandwidth�


���� Summary of EB

Large deviations and e�ective bandwidth theory suggest a full allocation of
costs� in which �ows are marked according to their e�ective bandwidths�

Large deviations can give us a great deal of information� With it� for ex�
ample� we can model nearly any sort of random trac �including long�range
dependent sources like fractional Brownian motion� Example ��� on page ����
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we can calculate quantities such as the loss rate and the most likely path to
over�ow� and we can analyse the behaviour of trac in a network�

This comes at the price of loosing some details� For example� it does not
distinguish precisely how many marks correspond to a dropped packet� To give
a di�erent perspective� we now take the economic view� This gives more precise
answers� but cannot answer as many questions�

��� Economics and e�ciency

This and the following section describe an economic approach to marking�
Economists have developed ways to model the problem of individuals competing
for limited resources� which is exactly our problem of congestion control�they
treat prices as a mechanism for directing consumption� and we will treat marks
in just the same way� The di�erence with standard economic theory is that the
technological infrastructure of the Internet may� according to MacKie�Mason
and Varian !�� � allow �breakthroughs ��� in the area of in�line distributed ac�
counting�� The breakthrough that we are looking for is the ability to charge
users in a way which precisely re�ects their actions� using only the very simple
mechanism of marking packets�

In this section we will look at the problem of eciency� An allocation of
goods and prices is said to be e�cient if there is no change that would si�
multaneously bene�t someone and harm no�one� as measured by their utility
functions� In fact� we will concentrate on one particular sort of ecient al�
location� the social welfare optimum� in which the sum of everyone�s utility
functions is maximised�

This is a very simplistic approach to eciency� and modern economists try
to steer clear of interpersonal comparisons of utility� Yet� as Baumol !� and
others note� this sort of comparison is inherent in de�ning fairness� And in this
chapter we are as interested in fairness as we are in eciency�

First� we brie�y discuss in Section ����� the relationship between marking
and charging� In Section ����� we review the problem of marking when each user
sets the rate at which they send work� largely following Gibbens and Kelly !�� �
They go on to consider how users should respond to such a marking scheme�
and Tan !��� �� analyses the stability of the whole system� We however will
stay with the topic of marking algorithms� and in Section ����� we describe how
marking should work when users send random �ows� This leads to a de�nition
of fair and ecient marking� which we call �L� �Here we only prove eciency�
in Section ��� we explain why it can also be taken to de�ne fairness�� Finally
in Section ����� we discuss some limitations of this de�nition�


���� Dropping� marking� and charging

First� a note on marking and charging� We will mainly refer to charging rather
than marking in the rest of this section� so it is important to make clear the
relationship between the two ideas�

Perhaps the most apparent costs in the Internet are infrastructure costs�
It is easy to put a price on a new �bre�optic cable or a new router� We are
not concerned here with this sort of cost� we are interested instead in costs
associated with congestion� Even when all the infrastructure has been paid for�
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congestion can still be a problem� The standard economic way of coping with
congestion is to levy extra charges on people who use congested resources�

Marking in the Internet is intended to achieve exactly the same things as
congestion�pricing in economics� which is why we will use the term charging
rather than marking� However� while people will naturally respond to monetary
charges� it is less clear what incentives there might be for responding to marks�
If users were charged say a millionth of a pence for each mark� the incentives
would be obvious� But even if the Internet is not yet ready for full�blown
congestion�based pricing� economic theory can still help us understand what
the cost of congestion is to users of the network� and how users� demands for
more bandwidth can be reconciled with the network�s capacity constraints� We
will postpone further discussion of how to encourage and enforce good behaviour
until Section ��	�

A user�s response to marks will be governed by what the marks signify� The
ECN proposal !�	 speci�es that users must respond to marks in essentially the
same way as they respond to dropped packets� The reasons for this are largely
historical� and while our discussion of marking refers the ECN mechanism� it is
based on very di�erent premises� Nonetheless� we too will treat marks as akin
to drops� We will take the frequency with which a user�s packets are dropped
to be the primary measure of his dissatisfaction� and so it will be natural to
measure his charge in the same units�

In the rest of this section we will discuss pricing structures rather than
marking algorithms� In translating from charges into marks� it should be borne
in mind that a user �feels the cost� of both marks and drops� For example� a
user who should incur charge P � of whose packets L are dropped� need only
have P � L of his remaining packets marked�


���� E�ciently marking �uid �ows

Consider a network with a set R of resources and a set U of users� Identify
a user u � U with the set of resources u � R he wants to use� Suppose he
sends work at constant deterministic rate xu and has utility Uu�xu� in doing
so� We will take one dropped packet to be our unit of utility� We also need a
utility term to indicate the cost of congestion� let Cru�x� be the average loss
at resource r experienced by user u when the total load in that resource is x�
�The idea of average loss is left intentionally ambiguous for now� It will be made
clear when we go on to consider random �ows in Section ������� Write x for the
vector �xu�u�U � Then each user will seek to

max
xu

Uu�xu��
X
r�u

Cru�yr� where yr �
X
u�r�u

xu�

Let us consider the social welfare problem� to maximise the net utility� In
other words�

max
x

X
u�U

Uu�xu��
X
r�R

Cr�yr� such that xu 
 � � u � U �����

where

yr �
X
u�r�u

xu and Cr�yr� �
X
u�r�u

Cru�yr��
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This can be solved with normal Lagrangian techniques� De�ne L by

L �
X
u�U

Uu�xu��
X
r�R

Cr�yr� �
X
r�R

�r

�
yr �

X
u�r�u

xu

�
�����

and solve �L��yr � � and �L��xu � � �or xu � � and �L��xu � ��� This
gives

�r �
dCr
dyr

and

dUu
dxu

�
X
r�u

�r if xu � ��
�����

This solution can be written in an intuitively appealing way� Suppose that each
user can adjust his rate xu� and for sending xu is receives Pu�x� marks� Then�
if he ignores the other users� he would act to maximise Uu�xu�� Pu�x�� Let us
choose the shadow price

Pu�x� � xu
X
r�u

�r � �����

Then the solution to the system of equations ����� coincides with the solution
to the welfare problem ������ �Actually� this charge should be reduced for users
who experience drops� It will be easier to see how when we go on to look at
random processes in the next section��

The pricing structure ����� leads to a decentralised solution� in the following
sense� Each resource computes its own price per unit �ow dCr�yr��dyr� and
that price is communicated to everyone using that resource� Each user observes
the total price he is charged� and adjusts his bandwidth accordingly� By this
choice of prices� the interests of users are harnessed to achieve a social optimum�

One example� �rst described by Gibbens and Kelly !�� � is especially worth
noting� as it leads to a very simple marking algorithm�

Example ���
As usual� assume a slotted time trac model� Also assume for simplicity that
all packets are the same size� Consider a bu�erless resource fed by Poisson
�ows of packets� Speci�cally� suppose that each user u sends a Poisson �ow of
packets of rate xu� and that Cr�yr� is the expected number of dropped packets
at a bu�erless resource of service rate C when fed with an input Yr which is
Poisson with parameter yr �i�e�� Cr�yr� � E�Yr � C���� Then it can be shown
that the correct expected charge given in ����� is attained by the following
marking algorithm� in a timeslot in which over�ow occurs� mark every packet
that arrived in that timeslot �except for dropped packets� which do not need to
be marked�� �


���� E�ciently marking random �ows �L

The last section assumed �uid trac �ows� or at least trac �ows parameterized
by a scalar rate� But the optimization ����� can be interpreted another way� to
say how general random trac �ows should be marked� This will enable us to
draw links with e�ective bandwidth theory�
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Consider again a slotted time model in which all packets are the same size�
and a network of bu�erless resources� Suppose that each user u transmits a
random amount of work at each timestep� Each user will have a probability
distribution controlling how much work is sent� and it is over these distributions
that we wish to optimise� So let xu in ����� be a distribution over the nonnegative
integers� rather than a scalar as in the last section� This means that yr is also
a distribution� the distribution of the total amount of work arriving at resource
r in a single timestep� �To avoid problems with what happens upstream� we
could restrict attention to a single resource� It is easiest to deal what happens
upstream using e�ective bandwidths and the results of Chapter ��� We can
now be clear about how we measure the cost of congestion� let Cru�x� be the
expected number of packets belonging to user u which are dropped at resource
r when the total load is x�

The notation becomes a little more complicated here� but the argument is
just the same as in the last section� Let us write Z for the random variable
with distribution z� and z�n� for P�Z � n�� Let Lr�Y � be the number of
packets dropped at resource r when fed with Y � Then Cr�yr� � ELr �Yr��
which expands to

P
n Lr�n�yr�n�� Now the multipliers �r are measures on the

nonnegative integers� and the Lagrangian ����� becomes

L �
X
u

Uu�xu��
X
r

ELr �Yr� �
X
r

X
n

�r�n�

�
P�Yr � n�� P�

X
u�r�u

Xu � n�

�
�

Solving �L��yr�n� � � gives

�r�n� �
�ELr �Yr�

�yr�n�
� Lr�n�

and solving �L��xu�n� � � gives

�Uu�xu�

�xu�n�
�
X
r�m

�r�m�
�P�

P
v�r�vXv � m�

�xu�n�

�
X
r�u�m

�r�m�P�
X
v�r�v

Xv � mjXu � n�

�
X
r�u

E
	
Lr�Yr�jXu � n



�

Really� we should include constraints that
P

n xu�n� � � and � � xu�n� � ��
But by parameterizing the distribution of Xu di�erently� it can be shown that
these constraints do not a�ect the solution�

We can again construct the shadow prices which make the solutions to the
user problems coincide with the social optimum�

Pu�x� �
X
n

xu�n�
X
r�u�m

�r�m�P�Yr � mjXu � n� �
X
r�u

ELr �Yr��

In fact� this is a little bit silly� because even when the user sends nothing �i�e�
P�Xu � �� � �� he is still charged� This has happened because the space of
probability measures for Xu over which we are optimizing is ane� not linear�
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So we might as well assert that when a user sends nothing he should be charged
nothing� which leads to the price

Pu�x� �
X
r�u

ELr �Yr�� ELr �Yr �Xu��

This pricing scheme is naturally attained by charging Lr�Yr�� Lr�Yr �Xu� in
each instance� We will explain in the Section ��� why this can be considered
to be fair� We shall call it the �L pricing scheme� and say that any marking
algorithm which achieves it satis�es the �L de�nition of fairness�

It is true much more widely that this sort of pricing structure �total cost
with an individual minus total cost without that individual� will lead to a social
optimum� The only distinguishing feature of our probability model is that this
charge arises as a shadow price� Normally the shadow price comes out as a
derivative� as in ����� and ������

So far we have assumed a bu�erless model� The same argument works for
queues� though with a slight technical diculty� The problem is that a queue
can over�ow over any timescale� and so we would need to consider xu to be a
distribution of a stationary process indexed by the positive integers� This has
more than countably many sample points� so a more intricate analysis would be
needed� To avoid these problems� we can note that real queues only over�ow over
a �nite timescale� and only consider marginal distributions over this timescale�
This means that ELr �Yr��ELr �Yr�Xu� is still the right charge to levy� where Yr
and Xu are to be seen as entire processes� Henceforth we drop the r subscript
for simplicity and talk about single resources� remembering that marks from
di�erent resources should be summed�

Recall that L�m� is the number of packets dropped at a queue when the
aggregate input is m� So �L says that the charge assigned to a user should
equal the di�erence in the total number of packets dropped between the case
where the user is present and the case where he is not� Over a long enough time
period� this gives the right expected charge�


���� Problems with �L

There are several concerns with �L� which we now note�
We have simplistically taken the social welfare function ����� to be the sum

of utilities of each of the users� This is an arbitrary way to balance the needs
of di�erent users �though it is reasonable from the point of view of fairness�� A
more general concept is the idea of Pareto eciency� a Pareto ecient allocation
is one in which there is no change which harms no�one and strictly bene�ts
someone� as measured by their utilities

Uu�xu��
X
r�u

ELru�Yr��

The problem with trying to characterize Pareto ecient allocations is that they
depend in detail on the loss function Lru�Yr�� which depends on the exact order
in which packets arrive� This would require more precise assumptions than are
justi�ed by the queueing models used in this thesis�

A more pressing concern is about strategic play� We have assumed that
each user will try to maximize his own utility� independent of other users� But
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we would expect that a strategic user would anticipate the e�ect of his actions
on prices and adjust his behaviour� leading away from the social optimum�
The idea of a Nash equilibrium describes what would happen when users play
strategically� but to �nd these equilibria we have to make further assumptions
about the options open to each user� Gibbens and Kelly !�� give some examples
of what might happen� A user who takes up a large fraction of the capacity
and who does not anticipate the e�ect of his actions would back o� a certain
amount� if he did anticipate� he would back o� more� Nonetheless� when there
are many small users� this should not be much of a problem�

There are also problems with de�ning what we mean by a user� The opti�
mization argument took a user to be an entity that values what it sends and can
shape its trac in response to charges� and supposed that di�erent users shape
their trac independently� But what is a user� Is it an institution� a person
sitting at a computer� an application program� a �ow of trac from an applica�
tion� an individual packet� Sometimes each of these levels should be considered
a user� and sometimes they act together� Some preliminary discussion about
how these levels interact is given by Key et al� !�� �


���
 Summary of economics and e�ciency

We have found a pricing scheme� �L� which maximises social welfare �and is
therefore ecient� assuming a particular model of user behaviour�namely� that
users have total freedom in choosing the distribution of the trac they send�
and that their cost is measured by their expected loss� The pricing scheme we
found is that user u should be charged the shadow price EL�Y �� EL�Y �Xu��
This rule is summarized by make each user feel any loss he causes as though
it were his own� A pricing scheme like this is called a Pigovian tax� It is the
standard economic prescription for achieving a socially desirable outcome in the
presence of social costs�

This has several problems� The most signi�cant is the problem of whom to
take to be a user� In the next section we go on to consider economic views of
fairness� and indicate how the problem may be remedied�

��� Economics and fairness

In Section ��� we found that the pricing scheme �L leads to an ecient allo�
cation of bandwidth �at least under the model of user behaviour given in that
section�� It has the further virtue that it is fair by de�nition� or at least by one
of the de�nitions of fairness that economists have proposed� In Section ��� we
suggested charging in proportion to e�ective bandwidth� which is fair according
to another de�nition�

In this section we will review some of the di�erent de�nitions of fairness
that economists have given� We will describe superfairness� the burden test�
incremental fairness and anonymous equity� and game�theory� And we will
introduce another pricing scheme� called spsp� The principal references are
Baumol !� and Zajac !�� �
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�
�� Superfairness

Perhaps the most mathematically developed idea of fairness is the theory of
superfairness� An individual A is said to envy individual B if he would rather
have B�s goods than his own� An allocation is fair if no�one envies anyone else�
and superfair if everyone strictly prefers their own goods�

Unfortunately this theory is of no use in congestion pricing� and we only
mention superfairness to dismiss it� Any pricing scheme would be fair by this
de�nition� because if A envies B then A can just start sending trac with the
same distribution as B� We however want the price for a user to re�ect the
amount of congestion he causes�


�
�� The burden test

The idea of a fair price arises in monopoly trials� when a company is charged with
cross�subsidising a product it sells in a competitive market by increasing the cost
of a di�erent product in which it has a monopoly� One way of testing if there is
cross�subsidy is with the burden test� which says that product P constitutes no
burden on consumers of other products supplied by the same company� if the
total income from P exceeds the extra cost incurred by producing P � �Actually�
economists use two closely related tests� the burden test and the incremental
cost test� The distinction is not important for our purposes��

Standard economic models of companies and products do not �t very well
with the problem of bandwidth allocation� because it is hard to decide what the
product is� The �t is� however� good enough to describe the �L pricing scheme
as fair according to the burden test� The extra cost of carrying a user�s trac
is precisely what �L charges� so we can say that �L fair� �But we shall revise
this conclusion in Section �����


�
�� Game theory and fairness

The standard way to apply game theory to fairness is with the idea of a core�
Suppose that a company supplies products to several consumers� Let the stand�
alone cost for a group of those consumers be the cost of supplying only them�
Then if any group is being charged more than its stand�alone cost� it has an
incentive to withdraw and take its custom elsewhere� The core is the set of
allocations and prices where there is no such group� and it is reasonable to call
the core fair� There are other closely related de�nitions of fairness� such as the
Shapley value�

These ideas are not appropriate for the problem of bandwidth allocation�
because there is no meaningful idea of stand�alone cost� But the inherent idea
of social equilibrium is useful� The core expresses the idea that a group of
individuals could form a coalition and act in their own interest as a group� In
the context of bandwidth allocation� a group of users could band together and
transmit their packets through a proxy to make it look as if they all came from
a single user� With the pricing scheme �L� a group of users who band together
�but do not otherwise alter their trac characteristics� may lower but never
increase their net charge�

We would not want a pricing structure that encouraged users to band to�
gether and use proxies in this way to hide the characteristics of their trac�
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because that would lead to complicated arrangements and extra trac to con�
trol them� We would therefore describe �L as socially unstable� Further� if
many users banded together then they would constitute a signi�cant proportion
of the trac� and the problem of strategic play described at the end of Section
��� would become serious�

These problems in reaching social equilibrium are well�known� In economic
systems with external diseconomies �such as congestion� which is a problem for
all users� Shapley and Shubik !�� have shown that the core may not coincide
with the set of socially desirable outcomes� and in some cases it may not even
exist�


�
�� Incremental fairness SPSP

The diculties about users banding together� and also the problem described
in Section ��� of whom we should consider to be a user� arise because �L is
not incrementally fair� in the following sense� Suppose that a user sends some
packets in addition to what he sends normally� Then the extra price charged is
typically less than if a separate user had sent those additional packets� In other
words� increments are not charged a fair price� In this section we introduce
another pricing scheme� spsp� which is incrementally fair�

Incremental fairness is closely related to the economic idea of anonymous
equity� described by Baumol in the context of stand�alone prices �which are
not meaningful in the problem of bandwidth allocation�� We can de�ne it in
another way though� as a generalisation of the burden test� which says that an
individual is not bene�ting from cross�subsidisation if the amount he is charged
is enough to cover the incremental cost he causes� We may say that a pricing
scheme is anonymously equitable if no individual or part thereof bene�ts from
cross�subsidisation� In other words� each increment should be charged at least
its fair price�

We can now introduce our �nal fair pricing scheme� called Sample Path
Shadow Pricing �or spsp�� �rst described by Gibbens and Kelly !�� � It works
as follows� mark a packet if removing it would result in one less packet being
dropped� In other words� when there is an over�ow� mark every packet that
arrived between the start of the current busy period and that over�ow� and
when there is more than one over�ow in a busy period� mark every packet
that arrived between the start of the busy period and the last over�ow� It
is illustrated in Figure ���� Clearly spsp satis�es the condition of anonymous
equity� since it charges each individual packet its incremental cost�

This is not a proposal for a marking algorithm� after all� a packet may have
left the queue before we know whether or not it should be marked� So we will
simply say that a marking algorithm satis�es the spsp de�nition of fairness if
it marks the same number of packets from each �ow as spsp�

It is interesting to note that this is precisely the marking scheme described in
Example ��� on page ��� There it arose as the ecient pricing scheme for Poisson
�ows using a bu�erless resource� So spsp can lead to an ecient allocation of
bandwidth� at least for certain models of user behaviour�

It is not surprising that incremental fairness �spsp� and fairness ��L� dis�
agree� There is an example from superfairness theory� known as the Feldman�
Kirman consistency result� which stresses the di�erence� Starting from an allo�
cation which is fair� a change which is incrementally fair and bene�cial to all
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Served

Queued

Dropped

Figure ���� Sample path shadow price marking� The squares repre�
sent packets	 and the grey diagonal lines indicate the progress of a
packet through the queue� Shaded packets are those that would be
marked by spsp� This rule marks each packet whose removal would
result in one less packet being dropped�

parties may result in an allocation which is unfair to all parties�


�
�
 Summary of economics and fairness

The two most important ideas in this section are fairness according to the burden
test and incremental fairness� The burden test says that it is fair to charge a
user the extra cost of carrying his trac� which is precisely what �L speci�es�
Incremental fairness says that each individual packet should be charged its fair
price �according to the burden test�� and this is what spsp speci�es� In addition
to these two we have the full allocation of costs de�nition of fairness� described
in Section ���� which suggests charging according to eb�

In the next section we compare these three de�nitions and explain how they
relate�

��	 Di�erent de�nitions of fairness

So far we have seen three di�erent de�nitions of fairness in marking� eb� �L� and
spsp� Each can lead to an ecient allocation of bandwidth� with an appropriate
model for user behaviour� The situation is however not as confusing as it might
seem� In this section we will explain why the three de�nitions di�er� and why
spsp seems to be the most appropriate de�nition for marking algorithms for
routers�

Even if we decide to allow all three de�nitions of fairness� it is still possible
to point out what is unfair� since the three de�nitions agree for certain trac
mixes� We call these trac mixes anonymous scenarios� and we will describe
them in this section� Zajac suggests ten fairness maxims for aggrieved persons�
the �rst of which is �frame your initiative as a concrete unfairness issue�� We
will use anonymous scenarios heavily in Section ���� in pointing out how various
proposed marking algorithms can be unfair�


���� The di�erent de�nitions

Recall the three de�nitions of fairness� eb� �L� and spsp�

� eb says that �ows should be marked in proportion to their e�ective
bandwidth 't��'	� 't�� This is fair in that it achieves a full allocation of
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costs� and e�cient for the user model mentioned in Section ����
� �L says that �ows should be marked according to the number of extra
drops they cause� L�Y � � L�Y � X�� This is fair according to the
burden test� and e�cient for the user model of Section �����

� spsp says that a packet should be marked if removing it would lead to
one less drop� This is incrementally fair� and e�cient for the user
model of Example ��� in Section ������

These three de�nitions are di�erent� First� eb is di�erent to �L because
e�ective bandwidth is additive over independent �ows� so eb would mark the
aggregate of two independent �ows according to the sum of their individual
marks� while �L would typically give the aggregate fewer marks� Second� spsp
marks every packet that arrives in the critical period before over�ow� and expres�
sion ����� shows that this is related to the derivative of the e�ective bandwidth�
which is typically not in proportion to the e�ective bandwidth� Finally� �L gives
fewer marks than spsp� for example when a single packet is dropped and some
�ow contributed two packets in the busy period leading up to the drop�


���� Anonymity

For a range of trac mixes these three de�nitions agree� giving a single clear�
cut standard of fairness� While the range is very limited� it is broad enough to
show that certain algorithms like red fail the standard� We call these trac
mixes anonymous� We will �rst de�ne anonymity in terms of e�ective band�
width� which is how we will use it in Section ���� then give the more natural
interpretation in terms of packets�

Anonymity is based on the requirement that at the critical point each �ow X
looks as if it is made up of a number of independent copies of some base �ow P�
Speci�cally� call a trac mix anonymous if for each �ow X there is a multiple kx
such that the e�ective bandwidth satis�es �X�'	� 't� � kx�P �'	� 't� and the most

likely path to over�ow satis�es 'x��� t � kx'p��� t � where �'	� 't� is the critical
point� One might think of P as a Poisson �ow of very low rate� representing
an isolated packet� Since eb marks in proportion to e�ective bandwidth� and
spsp marks each copy of the 'p sample path identically� these two de�nitions of
fairness agree�

Now we interpret this de�nition in terms of packets� Think of P as repre�
senting an isolated packet� At the critical point� i�e� in the busy period leading
up to over�ow� each aggregate �ow X looks as if it is made up of independent
copies of P� i�e� of independent packets belonging to di�erent users� This gives
a more natural way of expressing the assumption of anonymity� that all packets
arriving in the critical interval leading up to over�ow are independent� This
means that �L marks them all� and so agrees with spsp� No two packets belong
to the same user� so there is no point classifying them� which is why we call this
scenario anonymous�

Another way of understanding anonymity is through the formal principle of
distributive justice� that equal cases should be treated equally� and unequals
unequally� in proportion to relevant similarities and di�erences� This is very
vague� But in anonymous scenarios� when each user is indistinguishable from
an aggregate of independent copies of a base �ow� it is clear what the equal
cases and the relevant di�erences are�
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���� SPSP is best

Trac mixes will rarely be anonymous� and the three de�nitions of fairness
will rarely agree� One way to cope with this would be to recognise that it is
technologically dicult to classify packets according to which �ow they belong
to �at least in very high speed backbone routers�� decide that since we cannot
classify packets we should just act as though the trac mix were anonymous�
and be satis�ed with any algorithm which is fair in anonymous scenarios�

We propose instead a di�erent way of looking at the results of Sections ���%
��� which suggests that spsp is the right thing to do even when the trac mix
is not anonymous�

First an analogy� I am sharing a cake �which represents capacity�when�
there�is�congestion� with several people� The others insist on having a certain
size piece which leaves me with half� which is what I want� though I am very
prepared to take less if necessary� Now if someone else were to come along�
the others would insist on keeping their share� but I would give up some of
my share� Should I be charged for taking half� Or should I be given a small
discount� to re�ect the fact that I will be more �exible than the others if the
situation changes�

The �rst approach is taken by spsp� and the second by eb and �L� In�
deed� Gibbens and Kelly !�� introduced spsp for the very reason that it is the
straightforward measure of resource usage� Given a packet trace� we can easily
work out which packets used the resource when it was limited�they are exactly
the packets that spsp marks�

How EB di�ers from SPSP

Marking according to eb tries to achieve something di�erent� The whole idea
of e�ective bandwidths is to capture what happens when the system changes�
we say that two �ows have the same e�ective bandwidth if replacing one by the
other does not change the loss probability� This is the right thing to study for
the purposes of controlling admission to the network� but it is not the same as
measuring resource usage�

However� the e�ective bandwidth theory of Section ��� tells us about resource
usage as well� It identi�es the critical timescale 't� and hence the limited capacity
B � C't available over that timescale� such that the probability of over�ow is
governed by the likelihood that the sources will consume that limited capacity�
When over�ow does occur� expression ����� gives us 'x��� 't � which is the amount
of limited capacity consumed by source X � We can suggestively rewrite that
expression as

't�X �'	� 't� � 'x��� 't � '	't
�

�'	
�X�'	� 't�� �����

In words� the e�ective bandwidth measures the amount of limited capacity con�
sumed by a source� less a derivative term indicating how that source behaves
when the system changes�

In Section ��� we showed that loss probability is not changed when one �ow
is replaced by another of the same e�ective bandwidth� The same equations
can tell us what happens to resource usage when this replacement is made� In
���
�� a fraction � of the sources are replaced by constant rate sources of rate
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equal to the e�ective bandwidth of the sources they are replacing� The optimal
	 does change� by O���� but because the loss rate involves a supremum over 	
it only changes by O��	�� and so the derivative of the loss rate I ���� is zero�
Nonetheless� since the optimal 	 changes by O���� the allocation of the limited
resource B � C't does change by a nontrivial amount�

The fact that loss probability is not changed by this substitution makes
e�ective bandwidth the appropriate measure in certain circumstances� For ex�
ample� in admission control the aim is to only accept a call if doing so would not
increase the loss probability above a certain threshold� Courcoubetis et al� !
 
show how this leads to charging according to e�ective bandwidth� But if we are
only interested in measuring resource consumption� we should charge according
to 'x��� 't instead�

How �L di�ers from SPSP

The di�erences between �L and spsp also arise from whether we take into ac�
count how a user would respond to small changes� In our economic model� if the
system changes then users can change their behaviour too� potentially reshaping
their trac or changing the amount they send� according to their utility func�
tions� The shadow pricing scheme �L charges them so that they have the right
incentives to reshape their trac in a way that �ts in which the social optimum�
Like eb� �L considers what would happen if the system were to change slightly�
and it charges accordingly� We can write the �L charge as

EL�Y �� EL�Y �X� � EA�D�� � E�A �D��

where A is the number of packets belonging to X that arrive in the critical
interval and D is the number of packets dropped� Again� the �rst term A�D��
is the sample path shadow price� and the last term concerns reaction on the
part of the user� if A � D then there is no point reacting as much as if A � D�

�The di�erence between eb and �L is in their assumptions about what will
happen when the system changes slightly� The former assumes that the traf�
�c will not change but the critical point will shift slightly� whereas the latter
assumes that users will reshape their trac �ows��

When EB� �L and SPSP agree

As we have already noted� if all the packets arriving in the interval leading up
to over�ow belong to di�erent users� i�e� there is some worth attached to each
individual packet and they are sent independently� then the three de�nitions of
fairness agree� This is because there is only limited scope for reshaping �you
either send the packet or you do not�� and so the �exibility term does not come
into the price�

It is worth noting another case where they agree� when the queue is over�
loaded� In terms of e�ective bandwidths� suppose that the mean input rate is
very close to the service rate� This means that the optimal spacescale '	 will
be very small� and so the second term in ����� will be small and spsp and eb

will roughly agree� In terms of economics� suppose that the queue is overloaded
in that each user only sends a small number of packets compared to the total
number dropped� This means that removing the n packets belonging to a single
user would result in n fewer packets being dropped� and so spsp and �L agree�
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This case of overloading is akin to the cake analogy in the situation where there
is not enough cake to even meet everyone�s minimum demand� so �exibility does
not come into the price�


���� Summary of the di�erent de�nitions

In this section we have described how and why the three measures of fairness
di�er� In anonymous scenarios they agree� and so there is a clear�cut standard
of fairness� In other scenarios� they di�er because they are trying to measure
di�erent things� spsp purely measures use�when�there�is�congestion� while eb

and �L also take into account how the user might react and how elastic the
demand is�

A user�s reaction will depend on what he wants and what he is prepared
to do� and routers are badly placed to predict this� There is no single right
user model� and any algorithm that predicts how users react will eventually be
mistaken� We therefore suggest that spsp is the best way to de�ne fairness for
routers�

Deciding on eciency is rather harder� Marking according to each of the
three de�nitions can lead to an ecient allocation for an appropriate user model�
and indeed it is impossible to de�ne eciency without modelling user behaviour�
So we shall content ourselves with having found a de�nition of fair marking�

Unfortunately the implementation of spsp would require predicting the fu�
ture behaviour of the queue� since it is often unclear whether a packet should
be marked until after it has left the queue� In the next section we look at
algorithms for marking� and see how well they approximate spsp�

��
 Marking algorithms

In this section we will use the economical and mathematical insights we have
found in the �rst part of this chapter to design and analyse marking algorithms�
The goal will be to mark fairly� The best of our three de�nitions of fairness
is spsp� But we will point out unfairness in anonymous scenarios� when all of
them agree� We are all sensitive to being treated unfairly� even when we have
no de�nitive idea of what fair means�

We will illustrate the two main fairness pitfalls� then go on to show how red

falls into both of them� Other algorithms we analyse include blue !�� � fred
!�� and Adaptive red !�� � There are some simple modi�cations to red which
make it perfectly fair in anonymous scenarios and approximately fair in others�
and we summarize them in a new marking strategy we call rose�

The main mathematical idea in analysing these algorithms is that of the
most likely sample path� Suppose X is a random input to a queue� and that a
rare event occurs� Then� in the many sources large deviations limit� the most
likely way for this to happen is if X had sample path 'x given in Theorem �����
and this path is exponentially more likely than any other� We will calculate and
plot examples of these paths� See Chapter � and especially Examples ��	 and
��
 for details of the theory�
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���� Mark After Loss

The ideal marking algorithm spsp is impossible to implement� as it requires
knowledge of future events� It is easy to describe what it would do� though�
in every busy period containing an over�ow� mark every packet that arrives
between the beginning and the last over�ow of that busy period� The problem
is that when a packet arrives at a router� we do not know if the queue will
over�ow before it next idles�

To get around the problem� Gibbens and Kelly !�� suggest the following
marking algorithm� When the bu�er over�ows� mark everything inside the
bu�er� Also keep track of how many packets should be marked according to
spsp� and continue marking after the over�ow so that in total the right number
of packets are marked� We will call this algorithm mal�

They also suggest an even simpler approach� which is to mark all packets
leaving the queue from the time of packet loss until the queue becomes empty�
This is essentially very similar to the blue algorithm designed by Feng et al�
!�� which marks packets with a probability which is incremented whenever the
queue over�ows and decremented when it idles� This mechanism was actually
designed with a very di�erent goal to mal�blue�s goal is to smooth out the �ow
of marks� not to approximate spsp�but in the many sources large deviations
limit this goal is not apparent� and blue simply amounts to marking a �xed
proportion of those packets that arrive after a queue over�ows and before it
next idles�

�In our slotted time model� it is not clear whether we should mark packets
that arrive in the timeslot in which over�ow occurs or in the one after� The
problem is that real routers operate in continuous time� or at least as close as
their timing circuits allow� In fact� at this level of detail they do not even behave
entirely like queues� It is interesting to consider how accurate the slotted time
queueing model is� but hardly appropriate here� We will assume for simplicity
that work arrives evenly distributed throughout a timeslot� and that the marking
algorithm parameters are updated at the end of a timeslot��

The problem with these algorithms is that they close the stable doors after
the horse has bolted� and then blame the horses left inside for running away�
The packets that arrived before over�ow are the ones that caused the problem�
while the packets that arrive after are innocent� Hopefully there will be enough
of the guilty packets left in the bu�er when the queue over�ows� and not too
many innocent packets marked afterwards� for mal not to be too bad� But if
for example the bu�er is small and the most likely time to over�ow is large�
then most of the guilty packets will have escaped�

The problem of marking innocent packets is illustrated in Figure ���� which
shows most likely path to over�ow and indicates which packets are marked by
spsp� mal and blue� There are two trac �ows� one �the darker� which pro�
duces an independent Normal amount of work each timestep� with mean �����
and variance ������ and another �the lighter� which is periodic and produces �
units of work every �� timesteps� The queue has service rate ���� and bu�er
size ���	�� This leads to critical spacescale 't � ��� and critical timescale 't � ��
These parameters were chosen so as to make the scenario anonymous�
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������ ��� ��� ������ ������ 	�	�	�

Figure ���� Sample paths and marks� The graphs plot the most
likely path to lead to over�ow	 giving the amount of incoming work
at each timestep	 for a queue fed by two di�erent trac �ows� The
shaded regions indicate how the di�erent algorithms would mark�
The scenario is anonymous	 so spsp is perfectly fair	 and it marks
the two �ows equally� With mal the darker �ow gets ��� of the
marks	 and blue does even worse	 giving it 
���


���� Mark in Virtual Queue

Gibbens and Kelly !�� suggest the following virtual queue algorithm� which
tries to detect congestion before it becomes a problem� and thereby avoid the
problem of marking after a loss occurs� The algorithm runs a virtual queue of
smaller bu�er size and service rate in addition to the real queue� and feeds it a
copy of each incoming packet� Speci�cally� if the real queue has bu�er size B
and service rate C then let the virtual queue have bu�er size �B and service
rate �C� From when the virtual queue over�ows until it idles� mark all arriving
packets� The idea is that the virtual queue will over�ow before the real queue�
and so the packets that cause over�ow in the real queue might be marked� It is
appealing because it leaves some space in reserve for bursty �ows�

The virtual queue algorithm starts marking after an over�ow �in the virtual
queue�� so it su�ers from the same problem as mal and blue� But there is
another problem which we wish to highlight� and to do this we will consider an
idealized version� instead of marking after the virtual queue over�ows� we will
suppose that packets are marked in the virtual queue according to spsp� even
though it is impossible to implement� Call this virtq�

Even virtq can still be unfair� This is because the critical point for over�
�ow in the virtual queue is not the same as the critical point for over�ow in the
real queue� Therefore the most likely path to lead to marking by virtq will
be di�erent to the most likely path to lead to over�ow in the real queue� Since
virtq and spsp allocate marks in proportion to how much work each �ow con�
tributes in these di�erent paths� the two algorithms will mark �ows in di�erent
proportions� And since spsp is fair� virtq must be unfair�

The two algorithms will even have di�erent marking frequencies� the virtual
queue is more likely to over�ow than the real queue� so virtq generates more
marks that spsp� However� this is not so clearly an issue of unfairness�

We illustrate this problem in Figure ��� with the same anonymous scenario
as in the last section� The mean arrival rate is ����� and the real service rate
is ����� and to stress the problem we will set � � ���� giving a virtual service
rate of ����	� The �darker� Gaussian source has a much higher mean rate than
the �lighter� periodic source� but a smaller variance� In order for the real queue
to over�ow� both �ows have to put on a burst� and the high variance source
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will put on a bigger burst� So �ows should be marked roughly in proportion
to their variances� The virtual queue has a lower service rate� so a small burst
in addition to the mean rate is sucient to make it over�ow� So in the virtual
queue� mean rates are more important in determining marking ratios�

SPSP VIRTQ

���� �� �� ���� ���� 	�	�

Figure ���� Virtual queues� The left graph shows the most likely path
to lead to over�ow in the real queue� it plots the amount of incoming
work at each timestep� The shading indicates the marks that spsp
would give� The right graph shows the most likely path to lead to
over�ow in the virtual queue	 and the marks that virtq would give�
The scenario is anonymous	 so spsp is perfectly fair	 and it marks
the two �ows equally� but virtq gives the darker source ��� of the
marks� The problem is that over�ow occurs in essentially di�erent
ways	 so the behaviour of the virtual queue is not a good indication
of the behaviour of the real queue�

This is a more subtle problem than that described in Section ������ and while
it is possible to construct scenarios in which it marks totally the wrong �ow� it
does reasonably well in many cases where � is close to one�


���� Random Early Detect

We now consider the Random Early Detect �red� algorithm� Actually� for
convenience� we will look at a version of red in a slotted time model where all
packets are the same size� It may be described as follows� Keep track of the
exponentially weighted queue size� &qt � �qt������&qt��� When this is between
a threshold b and the bu�er size B� mark arriving packets with a probability
which is an increasing piecewise linear function of &qt�

The real algorithm has a mechanism to ensure that marks are allocated
regularly� but for large deviations neither this nor the form of the piecewise
linear function matter� Recall that the large deviations limiting regime has the
number of sources and the capacity of the resource increasing� and this leads to
the probability of over�ow decaying to �� In fact� the probability of reaching
level b � 
 conditional on reaching level b decays to � exponentially in the size
of the system� So while the probability of marking may increase linearly in &qt�
the likelihood of reaching that level decays much faster� So we will only look at
paths leading up to &qt � b� and assume that when this happens packets arriving
in the next timestep are marked independently and randomly� Thereafter the
queue size decreases�

We do not mean to say that the increasing linear function is not important�
We merely claim that it is not as important as � or b� In this particular limiting
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regime only � and b matter� but real life systems are not arbitrarily large and
the other parameters will come into play�

Typical behaviour

Assume that the most likely path to lead to marking leaves the queue empty up
to time �� that in ��� t the queue does not idle� and that at t there are marks�
This assumption is valid for certain sources with positive correlations� such as
fractional Brownian motion with H � �

	 � We will restrict attention to Gaussian
sources� to make the calculations easier� The average queue size at time t when
the input is x is given by

&qt�x� � wT�x� C��

where ws � �� �����t���s� It is easy to �nd the most likely path to marking
now� we simply solve

inf
x��qt�x��b

sup
�

� � x� ��� � � � �
	�

T$��

which is attained at

'x � ��� �b� �C � ���Tw�
$w

wTw
�

Marking happens at critical point �w rather than at 	�� It happens in this way�
the average queue size just reaches b at time t� some packets are marked� and in
the very next timestep the average queue size decreases again� So red marks a
�xed proportion of the packets that arrive at time t�

The behaviour of red is illustrated in Figure ���� We could have chosen
the same anonymous scenario as in the two previous sections� but calculating
the most likely path to lead to marking is dicult for non�Gaussian sources� so
instead we consider the following non�anonymous scenario� A queue of service
rate ��� and bu�er size � serves two trac �ows� One �the darker� sends work
according to a fractional Brownian motion with mean rate ���� variance ���
and Hurst parameter ���� �See Example ��� on page �� for details�� The other
�ow �the lighter� sends an independent amount of work each timestep� normally
distributed with mean ��� and variance �� The red parameters are � � ��� and
b � ���� This � is much larger than is advised by Floyd and Jacobson� but as
we shall show it is fairer to make � large�

The red algorithm falls down in both the ways we have described so far�
First� it only marks packets that arrive after the problem has occurred so it
misses the packets that actually caused the over�ow� Second� its marking is not
representative of over�ow� because marking and over�ow occur in essentially
di�erent ways�

Lin and Morris !�� have described a modi�ed version of red called fred

which is meant to be fairer� In the large deviations limit it works roughly as
follows� When the average queue size &qt reaches the threshold b� whereas red
would mark a sample of all arriving packets� fred only marks or drops packets
from �ows which have more than their fair share of packets in the queue� where
�fair share� means an equal allocation between all �ows of the current average
queue size� In the example of Figure ���� when red starts marking at time ���
most of the work in the queue belongs to the darker �ow� so fred would only
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SPSP RED

���� �� �� ���� ����

Figure ���� How red marks� The left graph shows the most likely
path to lead to over�ow� it plots the amount of incoming work at
each timestep� The shading indicates the marks that spsp would
give� The right graph shows the most likely path to lead to marking
by red	 and indicates how much each �ow is likely to be marked�
Marking and over�ow occur in quite di�erent ways	 and anyway	 red
starts marking too late to catch the guilty packets� In this example	
spsp would give the darker source ��� of marks	 but red gives it
����

drop that �ow�s packets� In other words� in this example the unfairness of red
has been exacerbated�

Setting RED parameters

It is widely accepted that the red parameters must be set to match the trac
characteristics� Feng et al� !�� describe one such scheme� they alter the piece�
wise linear function that determines marking probability� though as we have
noted this will not achieve anything in the large deviations limit�

We have developed enough theory now to tell us at least how � and b should
relate� Recall from Section ��� that the rate functions for marking and dropping
must be equal� if a drop is to be worth a �xed number of marks� The rate
function for marking is just a function IM � IM ��� b�� and we can work out
how to choose � and b to keep IM �xed� or at least we can for a speci�c trac
mix�

This is illustrated in Figure ���� for a queue with service rate ��� fed by an
�rst order autoregressive trac �ow with mean rate �� autoregression coecient
��� and variance ���� There is a tradeo�� the larger � is� the larger b should
be� This is hardly surprising� since if the current queue size is given a large
weighting we should accept fairly large �uctuations in the average queue size�

If one does not know the trac mix then it is natural to set � and b adap�
tively� For example� one could �x � and then adjust b adaptively so that on
average the right number of packets are marked�


���� Reach Overload� Send ECN

The �nal algorithm we will look at is called rose� and we have designed it to
address the pitfalls described so far� It is basically a special case of red with
some minor modi�cations�
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b

� �
�

�

Figure ���� How to set some red parameters� Each line indicates
a family of choices of � and b that lead to the same frequency of
marking	 for a speci�c trac distribution� To change the way the
system responds	 without changing the value of a mark	 � and b

should be changed together along one of these lines�

It is not intended as a concrete proposal� It is simply a demonstration that
it is possible to design algorithms which scale properly to large networks and
which are fair� at least in anonymous trac mixes� and approximately fair in
many others� There are many such algorithms� and engineering judgement is
required in deciding between them� For example� the virtual queue algorithm
described in Section ����� would be fair if the virtual queue scaling factor � was
set adaptively�

The ROSE algorithm

The rose algorithm works as follows� Whenever the queue size exceeds a thresh�
old b� mark everything in the queue� Adjust the threshold b as follows� For every
packet that would be marked by spsp� decrease b by ��� For every packet that is
marked� increase b by �� Here� � is a �xed small quantity� and � is a �xed quan�
tity which indicates how many marks correspond to one drop� �As we discussed
in Section ������ the ECN proposal indicates that one drop should be worth one
mark� But it may be that the whole network can be made more robust if one
mark is only worth a fraction of a drop��

This is rather like red with � � �� with an adaptive mechanism to set b�
and the modi�cation that rather than just marking arriving packets� everything
in the queue is marked as well�

The two pitfalls

To see that rose addresses the issues raised so far� we need to answer two
questions� Does it marks packets that caused over�ow� or does it mark inno�
cent packets that arrived later� Does it mark in essentially the same way that
over�ow occurs�in other words� does marking have the same critical point as
over�ow� The answer to both of these is Yes�

We will deal with the second point �rst� At a large deviations level� the
adaptive algorithm must settle on a value of b equal to the bu�er size� We know
this because each drop is worth � marks� so the rate function for marking is equal
to the rate function for over�ow� and the only value of b that would achieve this
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is b � B� This seems at �rst to be inconsistent with the adaptive mechanism�
which would set b � B� To explain the apparent inconsistency� recall that large
deviations is only concerned with limiting behaviour� This means that while b
will actually �uctuate and be a little smaller than B� this di�erence does not
grow as the network grows� This means that the most likely path to exceed the
threshold b is just the same as the most likely path to over�ow� and therefore
the critical point for rose is the same as that for over�ow� It is now easy to
deal with the �rst point� All the packets that rose marks did indeed contribute
to over�ow� because it marks everything in the bu�er when over�ow occurs�

Fairness of ROSE

Thus rose addresses the problems we have described in the other algorithms�
Not only does it address those problems� but it is also perfectly fair in anonymous
scenarios� and approximately fair in many others�

First� we need to check that it marks in proportion to congestion� It does
indeed mark exactly the number of packets that spsp marks �or a constant
multiple thereof� by construction� Next� we need to see if it marks �ows in the
correct proportion� We consider anonymous scenarios �rst� then non�anonymous
scenarios�

Recall the e�ective bandwidth de�nition of anonymity� that at the critical
point� we treat each �ow as if it were made up of a certain number of copies
of some base �ow P� The number of copies of P that make up a �ow X is
proportional to the e�ective bandwidth of X at the critical point� Now� since
they are identical� each copy of the base �ow will leave the same amount of work
in the queue at the time of over�ow� This means that� under anonymity� we
can treat the amount of work belonging to X caught in the queue at the time of
over�ow as proportional to the e�ective bandwidth of X� In other words� under
anonymity� rose is fair�

When the trac is not anonymous� we have to ask if rose agrees with spsp�
By construction it marks the same number of packets in total� But it does
not always mark �ows in the same proportions as spsp� and one can construct
examples where it does arbitrarily badly by choosing sources with peculiar paths
to over�ow� However� it will agree whenever the sample paths are such that the
contents of the bu�er at over�ow are representative of the work that arrived
during the critical congestion interval� This will often be approximately true�
and there is an important class of scenarios where it is precisely true� large
bu�er asymptotics�

The large bu�er asymptotic was described in Example ���� It refers to the
limiting regime in which the sources and the service rate are �xed and the bu�er
size grows� It used to be a standard tool for estimating over�ow probability�
it has since been superseded by the many sources asymptotic� but it is still a
good approximation for queues with large bu�ers� Importantly for us� it has the
property that the most likely sample paths to over�ow are constant rate�this
is called having linear geodesics� This means that bu�er contents at the time
of over�ow precisely re�ect the arrival rates of the di�erent �ows during the
critical time period� and so rose marks �ows in the same proportion as spsp�
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���
 Summary of marking algorithms

Strictly speaking� all we have found is a collection of negative results� We
have several di�erent de�nitions of fairness� which agree only in certain circum�
stances� so while we can decide if one algorithm is unfair we cannot �rmly say
that another is fair�

And large deviations too only allows us to �nd negative results� Large devi�
ations is a good tool for modelling certain sorts of networks� in which there are
many independent users and correspondingly large amounts of resources and
in which over�ow is rare� All we can decide with our analysis is whether an
algorithm is unfair in this regime�

These tests are enough to decide that most of the algorithms that have been
proposed are unfair� In fact� only a small class of algorithms �including rose�
pass them both� We expect that studying the characteristics of this class will
be of considerable help in designing better marking algorithms�

��� Frequently Asked Questions

A FAQ is a frequently asked �or answered� question� and a list of FAQs and their
answers is the canonical form of Internet document for collecting and storing
information on a given topic� In that spirit� we compare our �ndings to previous
work by listing FAQs�

What modelling assumptions do you make�
We make no assumptions about the nature of the sources� except for some very
minor mathematical restrictions which will be satis�ed by most sources that
average out in the long run� including bursty sources like fractional Brownian
motion� Most importantly� we do not assume that the sources use TCP� Our
de�nition of fairness makes no modelling assumptions at all� The large devi�
ations analysis of marking algorithms assumes that the system is large� with
many independent �ows�

To avoid bias against bursty sources� should not the marking algo
rithm use a weighted average� as RED does�
There are two ideas behind this claim� and they are both wrong� The �rst is
that sources should be marked in proportion to their mean rates� and weighted
averaging is needed to achieve this� But it is not the mean rate that causes
queue over�ow� rather it is the bursts� and so the marking algorithm ought to
penalise bursts� The second idea is that short�term �uctuations in bursty trac
which do not cause over�ow should be accommodated� and the way to achieve
this is to use a weighted average� But there are other ways to achieve this� for
example by increasing the marking threshold b when the trac is bursty� as
rose does�

Since these algorithms mark everyone� will they not lead to synchro
nization and instability�
Many of the algorithms we have suggested mark a group of successive pack�
ets� If the users to whom these packets belong all respond at the same time
by reducing their rate� there might be a much larger decrease in aggregate rate
than is necessary� followed by a collective increase in rate� and so on� This is
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called synchronization� and it makes the network see�saw unstably� But the
general issue of stability is much more complicated than this� and so far there
are only preliminary results� Tan !�� gives cases in which� with reasonable user
behaviour� algorithms similar to spsp are stable� The issue here is that stability
depends on how users behave� If they are reasonable� and do not respond to
marks too suddenly� any decent marking scheme should be stable� If they are
perverse� any marking scheme can be unstable�

How does ROSE scale�
The large deviations underpinning these arguments are designed to work in large
networks� and indeed the larger the network the better the approximation� It
is in small networks that the approximations may break down�

Are there simulation results to support your claims�
We are proposing not merely an improved mechanism but a better de�nition
of fairness� so it would be premature to report simulation results� There are
ongoing experiments !�� ��� �	 to see how users might respond if faced with fair
marking� and anyone with access to the Internet can take part�

How do you make marking fair for users with long round trip times�
This question is based on what we call a social idea of fairness� This says that
certain classes of users� such as those who cannot respond quickly because of
long delays� or even those from troubled social backgrounds� ought to receive
fewer marks because they are less able to compete or deserve more bandwidth�
Our de�nition� which might be called technical fairness� says that users should
be marked in proportion to the impact they have� The issue of social fairness is
a genuine one� but routers are absolutely the wrong part of the network to deal
with it�

How do you account for the fact that the number of marks given can
be wildly di�erent from the number of drops�
To make the objection concrete� we give an example due to Kelly� Suppose there
are two routers� router A is fed by smooth trac �ows� so a small increase in
trac causes a large increase in loss� and router B is fed by �uctuating �ows�
so a small increase in trac does not cause such a large increase in loss� Then
it is reasonable to run A at a lower loss rate than B� for example if the goal is
to minimize loss rate per unit throughput� Marking according to spsp would
encourage this� because A would have a critical timescale that is longer than
that for B� and so more marks would be generated at A� whereas marking in
proportion to loss would mean that A generates fewer marks than B� In general�
marks re�ect marginal costs �and thus how users should respond� rather than
average costs �which are only relevant to the router��

How does your de�nition of fairness compare to maxmin fairness�
The idea of max�min fairness can be traced back to Rawls� and further� He pro�
posed that social and economic inequalities be arranged to the greatest bene�t
of the least advantaged� It is easy to say what this means when considering a
simple allocation of capacity subject to a constraint on the total� and assum�
ing that bene�t is measured simply by mean bandwidth� everyone should be
allocated the same bandwidth� But it is unclear how to extend it to incorpo�
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rate demand for di�erent services� and to cope with random trac �ows�the
objects of study for this thesis�where the idea of mean bandwidth is not very
relevant� The algorithms we have suggested owe more to proportional fairness�
described by Gibbens and Kelly !�� �

How do you enforce responsiveness from unresponsive �ows�
Some router algorithms have been designed to drop packets from �ows that do
not respond to marking� or even from �ows that do not respond as quickly as
TCP does� It is hard to see what else can be done in the Internet today� The
problem with this is that it does not take account of di�erent preferences� some
users might want to pay more so that they do not have to back down� while
others would happily take a smaller share of the bandwidth� In a private in�
tranet� users can be expected to cooperate and so marking should be sucient
incentive� In the Internet� the obvious solution would be to charge a user for
every marked packet he receives� but this sort of pricing is a long way o�� A
more workable solution might be for Internet Service Providers to police trac
�ows� reducing the rate at which the user can send when he receives very many
marked packets� The problem of unresponsiveness should if at all possible be
dealt with at the boundary of a network� close to users� and not in the network
core� See the ECN proposal !�	 for some more discussion of incentives�

How could users be encouraged to respond to marks�
Suppose a user is charged for every marked packet he receives� This is appeal�
ing� since it �ts so well with the economic model of Section ���� Internet Service
Providers could collect charges from users for marked packets� and could in
turn pay upstream network operators according to how many marked packets
they receive� There are problems with this� as with all Internet pricing mecha�
nisms around today� For example� sometimes it should be the sender who pays
rather than the receiver� such as in viewing advertisements� Some users might
also be reluctant to put up with a variable bill� even though most cope well
enough with variable telephone and electricity bills� Even if users demanded
�xed prices� this could be achieved through intermediaries who take on the risk
and charge a premium� just like insurance agents� Key et al� !�� discuss further
the use of marks as a pricing mechanism� and MacKie�Mason and Varian !�	 
discusses usage�based pricing in general�

��� Summary

In this chapter we have sought to de�ne what is meant by marking fairly� taking
into account the average bandwidth and the burstiness of each trac �ow� We
have found several candidate de�nitions of fairness� spsp� eb and �L� from
e�ective bandwidth theory and economics� They all measure resource usage�
but the latter two additionally take into account how the user might behave
when the system changes� and they di�er because they have di�erent models of
how users behave� When the trac mix is what we call anonymous� the three
de�nitions agree� Otherwise� we choose spsp as the most useful de�nition�
because it is intrinsically dicult for routers to model user behaviour�

We have used large deviations to model the behaviour of marking algorithms�
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We have seen that red can be unfair� even in anonymous scenarios� We have
described a variant� called rose� which is fair in anonymous scenarios and ap�
proximately fair in many others�



Glossary

Admission control� In order to keep congestion within �xed bounds� some
networks can decide whether or not to accept a new �ow based on current trac
levels� This is called admission control�

Bandwidth� The bandwidth of a trac �ow is a measure of the rate at which
data is transmitted� measured in bits per second�

Congestion collapse� When there is congestion and packets are dropped�
end�systems typically retransmit the dropped packets� If they do this too sud�
denly they cause more congestion� leading to more drops� This vicious circle is
called congestion collapse� and it was �rst noticed in the Internet in October
�
	� !�� �

Drop� A packet that is discarded inside the network is said to have been
dropped� Packets are dropped when they arrive at a router which has no space
to store them� See page ��

ECN� Explicit Congestion Noti�cation� This is a scheme whereby a router
can mark packets to indicate that it is experiencing congestion� See page �	�

E�ective bandwidth� The e�ective bandwidth of a random trac �ow is a
measure of the impact it has� lying between its mean and peak bandwidth� and
measured in the same units� See page ���

E�ciency� An economic system is said to be Pareto�ecient if there is no
change which would simultaneously make someone better o� and no�one worse
o��

Endsystem� This refers to any sort of device that can generate and receive
Internet trac� Most end�systems are computers� but the term can also cover
telephones� video cameras� and many other appliances�

Externality� An externality is an economic factor that a�ects your welfare
but is under the control of someone else� An external diseconomy is an exter�
nality which detracts from your welfare� Pollution is an example of an external
diseconomy�

FAQ� Frequently Asked Question� Also� a list of such questions�

�	
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Intranet� An intranet is a network which is internal to an organisation but
operates in the same way as the global Internet�

LDP� Large Deviations Principle� A particular type of probability estimate�
See page � for an example and page � for a full de�nition�

Marginal cost� The marginal cost of a good is the cost of producing one
extra unit�

Mark� A mark on a packet is an indication that it has passed through a
congested router� Marks are set by ECN algorithms such as red�

Packet� A packet is the basic unit in which data is sent through the Internet�
See page ��

Pigovian tax� Pigovian taxes� proposed at the beginning of this century
by the economist Pigou� are taxes on externalities� designed to lead to socially
desirable outcomes�

Rate function� A rate function is part of a large deviations principle �LDP��
Informally� we say that an event has rate � if in a system scaled up in a speci�ed
way by factor L� the probability of that event is e��L�

RED� Random Early Detect� This is an algorithm which tells ECN�enabled
routers how to mark packets� See page �
�

RFC� Request for Comments� This is the democratic name given to notes
about the Internet� Speci�cations of the Internet Engineering Taskforce are
published as RFCs� For a full list� see http���www�rfc�editor�org��

Router� A router or switch is a device that routes packets� See page ��

Streaming tra�c� For certain sorts of trac� such as live audio� packets are
transmitted as soon as they are generated� This is called streaming�

Switch� See Router�

TCP� Transmission Control Protocol� This is an algorithm that end�systems
can use to control the rate at which they send packets� so as not to cause too
much congestion� See page �
�
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