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Abstract We consider a switched network (i.e. a queueing network in which there are con-
straints on which queues may be served simultaneously), in a state of overload. We analyse
the behaviour of two scheduling algorithms for multihop switched networks: a generalized
version of max-weight, and the α-fair policy. We show that queue sizes grow linearly with
time, under either algorithm, and we characterize the growth rates. We use this charac-
terization to demonstrate examples of congestion collapse, i.e. cases in which throughput
drops as the switched network becomes more overloaded. We further show that the loss of
throughput can be made arbitrarily small by the max-weight algorithm with weight function
f(q) = qα as α → 0.

Keywords fluid model, switch, bandwidth sharing, max-weight, overload

1 Introduction

By switched network we mean a collection of queues with restrictions on which queues may
be served simultaneously. For example, consider a collection of four queues 1, 2, 3 and 4,
operating in slotted time, and suppose that in each timeslot it is required that the offered
service be either “Serve 1 unit of work each from queues 1 and 2” or “Serve 1 unit of work
each from queues 2, 3 and 4”. Switched networks have been used to model input-queued
switches in Internet routers [5], multihop wireless networks [16], and bandwidth-sharing by
the Internet’s congestion control mechanism [1], and they can be used to model processing
of jobs in data centres. Our general model is specified in Section 2, and some of these
applications are described further in Section 4.
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In this paper we analyse the behaviour of a switched network in overload, that is, when
new work arrives at such a rate that queue sizes cannot be prevented from growing over
time. A networked system has a certain capacity, and it is subject to varying load, and
it may sometimes become overloaded—either because it is too expensive to build so much
capacity that overload never occurs, or because it is too hard to predict at design time
what future load will look like. For example, a web data centre may be underloaded most
days, and show very good performance, but sometimes it may face a surge in demand which
overloads the system. We would like ‘graceful failure’ under overload. For example, a classic
M/M/1 queue fails gracefully, in the sense that throughput is always as high as it can be
(namely, the minimum of the arrival rate and the service rate), regardless of the arrival rate.
Engineers are however aware of many systems which exhibit ‘congestion collapse’, meaning
that when arrival rates increase beyond a certain threshold, throughput actually drops1. In
Section 4 we illustrate congestion collapse for some of the applications mentioned above.

The policy for deciding which queues get service, in a switched network, is called the
scheduling policy. A natural question is ‘Are there scheduling policies that avoid the prob-
lem of congestion collapse?’ Our analysis in this paper is of two scheduling policies: a gen-
eralization of the max-weight policy of Tassiulas and Ephremides [16] (also known as the
backpressure policy), and the α-fair policy described by Mo and Walrand [13] with α ≥ 1,
in both single-hop and multihop switched networks. The α-fair policy has previously only
been described for single-hop networks; our extension to multihop is novel. These policies
are specified in Section 2. We show in Section 4.4 that the max-weight policy can nearly
prevent congestion collapse, in the sense that it achieves throughput that is arbitrarily close
to optimal, regardless of load. This is achieved by weighting the queues using the weight
function f(q) = qα for α sufficiently close to 0. It is remarkable that a single policy is near
optimal for all switched networks of the general type considered in this paper (though the
choice of α does depend on the number of queues).

Formally, our analysis is within the framework of fluid modelling. In this framework, one
starts with a stochastic queueing model, and obtains limiting dynamics under a fluid scaling.
The ‘fluid model’ describes these limiting dynamics. One then proves properties of the fluid
model. Finally, results about the fluid model can be straightforwardly translated back into
statements about rate-level behaviour of the original stochastic system. The focus of this
paper is exclusively on analysis of the fluid model. The relationship between the stochastic
model and the fluid model has already been established by Kelly and Williams [11] and
Gromoll and Williams [8] for the bandwidth-sharing model of Internet congestion control
running α-fair scheduling, and by Dai and Prabhakar [5] and others [3, 4, 15] for queueing
networks running max-weight. We will briefly describe some stochastic models in Section 4,
and their fluid limits, but for all the rest of the paper we will work exclusively with fluid
models.

The main technical result of this paper is the following. If q(t) is the vector of queue
sizes at time t, under a fluid model, then q(t)/t → q̂ as t → ∞ for a particular vector q̂;
if the queues start empty then q(t)/t = q̂ for all t > 0. We identify q̂ as the solution to
a certain optimization problem. Technically this result holds for all arrival rates, not just
overload, but q̂ is only non-zero in overload; if the system is underloaded the result implies

1 By ‘congestion collapse’ we mean some loss of throughput—this is how the term is used for example in
[12]. We do not necessarily mean a near-complete loss of throughput, as in the Internet’s 1986 congestion
collapse [10].
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weak stability, cf. [5]. We state this main result in Section 3, and the proofs are given in
sections 5 and 6 for the maxweight and α-fair policies respectively. A distinctive feature of
our presentation is that we work with a single unified model for both policies, and the proof
of the main theorem is the same for both policies. However, the proof is based on Lyapunov
techniques, and the Lyapunov functions are different for the two policies, which is why we
divide the proofs into two sections.

1.1 Related work

Much of the theoretical work on switched networks, starting with [16], has studied stability.
The stability region for a switched network is the set of arrival rates for which an omniscient
scheduler can keep the network stable. An algorithm which is stable for all arrival rates
in the interior of the stability region is said to have 100% throughput. The focus of much
theoretical work has been on finding scheduling algorithms with 100% throughput.

Recently there have been attempts to understand the behaviour of overloaded systems,
i.e. systems where the arrival rates lie outside the stability region.

Harrison and Zeevi [9] studied staffing levels in call centers in the presence of varying
demand. In their model, the arrival rate of calls each day is random, and the manager
has to decide on staffing levels before that day’s arrival rate is revealed. Then the day’s
actual arrival rate is revealed, and the manager finds out if the call center is overloaded or
underloaded; he/she then solves a linear programming problem, in which the objective is to
maximize revenue, the input data is the day’s arrival rate, and the optimization variables
are the fraction of effort each staff member devotes to each type of call. This optimization
is called the ‘static planning problem’.

Georgiadis and Tassiulas [7] investigated overload in a sensor network, modelled as a
single-commodity flow problem. They take the arrival rate as fixed and given. They pose a
static planning problem with the objective of maximizing throughput, and another static
planning problem with the objective of maximizing the time until one of the queues fills its
buffer, or equivalently of finding the most balanced set of queue growth rates. They show
that for their specific network model, the two objectives can be met simultaneously. They
also describe an iterative distributed algorithm, inspired by max-weight, for computing the
solution to the static planning problem.

Egorova et al [6] studied overload in a model for bandwidth sharing in the Internet. In this
model, the scheduling decisions are made ‘myopically’ (by the α-fair scheduling algorithm)
without any knowledge of the arrival rates—unlike the static planning problem, in which
the arrival rates are treated as known input variables. The appeal of myopic algorithms is
that (one hopes) they respond well to fluctuations in arrival rates over a range of timescales.
The authors show that q(t) = tq̂ is a feasible fluid model solution, where q̂ is the solution
to a certain optimization problem. Further description of their model and results, and how
it relates to our work, is given in Section 4.5. What is fascinating about this result is that
the scheduling algorithm can be thought of as ‘implying’ a certain optimization problem, in
contrast to the earlier work which took the static planning problem as its starting point.

Subsequent to our work, Chan et al [2] have studied overload in a single-hop switched
network running max-weight with weight function f(q) = q and a constant vector of queue
weights. They prove a special case of our main result, but they use direct techniques whereas
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we use Lyapunov functions. They investigate how the queue weights may be chosen, in order
to achieve a balanced set of queue growth rates.

1.2 Notation

Let Z = {0, 1, . . . , }, let R be the set of real numbers, let R+ = {x ∈ R : x ≥ 0}, and let
R>0 = {x ∈ R : x > 0}. Let N be the number of queues; we will reserve bold letters for
vectors in R

N , for example x = [xn]1≤n≤N . Let |x| = maxn |xn|. Let 0 be the vector of all
0s and 1 the vector of all 1s. For vectors u and v let

u·v =
N
∑

n=1

unvn, uv = [unvn]1≤n≤N

and let matrix multiplication take precedence over dot product so that

u·Av =

N
∑

n=1

un

(

N
∑

m=1

Anmvm

)

.

Let AT be the transpose of matrix A. If f is a function R → R then interpret f(x) compo-
nentwise. Thus, for example,

max
(

Awqα, 0
)

·π =
∑

n

max
(

∑

m

Anmwmqαm, 0
)

πn.

Inequalities between vectors are interpreted componentwise. For S ⊂ R
N , let 〈S〉 be the

convex hull of S. Let 1{·} be the indicator function, 1true = 1 and 1false = 0. Let AC denote
the space of absolutely continuous functions R+ → R.

2 Model

We now define the general queueing dynamics for a multihop switched network, and the
dynamics for the two scheduling policies that we analyse in this paper. We specify the
dynamics in terms of fluid models; the relationship to certain stochastic queueing networks
is described in Section 4.

Consider a collection of N queues, and a finite set S ⊂ R
N
+ of service actions, also called

schedules. Assume that every queue is serviceable, i.e. for every n there exists some π ∈ S
such that πn > 0.

For a multihop network let R ∈ {0, 1}N×N be the routing matrix, Rmn = 1 if work
served from queue m is sent to queue n, and Rmn = 0 otherwise; if Rmn = 0 for all n then
work served from queue m departs the system. (Note that R = 0 corresponds to a single-hop
network, i.e. all work leaves the system as soon as it is served.) We will assume throughout
that there is no routing choice, i.e. that

∑

n Rmn ∈ {0, 1} for each m. We will also assume
throughout that routing is acyclic, i.e. that work served from some queue n never returns to
queue n. This implies that the inverse ~R = (I −RT)−1 exists; by considering the expansion
~R = I+RT+(RT)2+· · · it is clear that ~Rmn ∈ {0, 1} for allm and n, and that ~Rmn = 1 if the
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route for work injected at queue n passes throughm, and 0 otherwise. For multihop networks
we will additionally assume that the scheduler always has the option of not sending work
downstream at every individual queue. Formally, we assume that S satisfies the following:
if π ∈ S is an allowed schedule, and ρ ∈ R

N
+ is some other vector, then

if ρn ∈ {0, πn} for all n then ρ ∈ S. (1)

Definition 1 (Queueing dynamics) Let λ ∈ R
N
+ . Let ACK denote the space of absolutely

continuous functions R+ → R
K , for K ∈ N. Say that the triple q(·) ∈ ACN , z(·) ∈ ACN ,

s(·) ∈ AC|S| is a fluid model solution for the queueing dynamics with arrival rate vector λ

if s(0) = 0, z(0) = 0, and the following equations are satisfied for all t:

q(t) = q(0) + λt− (I −RT)
∑

π

sπ(t)π + z(t) (2)

∑

π∈S

sπ(t) = t (3)

each sπ(·) and zn(·) is increasing (not necessarily strictly increasing) (4)

for all n and almost all t, żn(t) = 0 if qn(t) > 0 (5)

z(t) ≤
∑

π
sπ(t)π (6)

Here q(t) represents the vector of queue sizes at time t, z(t) represents the cumulative
idleness up to time t, and sπ(t) represents the total amount of time spent on schedule π up
to time t. The definition calls for these quantities to be absolutely continuous, which implies
they are differentiable at almost all t. Instants at which they are all differentiable are called
regular timepoints.

We next define fluid model solutions for two scheduling policies. It is most convenient
to write these policies in terms of σ(t) =

∑

π
ṡπ(t)π, the vector of instantaneous service

rates at time t. Whenever we write σ(t), we assume that t is a regular timepoint. We will
refer simply to a “fluid model solution” when the context makes it clear whether we are
referring to the queueing dynamics or to one or other of the two scheduling policies. With
a small abuse of notation, say that q(·) is a fluid model solution if there exist z(·) ∈ ACN

and s(·) ∈ AC|S| such that (q, z, s) is a fluid model solution.

Definition 2 (Max-weight policy) Let w ∈ R
N
>0, and let f : R+ → R+ be a differentiable

and strictly increasing function for which

f(0) = 0 (7)

and for any q ∈ R
N
+ and π ∈ S, with M(q) = maxρ∈S(I −R)wf(q) · ρ,

(I −R)wf(q) · π = M(q) =⇒ (I −R)wf(κq) · π = M(κq) for all κ ∈ R+. (8)

Say that (q, z, s) is a fluid model solution for the max-weight scheduling policy with weight
function f and weights w if (q, z, s) is a fluid model solution for the queueing dynamics and
in addition for all regular timepoints t

σ(t) ∈ argmax
π∈〈S〉

wf(q) · (I −RT)π. (9)
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Note that the maximum is attained at some extreme point π ∈ S, since the quantity to
be maximized is linear in π. Note also that the quantity to be maximized can be rewritten
as (I −R)wf(q) · π, i.e.

∑

n

{

[

wnf(qn(t))− wmf(qm(t))
]

πn if m is immediately downstream of n

wnf(qn(t))πn if work served from n leaves the system.

The term wnf(qn(t)) may be thought of as the pressure to serve queue n, and the term
−wmf(qm(t)) as the pressure not to add work to the downstream queue by serving queue
n, which is why the max-weight policy is also known as backpressure.

Equation (8) says that the optimal choice of schedule is invariant when the queue sizes
are rescaled. An example of a suitable weight function is f(x) = xα for some α > 0, since
this is guaranteed to satisfy (8) for any S. An example of an unsuitable weight function is
f(x) = log(1 + x); it is not hard to find sets S such that (8) is not true with this f .

Definition 3 (α-fair policy) Let α > 0, and let w ∈ R
N
>0. Say that (q, z, s) is a fluid

model solution for the α-fair policy with weights w if (q, z, s) is a fluid model solution for
the queueing dynamics and in addition for all t

σ(t) ∈ argmax
ρ∈〈S〉 :

(I−RT)ρ≥0

wqα · gα
(

(I −RT)ρ
)

(10)

where

gα(η) =







η1−α

1− α
if α 6= 1

log(η) if α = 1

with the added convention that qαngα(0) is equal to 0 if qn = 0 or if α < 1, and equal to −∞
if qn > 0 and α ≥ 1.

It is shown in Section 6, Lemma 4, that the maximum is attained. Unlike the max-weight
case however the maximum is not generally attained at an extreme point of 〈S〉.

The optimization problem can be written more verbosely as follows: Given ρ ∈ 〈S〉 let
ρup = RTρ; then ρupn is the sum of ρm over the queues m directly upstream of n. Among all
ρ ∈ 〈S〉 such that ρn ≥ ρupn for all n, select one to maximize

∑

n

wnq
α
ngα(ρn − ρupn ).

The constraint ρn ≥ ρupn means that scheduler is not permitted to accumulate work in the
middle of the network.

3 Main result

The main result of this paper is that queue sizes grow roughly like q(t) ≈ tq̂ where q̂ is the
solution to a certain optimization problem, a different problem for each of the two scheduling
policies we study. In this section we state the two optimization problems, and then the main
result.
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Definition 4 (Max-weight growth rates) Consider a switched network with arrival rate
λ ∈ R

N
+ running the max-weight policy, with weight function f and weights w ∈ R

N
>0. Let q̂

be the unique solution to the following optimization problem, which we call ALGP. (Lemma
1 in Section 5 shows that q̂ is unique.) The optimization problem is

minimize L(r) =
∑

n

wn

∫ rn

0

f(x) dx over r ∈ FEAS

where

FEAS =
{

r ∈ R
N
+ : r ≥ λ− (I −RT)ρ for some ρ ∈ 〈S〉

}

.

Definition 5 (α-fair growth rates) Consider a switched network with arrival rates λ ∈
R

N
+ , running the α-fair policy, with α > 0 and weights w ∈ R

N
>0. Let q̂ be the unique solution

to the following optimization problem, which we call DEP. (Lemma 4 in Section 6 shows
that it is unique.) The optimization problem is

minimize H(q) =
∑

n

wn

∫ qn

0

(λn

x
− 1
)−α

dx over q ∈ FEAS

with the convention that the objective is ∞ if there is some n with qn > λn, and terms with
λn = qn = 0 contribute 0 to the sum. The feasible set is2

FEAS =
{

r ∈ R
N
+ : r ≥ λ− (I −RT)ρ for some ρ ∈ 〈S〉,

and rn = 0 for all queues n where λn = 0
}

.

We now state the main result. There are two versions, one for max-weight and one for
α-fair.

Theorem 1 (Max-weight version) Consider a switched network running the max-weight
policy. Let q(t) be any fluid model solution, and let q̂ be as in Definition 4. Then q(t)/t → q̂
as t → ∞. Furthermore, for any c > 0 the convergence is uniform over the set of fluid model
solutions for which |q(0)| ≤ c. Furthermore, if q(0) = 0 then q(t) = tq̂.

Theorem 2 (α-fair version) Consider a switched network running the α-fair policy. Let
q(t) be any fluid model solution satisfying

qn(0) = 0 if λn = 0, (11)

and let q̂ be as in Definition 5. Then q(t)/t → q̂ as t → ∞. Furthermore, for any c > 0
the convergence is uniform over the set of fluid model solutions satisfying (11) for which
|q(0)| ≤ c. Furthermore, if q(0) = 0 then q(t) = tq̂.

2 We have deliberately reused the name FEAS, even though it is defined differently for maxweight and
for α-fair. We will also reuse the name ALGP for an optimization problem used in the proofs for the α-fair
policy, similar to ALGP in Definition 4. We are reusing names like this since there are substantial parts of
the proofs which are nearly identical for maxweight and for α-fair, differing only in which version of FEAS
and ALGP they refer to.
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A

B

C

D

E

10/sec

10/sec

£6 jobs,
λ1 = 2η

£5 jobs,
λ2 = 3η

£4 jobs,
λ3 = η

Fig. 1 Nodes A, B and C have lots of spare capacity, but nodes D and E can only serve at rate 10
jobs per second. The arrival rates are λ = (2η, 3η, η). When the system becomes overloaded, at η ≥ 2, the
revenue-maximizing action is to discard some of the jobs worth £5 in favour of jobs worth £4 at node E.

4 Applications

In this section we give several applications of our main result. We start in Section 4.1 with
a stylized toy model of a web data center, to illustrate congestion collapse and to show
how revenue can be maximized by using max-weight scheduling with appropriate weights.
In Section 4.2 we summarize the model of an input-queued switch introduced by Dai and
Prabhakar [5], and in Section 4.3 give explicit calculations for congestion collapse in a 2× 2
switch running max-weight. In Section 4.4 we generalize these two examples, and show
that max-weight gets arbitrarily close to optimal throughput for any switched network, by
chosing an appropriate weight function. Finally in Section 4.5 we describe the model for
α-fair sharing of bandwidth in the Internet.

4.1 Congestion collapse in a data center

A data center consists of a network of machines, some of them running web server software,
some running database software. A page request from an outside user is first directed to a
web server machine, which may then trigger internal requests to several database machines,
each of which may itself trigger further internal requests. In order to provide a complete
response to the page request, all of these internal requests need to be served.

Figure 1 depicts a toy example of a data center which handles three types of page request,
each of which needs to be processed at a web server (A, B or C) and also at database
machines (D and E). It is easy to see how congestion collapse might occur: if both database
machines are overloaded, then machine E could expend service on £5 jobs only for them
to be dropped when they reach machine D. That service would have been better spent on
£4 jobs. A real example of a distributed database exhibiting congestion collapse is given in
[12].

In a data center, some requests may be more valuable than others, and so maximizing
revenue may be a more natural goal than maximizing throughput. Suppose in this example
that the data center earns £6 when it completely serves a request labelled £6, i.e. when the
request has been served by both A and D, and similarly for the other request classes. Instead
of congestion collapse, the concern is now revenue collapse. What scheduling algorithms at
D and E can avoid this?

To be concrete, suppose A, B and C forward requests immediately, and let there be four
queues, one for each request class at each database machine, call them qD5, qD6, qE4 and
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α = 1

α = 4

η

max-weight α
}

(a) data center

1.8

1.6

1.4

0 1

2

2 3

}

α-fair

max-weight α

λ44

(b) input-queued switch

Fig. 2 Two examples of congestion collapse. Figure (a) shows revenue as a function of load, for the data
center example in Section 4.1, when running the max-weight algorithm with weight function f(q) = qα.
Figure (b) shows throughput as a function of load, for the 2 × 2 input-queued switch in Section 4.3, when
running either α-fair scheduling or max-weight scheduling with weight function f(q) = qα.

qE5. Revenue earned by time t is equal to the total potential revenue brought by arriving
requests, minus revenue not earned because requests have not yet left the system. Therefore,
in order to maximize revenue, we want to

minimize 6 qD6 + 5 (qE5 + qD5) + 4 qE4. (12)

Suppose we run max-weight with weight function f(q) = qα, α > 0, and let the weight of
each queue be the revenue associated with requests in that queue. Under this policy, machine
E, for example, when it is ready to serve a new request, will serve qE5 if 5qαE5−5qαD5 > 4qαE4,
it will serve qE4 if the inequality is reversed, and its choice is arbitrary if the two are equal.
Theorem 1 says that when the system is overloaded, the queue sizes grow like q(t) = tq̂,
where q̂ solves the optimization problem

minimize
1

1 + α

(

6 r1+α
D6 + 5 (r1+α

E5 + r1+α
D5 ) + 4 r1+α

E4

)

over all feasible growth rates r.

Figure 2(a) shows revenue rate as a function of η, for three different values of α, obtained by
numerically solving this optimization. The highest possible revenue rate is £100, achievable
for η ≥ 10.

If we choose α ≈ 0, then the objective function that defines q̂ is very close to the equation
for lost revenue, equation (12), so the max-weight policy is very close to revenue-maximizing.
(This is made precise in Section 4.4.) In effect, information about downstream congestion
is propagated upstream by means of queue sizes, telling upstream nodes to hold back work
which won’t be able to be served downstream. The max-weight policy does not need to
estimate arrival rates in order to achieve this: its actions are based purely on queue size.

4.2 Fluid model for an input-queued switch

Dai and Prabhakar [5] introduced a fluid model for input-queued switches running max-
weight. A switch is the core of an Internet router, and the input-queued architecture is
commercially popular. We will now describe the stochastic model, and their fluid model,
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and explain how it relates to ours, and how to interpret our main result in the original
stochastic system.

Consider a collection of N = M2 queues operating in slotted time; in this application it
is most natural to consider the queue lengths to be a matrix in R

M×M
+ rather than a vector

in R
N
+ . At the beginning of each timeslot, a (random) integer number of packets arrive,

and there may be arrivals to any queue. Then a service action π is chosen from the set
S ⊂ {0, 1}M×M consisting of all M ! permutation matrices. During the timeslot, π is the
offered service to each queue, and served work leaves the system at the end of the timeslot.
The natural questions are what scheduling policy should be used, and what the resulting
performance of the system is. Dai and Prabhakar [5] analyse the stability of two different
policies, one of which is the max-weight policy with weights w = 1 and weight function
f(q) = q, which is our focus here.

Let Q(t) be the matrix of queue sizes at timeslot t ∈ N, let Sπ(t) be the total number
of timeslots up to and including t in which action π has been chosen, and let D(t) be the
number of departures from each queue by the end of timeslot t. Extend these to be continuous
functions of t ∈ R+ by polygonalization, and define fluid-scaled versions qr(t) = Q(rt)/r
etc. Any weak limit as r → ∞ of these processes is called a fluid limit. It is shown in [5]
that every fluid limit satisfies the following fluid model:

q(t) = q(0) + λt− d(t) ≥ 0

ḋij(t) =
∑

π∈S

πij ṡπ(t), if qij(t) > 0

sπ(·) is non-decreasing, and
∑

π∈S

sπ(t) = t

ṡπ(t) = 0 if π ·q(t) < max
ρ∈S

ρ·q(t).

By rewriting these equations in terms of the cumulative idleness process z(t) rather than the
cumulative departure process d(t) =

∑

π
sπ(t)π − z(t), and adding the natural constraint

ḋ(t) ≥ 0, we obtain our fluid model equations (2)–(6) and (9), with routing matrix R = 0.
The general fluid equations, including multihop and arbitrary weight functions, but restricted
to weights w = 1, are described by e.g. [15].

Theorem 1 says that, if q(0) = 0, then the unique solution to the fluid model equations
is q(t) = tq̂. Therefore every fluid limit point of the sequence Q(r)/r is equal to q̂, hence
Q(r)/r → q̂ almost surely.

To our knowledge, no one has studied input-queued switches running the α-fair algorithm.
We conjecture that the α-fair fluid dynamics are obtained as the fluid limit of the following
algorithm: (1) each timeslot t, compute σ(t) ∈ 〈S〉 to solve (10), then (2) write σ(t) as a
convex combination of elements of S, σ(t) =

∑

π
xππ, then (3) pick some service action at

random, with the probability of choosing π equal to xπ. The service actions at each timeslot
must be chosen independently, conditional on the queue sizes.

4.3 Congestion collapse in a 2× 2 input-queued switch

Here is a worked example demonstrating congestion collapse in an input-queued switch.
We have already seen congestion collapse in the multihop data center example, but this
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example shows that congestion collapse can also happen in a single-hop network. In essence,
the scheduler is ‘tricked’ into choosing a bad combination of queues to serve.

Let the queue sizes of the four queues in a 2×2 input-queued switch be q11, q12, q21, q22.
The two possible service actions are “serve queues (11) and (22)” and “serve queues (12)
and (21)”. The max-weight policy is to serve queues (11) and (22) if q11 + q22 > q12 + q21,
to serve queues (12) and (21) if q11 + q22 < q12 + q21, and to choose randomly if there is
equality. Let the arrival rate vector be

λ =

(

0.7 0.3
0.3 λ22

)

.

Theorem 1 says that queue sizes grow linearly, q(t) = tq̂ where q̂ is specified in Definition
4. Therefore the cumulative departure process is d(t) = λt − q(t) = (λ − q̂)t and so the
throughput, i.e. the instantaneous net departure rate, is

throughput = ḋ(t)·1 = (λ− q̂)·1.

After calculating q̂ as specified in Definition 4, we find

throughput =











1.3 + λ22 if λ22 ≤ 0.7

2− (λ22 − 0.7)/3 if 0.7 ≤ λ22 ≤ 1.6

1.7 if λ22 ≥ 1.6.

This shows that an increase in offered load beyond λ22 > 0.7 can lead to a loss in throughput.
Suppose instead we use the generalized max-weight policy with weight function f(q) = qα,
α > 0. In other words, we use the policy “serve queues (11) and (22) if qα11 + qα22 > qα12 + qα21,
and serve queues (12) and (21) if qα11 + qα22 < qα12 + qα21”. Now the throughput is

throughput =











1.3 + λ22 if λ22 ≤ 0.7

2− (λ22 − 0.7)/(1 + 21/α) if 0.7 ≤ λ22 ≤ 1 + 0.3× 21/α

1.7 if λ22 ≥ 1 + 0.3× 21/α.

This shows that, for any λ22 > 0.7, the throughput increases to its maximum possible value,
namely 2, as α decreases to 0.

The α-fair policy described in the previous section is to choose the action “serve queues
(11) and (22)” with probability

(qα11 + qα22)
1/α

(qα11 + qα22)
1/α + (qα12 + qα21)

1/α
.

The throughput for this algorithm can be calculated explicitly, with some work. As with
maxweight, throughput increases up to λ22 = 0.7 and thereafter it decreases, converging to
1.7 as λ22 → ∞. Throughputs for both algorithms, for α ∈ {.4, 1, 4}, are shown in Figure
2(b).
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4.4 Near-optimality of max-weight policy

In both examples, the data center in Section 4.1 and the input-queued switch in Section 4.3,
we saw that the max-weight policy with weight function f(q) = qα has useful properties
as α → 0. We now make a general statement about near-optimality of max-weight for any
switched network.

Theorem 3 Consider a switched network with N queues, and let v ∈ R
N
+ be some vector of

weights. Let the queues start empty. Pick α > 0, and let q(t) be the fluid model solution for
the max-weight algorithm with weight function f(q) = qα and weight vector w = v1+α. Also,
let r(t) be a fluid model solution for the queueing dynamics, for any scheduling algorithm.
Then

v·q(t) ≤ Nα/(1+α)v·r(t).

The constant factorNα/(1+α) can be made arbitrarily close to 1 by choosing α sufficiently
small. In Section 4.1, maximum revenue is achieved by a scheduling policy that minimizes
v·r(t), where vn is the revenue earned when a job in queue n eventually leaves the network. In
Section 4.3, maximum throughput is achieved by a scheduling policy that minimizes 1·r(t).
Thus, in both these examples, max-weight scheduling (with the above choice of weights, and
with α sufficiently small) is near-optimal.

Proof First we argue that r(t)/t ∈ FEAS, where FEAS is given in Definition 4. From (2), and
using the fact that z(·) starts at 0 and is increasing by (4), r(t) ≥ λt− (I −RT)

∑

π
πsπ(t).

Dividing by t, r(t)/t ≥ λt− (I −RT)ρ where ρ =
∑

π
πsπ(t)/t, and ρ ∈ 〈S〉 by (3). Hence

r(t)/t ∈ FEAS.
Now, by Theorem 1, q(t) = tq̂ where q̂ solves the optimization problem

minimize w ·r1+α over r ∈ FEAS .

Since r(t)/t ∈ FEAS, we deduce

w ·
(

q(t)/t
)1+α

≤ w ·
(

r(t)/t
)1+α

. (13)

It is a standard result about norms, from Hölder’s inequality and Jensen’s inequality, that
for any x ∈ R

N
+ and β > 1,

1

N1−1/β
x·1 ≤ (xβ ·1)1/β ≤ x·1.

Multipling each side of (13) by t1+α and applying the standard result about norms with

β = 1 + α, first with xn = w
1/(1+α)
n qn(t) then with xn = w

1/(1+α)
n rn(t),

1

Nα/(1+α)
w1/(1+α) ·q(t) ≤

(

w ·q(t)1+α
)

1/(1+α)

≤
(

w ·r(t)1+α
)

1/(1+α) ≤ w1/(1+α) ·r(t).

Rewriting in terms of v = w1/(1+α) we obtain the result. ut
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4.5 Fluid model and congestion collapse for bandwidth sharing

Roberts and Massoulie [14] introduced a model for bandwidth-sharing in the Internet. They
took there to be a finite set J of links, and for each link j an associated capacity Cj ≥ 0, and
a finite set R = {r1, . . . , rN} of routes where each route rn is a subset of J . At every instant
in time t, there is a certain number xn(t) of active flows on link n. These flows receive service
at a certain rate, which depends only on the number of active flows: let σ∗

n(x)/xn be the
service rate for each flow on route n when x gives the number of active flows on each link. We
can think of the Internet’s congestion control policy (TCP) as selecting a particular service
rate vector σ∗(x) that satisfies the capacity constraint Aσ∗(x) ≤ C where Ajn = 1j∈rn . Let
S be the set of extreme points of {ρ ∈ R

N
+ : Aρ ≤ C}, of which there are finitely many;

then the constraint can be written σ∗(x) ∈ 〈S〉.
Kelly and Williams [11] introduced fluid model equations for this system for the case

that flow sizes have an exponential distribution, say with mean 1/µn on route n, new flows
arrive on route rn as a Poisson process λnµn, and where the service rate vector is chosen
to be α-fair. If we rewrite their equations in terms of qn(t) = xn(t)/µn, we obtain (2)–(6)
and (10). The bandwidth-sharing model corresponds to a single-hop switched network, i.e.
R = 0. The fluid model has been generalized to allow for general distributions for flow size
[8], but this is a level of generality which we do not address in this paper.

Egorova et al [6] have studied overload in the bandwidth-sharing model, under the α-fair
policy. They allow general flow size distributions. They formulate an optimization problem,
‘Problem Q’, upon which we based our optimization problem DEP in Definition 5. They
prove that this optimization problem has a unique solution q̂, and that q(t) = q̂t is a feasible
solution to the fluid model dynamics, and that it is the unique fluid model solution with
linear trajectories (but they do not prove that it is the unique fluid model solution whereas
we do).

We have investigated various examples numerically and seen congestion collapse, as well
as convergence to optimal throughput as α → 0. However, we do not have any general results
along the lines of Theorem 3.

5 Proofs for the max-weight policy

The proof consists of Lemma 1 showing that q̂ is unique, Lemma 2 showing that q(t)/t ∈
FEAS for any fluid model solution q(·), Lemma 3 showing that the function L(·) appearing
in ALGP is a Lyapunov function, and finally a proof of the main theorem.

Lemma 1 For the network specified in Definition 4, ALGP has a unique solution.

Proof The set FEAS is certainly non-empty; pick any r∗ ∈ FEAS. The solution to ALGP
must be at least as good as r∗, so we may as well restrict the optimization to be over D =
{r ∈ FEAS : L(r) ≤ L(r∗)}. Since f is≥ 0 and strictly increasing, L(r∗) ≤ N |r∗|f

(

|r∗|
)

< ∞
and L(r) → ∞ as |r| → ∞; therefore D is bounded. It is easy to check that D is also closed
and convex. The objective function is strictly convex, since f is ≥ 0 and strictly increasing
and w > 0 componentwise. Since the optimization is of a strictly convex function over a
closed, convex, bounded domain, there is a unique optimum. ut
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Lemma 2 For any fluid model solution of the queue dynamics with arrival rate λ, q(t)/t ∈
FEAS for all t > 0.

Proof Let q(·) be any fluid model solution. From (2), and using the fact that z(·) is increasing
by (4) and starts at 0, q(t) ≥ λt−(I−RT)

∑

π
πsπ(t). Dividing by t, q(t)/t ≥ λt−(I−RT)ρ

where ρ =
∑

π
πsπ(t)/t, and ρ ∈ 〈S〉 by (3). ut

Lemma 3 For the network specified in Definition 4,

t
d

dt
L
(q(t)

t

)

≤ L(q̂)− L
(q(t)

t

)

≤ 0.

Proof For the first inequality, the drift we want to bound is

t
d

dt
L
(q(t)

t

)

= wf
(q(t)

t

)

·
(dq(t)

dt
−

q(t)

t

)

.

For each queue n, either qn(t) > 0 in which case q̇n(t) = λn − [(I − RT)σ(t)]n by (2) and
(5), or qn(t) = 0 in which case f(qn(t)/t) = 0 by (7), hence

t
d

dt
L
(q(t)

t

)

= wf
(q(t)

t

)

·
(

λ− (I −RT)σ(t)−
q(t)

t

)

. (14)

By the max-weight property (9) and the scale-invariance property (8),

wf
(q(t)

t

)

· (I −RT)σ(t) = max
π∈S

wf
(q(t)

t

)

· (I −RT)π.

Now, the optimum in ALGP is attained at q̂ ∈ FEAS, hence for some ρ̂ ∈ 〈S〉

q̂ ≥ λ − (I −RT)ρ̂. (15)

This ρ̂ is a feasible choice for the scheduling policy, while σ(t) is the optimal choice, so

wf
(q(t)

t

)

· (I −RT)σ(t) ≥ wf
(q(t)

t

)

· (I −RT)ρ̂.

Substituting this into (14), and using (15),

t
d

dt
L
(q(t)

t

)

≤ wf
(q(t)

t

)

·
(

λ− (I −RT)ρ̂−
q(t)

t

)

≤ wf
(q(t)

t

)

·
(

q̂−
q(t)

t

)

.

Finally, by convexity of L(·),

L(q̂) ≥ L
(q(t)

t

)

+∇L
(q(t)

t

)

·
(

q̂−
q(t)

t

)

= L
(q(t)

t

)

+wf
(q(t)

t

)

·
(

q̂−
q(t)

t

)

and rearranging this gives the desired result.
The second inequality in the statement of the theorem is straightforward, from the ob-

servation that q(t)/t ∈ FEAS by Lemma 2 and q̂ is optimal for ALGP. ut
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We can now prove the main result.

Proof of Theorem 1, first two claims. The first claim of the theorem, that q(t)/t → q̂, follows
trivially from the second claim, that convergence is uniform: simply set c = |q(0)|. For the
second claim, pick c > 0 and ε > 0, and define

qmax = 1
(

c+ |λ|+max
π∈S

|RTπ|
)

Dc =
{

r ∈ R
N
+ : L(r) ≤ L(qmax) and r ∈ FEAS

}

Iε =
{

r ∈ R
N
+ : |r− q̂| < ε

}

Kε,c = inf
{

L(r)− L(q̂) : r ∈ Dc \ Iε
}

Kε,c =
{

r ∈ R
N
+ : L(r)− L(q̂) < Kε,c

}

Hε,c = exp
(

L(qmax)/Kε,c

)

.

Let q(·) be any fluid model solution with |q(0)| < c. We will show in a moment that
q(t)/t enters Kε,c within time Hε,c. By Lemma 3, L(q(t)/t) is non-increasing, therefore
q(t)/t ∈ Kε,c for all times t ≥ Hε,c. By construction of Kε,c, if r ∈ Kε,c then either r ∈ Iε or
r 6∈ Dc (or both). We will show in a moment that q(t)/t ∈ Dc for all t ≥ 1. Thus q(t)/t ∈ Iε
for all t ≥ max(Hε,c, 1). Since Hε,c does not depend on q(·), we have established uniform
convergence. We have two things left to show:

Proof that q(t)/t ∈ Dc for t ≥ 1. From (2) and (6), q(1) ≤ q(0) + λ + RT
∑

π
sπ(1)π

and this is ≤ qmax. Since L is increasing componentwise, L(q(1)/1) = L(q(1)) ≤ L(qmax).
By Lemma 3, L(q(t)/t) is non-increasing hence L(q(t)/t) ≤ L(qmax) for all t ≥ 1. Finally,
Lemma 2 shows that q(t)/t ∈ FEAS for all t > 0. Hence the claimed result.

Proof that q(t)/t enters Kε,c within time Hε,c. Observe that (i) L(qmax) is finite; (ii) Dc is
bounded because L is convex and increasing in each component, and it is closed because L
is continuous and the feasibility constraint in FEAS is continuous, hence Dc is compact; (iii)
the infimum in Kε,c is of a continuous function over a compact set, hence it is attained say
at some r̂, (iv) L(r̂) > L(q̂) because r̂ is feasible for ALGP and q̂ is the unique optimum,
hence Kε,c > 0.

Now, consider `(u) = L(q(eu)/eu) for u ≥ 0. Using Lemma 3 and the chain rule,

d

du
`(u) ≤ −

{

L
(q(eu)

eu

)

− L(q̂)
}

≤ 0.

So `(·) is non-increasing, and d`(u)/du ≤ −Kε,c for all the time that q(eu)/eu 6∈ Kε,c.
We know from the previous claim that `(0) = L(q(1)) ≤ L(qmax), and it is clear by
definition that g(u) ≥ 0 for all u. Hence q(eu)/eu must enter Kε,c within the interval
u ∈ [0, L(qmax)/Kε,c], hence the claimed result.

Proof of Theorem 1, third claim. By Theorem 1, given ε > 0 there is some time Hε such
that |q(t)/t− q̂| < ε for all t ≥ Hε and all fluid model solutions q(·) with q(0) = 0.

Now let q(·) be any such fluid model solution, and suppose q(t) 6= tq̂ for some t > 0, say
|q(t0)/t0 − q̂| = ε > 0. Consider the rescaled sample path q̃(t) = q(tκ)/κ where κ = t0/Hε:
this is chosen so that

∣

∣

∣

q̃(Hε)

Hε
− q̂

∣

∣

∣
= ε. (16)
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Let z(·) and s(·) be idleness and service processes associated with the fluid model solution
q(·), and consider rescaled versions of these: z̃(t) = z(κt)/κ and s̃(t) = s(κt)/t. These all
satisfy the fluid model equations, hence q̃ is a fluid model solution. Furthermore q̃(0) =
q(0) = 0, so by choice of Hε it must be that |q̃(t)/t− q̂| < ε for all t ≥ Hε. This contradicts
(16), hence the supposition that q(t0)/t0 6= q̂ is false. ut

6 Proofs for the α-fair policy

We begin with a basic lemma which shows that the two optimization problems we have
defined for α-fair scheduling, namely the optimization problem which specifies σ(t) and the
optimization problem which specifies q̂, make sense.

Lemma 4 i. The problem DEP in Definition 5 has a unique solution, call it q̂. Further-
more, q̂ ≤ λ, and q̂n < λn if λn > 0.

ii. In the definition of the α-fair policy, the maximum in (10) is attained.

Proof of (i). We will first argue that there exists ρ∗ ∈ 〈S〉 such that (I − RT)ρ∗ > 0
componentwise. We have two arguments, one for single-hop networks and one for multihop.

First the case of a single-hop network. We assumed that every queue is serviceable,
so for each queue n we can pick πn ∈ S such that πn

n > 0. Let ρ∗ = N−1
∑

n π
n; then

ρ∗ = (I −RT)ρ∗ > 0 componentwise since each πn is ≥ 0 and R = 0.
In the case of a multihop network, define πn instead by πn

k = ε1n=k. We assumed that
every queue is serviceable, and that S is monotone, hence there exists some ε > 0 such that
πn ∈ 〈S〉 for every n. Now, for each n let ρn be the average of πm over all m such that
~Rmn = 1, i.e. over all queues at or downstream of n; then ρn ∈ 〈S〉 by convexity of 〈S〉.
Furthermore, we find after a little algebra that [(I − RT)ρn]k = ε1k=n/(dn + 1) where dn
is the number of queues downstream of n. Finally let ρ∗ = N−1

∑

n ρ
n; this is in 〈S〉 by

convexity, and [(I −RT)ρ∗]k = εN−1/(dk + 1) > 0 for all k.
In each case, both single-hop and multihop, we have found some ρ∗ ∈ 〈S〉 such that

(I −RT)ρ∗ > 0 componentwise. Now let r∗ = max(λ − (I −RT)ρ∗, 0); clearly r∗ ∈ FEAS,
and by construction either r∗n < λn or λn = 0, hence H(r∗) < ∞. The solution to DEP must
be at least as good as r∗, so we may as well restrict the domain of DEP to r ∈ FEAS such
that H(r) ≤ H(r∗), which implies in particular that r ≤ λ. Since H is convex, this gives us
a closed bounded convex set. And H is strictly convex and finite on it. Hence DEP has a
unique solution, call it q̂, and q̂ ≤ λ.

In order to prove that q̂n < λn on every queue with λn > 0, i.e. that every queue with
arrivals is being served a little, we will first construct an alternative q = q̂ − εξ such that
q ∈ FEAS and qn < λn on every queue with λn > 0. Since q̂ ∈ FEAS, we can write
q̂ = λ − (I − RT)ρ̂ + ẑ for some ρ̂ ∈ 〈S〉 and ẑ ∈ R

N
+ . Now pick some small ε > 0, let

ρ = (1− ε)ρ̂+ ερ∗, and consider

q = λ − (I −RT)ρ+ (1− ε)ẑ+ εz = q̂− ε
(

ẑ− (I −RT)ρ̂+ (I −RT)ρ∗ − z
)

where

zn =

{

[(

ẑ− (I −RT)ρ̂+ (I −RT)ρ∗
)+]

n
if q̂n = 0

0 otherwise.
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Is q ∈ FEAS? It is clear that q ≥ λ − (I − RT)ρ and ρ ∈ 〈S〉. Also, the z term and
a sufficiently small choice of ε guarantee q ≥ 0. Also, if λn = 0 then q̂n = 0 because
q̂ ∈ FEAS, hence [(I −RT)ρ̂]n = ẑn, thus qn = −ε([(I −RT)ρ∗]n − zn); using the definition
of zn and the fact that (I − RT)ρ∗ > 0 componentwise, we get qn = 0. Thus q ∈ FEAS.
Furthermore, a similar argument shows that if q̂n = λn > 0 then qn < λn, i.e. ξn > 0.

Now consider how the objective function for DEP changes as we move along the trajectory
from q̂ in direction −ξ:

dH(q̂− εξ)

dε
= −

∑

n:λn>0

wnξn

( λn

q̂n − εηn
− 1
)−α

Suppose the optimal solution to DEP, q̂, has some queues with q̂n = λn > 0. Since ξn > 0
for all these queues, dH/dε = −∞ at ε = 0. But we chose ξ so that q̂ − εξ ∈ FEAS for
sufficiently small ε, thus we obtain a contradiction to the optimality of q̂. We conclude that
q̂n < λn on all queues with λn > 0.

Proof of (ii). Write the objective function for the optimization in (10) as G((I − RT)ρ)
where

G(η) = wqα · gα(η).

We found above a ρ∗ ∈ 〈S〉 such that (I −RT)ρ∗ > 0 componentwise, hence G((I −RT)ρ∗)
is finite. The solution to the optimization must be at least as good as ρ∗, so we might as
well restrict the domain to

{

ρ ∈ 〈S〉 : (I −RT)ρ ≥ 0 and G(ρ) ≥ G(ρ∗)
}

;

on this domain the objective is finite. Furthermore the domain is bounded, and it is convex
since G is concave. Since we are maximizing a finite concave function over a convex bounded
domain, the maximum is attained. ut

We now give three lemmas which mirror those used for the max-weight proof. Lemma 5
defines an optimization problem ALGP which is very similar to ALGP for max-weight, and
shows that q̂ is its unique soluion (cf. Lemma 1). Unlike with max-weight, this version of
ALGP has q̂ appearing in the objective function, so it is not helpful for defining q̂, which
is why we used DEP instead. Lemma 6 shows that q(t)/t ∈ FEAS for any fluid model
solution q(·) (cf. Lemma 2). Lemma 7 shows that the function L(·) appearing in ALGP
is a Lyapunov function (cf. Lemma 3). This function L is closely related to the Lyapunov
function introduced by Bonald and Massoulie [1] to prove stability of the bandwidth-sharing
model. The difference is that we have added an extra term involving q̂n to accommodate
overload.

Finally, the proof of the main theorem for α-fair, Theorem 2, is identical to the proof of
the main theorem for max-weight given in Section 5. The only difference is that appeals to
lemmas 1, 2 and 3 should be replaced by appeals to lemmas 5, 6 and 7 respectively. Note
that the terms FEAS, ALGP, L and q̂, which appear in the proof of the main theorem, now
have different definitions.

It remains to state and prove the three lemmas about α-fair.
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Lemma 5 Given q̂ from Definition 5, define ALGP to be the following optimization prob-
lem:

minimize L(r) =
1

1 + α

∑

n:λn>0

wnr
1+α
n (λn − q̂n)

−α over r ∈ FEAS . (17)

(By Lemma 4(i), q̂n < λn for all queues n where λn > 0, so the objective function makes
sense.) Then ALGP has a unique solution, which is q̂.

Proof First, observe that that ALGP has a unique minimum. This is because the feasible set
is convex and closed; and L(r) → ∞ as |r| → ∞, so we may as well restrict the optimization
to a bounded subset of FEAS; and L is strictly convex.

The feasible set FEAS is defined by a finite number of linear constraints: that r ≥ 0,
that rn = 0 for queues n where λn = 0, and that r ≥ q for some q in the convex polytope
{λ − (I − RT)ρ : ρ ∈ 〈S〉}; this last polytope has finitely many faces because S is finite.
Now consider the Lagrangian for the optimization problem DEP. At the optimum, there
exist dual variables η̂ such that the complementary slackness conditions are satisfied: for all
queues n where λn > 0,

wn

(λn

q̂n
− 1
)−α

=
∑

i

Aniη̂i

where i indexes the constraints of FEAS, and the matrix A indicates which constraints
involve which of the qn. We know that q̂n < λn, hence the ηi are all finite. Now consider the
Lagrangian for the optimization problem ALGP. The complementary slackness conditions
are: for all queues n where λn > 0,

wn

( rn
λn − q̂n

)α

=
∑

i

Aniηi.

The feasible set is the same for ALGP as for DEP, so the constraint matrix A is the same.
These conditions are satisfied by setting rn = q̂n and ηi = η̂i. Hence q̂ solves ALGP. ut

Lemma 6 For any fluid model solution q(·) of the α-fair policy such that qn(0) = 0 for all
queues n where λn = 0, q(t)/t ∈ FEAS for all t > 0.

Proof Lemma 2 shows that q(t)/t satisfies the first constraint of FEAS. For the second
constraint: by differentiating (2), q̇(t) = λ − (I − RT)σ(t) + ż(t). The definition of the
α-fair policy, (10), says that (I − RT)σ(t) ≥ 0. Thus, for any queue n for which λn = 0,
q̇n(t) ≤ żn(t). But whenever qn(t) > 0, equation (5) tells us that żn(t) = 0. Since qn(·) is
absolutely continuous, and q̇n(t) < 0 if qn(t) > 0, we conclude qn(t) = 0 for all t. ut

Lemma 7 For the network specified in Definition 5, and with L(·) as defined in Lemma 5,

t
d

dt
L
(q(t)

t

)

≤ L(q̂)− L
(q(t)

t

)

≤ 0.

Proof For the first inequality, the drift we want to bound is

t
d

dt
L
(q(t)

t

)

=
∑

n:λn>0

wn

( qn(t)/t

λn − q̂n

)α(dqn(t)

dt
−

qn(t)

t

)

.
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To simplify the notation, we shall (for this proof only) suppress indexes n for which λn = 0
from the dot product. With this convention, the drift we want to bound is

= w
(q(t)/t

λ− q̂

)α

·
(dq(t)

dt
−

q(t)

t

)

= w
(q(t)/t

λ− q̂

)α

·
(

λ− (I −RT)σ(t)−
q(t)

t

)

(18)

by (2) and (5). We will shortly show that

w
( q(t)

λ− q̂

)α

· (I −RT)σ(t) ≥ w
( q(t)

λ− q̂

)α

·
(

λ− q̂
)

. (19)

Multiplying each side by t−α and substituting this into (18),

t
d

dt
L
(q(t)

t

)

≤ w
(q(t)/t

λ− q̂

)α

·
(

q̂−
q(t)

t

)

.

Finally, by convexity of L(·),

L(q̂) ≥ L
(q(t)

t

)

+∇L
(q(t)

t

)

·
(

q̂−
q(t)

t

)

= L
(q(t)

t

)

+w
(q(t)/t

λ − q̂

)α

·
(

q̂−
q(t)

t

)

and rearranging this gives the desired result. It remains to prove (19). We have two separate
arguments, one for single-hop and one for multihop networks.

Proof of (19) for single-hop network. Define

G(η) = wq(t)α · gα(η)

where gα was given in the definition of the α-fair policy. The policy chooses σ(t) to maximize
G(ρ) over all ρ ∈ 〈S〉. (Note that our notation in this proof suppresses those queues with
λn = 0, and by Lemma 6 these queues have qn(t) = 0, and the α-fair policy gives zero weight
to empty queues. Thus the special notation in this proof does not cause any problems.)

Observe that G is concave over η ≥ 0; and σ(t) ≥ 0 and λ − q̂ ≥ 0 by Lemma 4(i);
hence

G
(

σ(t)
)

≤ G(λ − q̂) +∇G(λ − q̂) ·
(

σ(t)− (λ− q̂)
)

.

Rearranging, and writing out ∇G explicitly,

w
( q(t)

λ− q̂

)α

·
(

σ(t)− (λ − q̂)
)

≥ G
(

σ(t)
)

−G(λ− q̂).

Since q̂ ∈ FEAS there exists some ρ̂ ∈ 〈S〉 such that q̂ ≥ λ − ρ̂. Since G is increasing
componentwise, and since σ(t) is chosen to maximize G and ρ̂ is a feasible choice,

G
(

σ(t)
)

−G(λ− q̂) ≥ G
(

σ(t)
)

−G(ρ̂) ≥ 0.

This proves (19) for a single-hop network.
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Proof of (19) for multihop network. We first argue that q̂ = λ−(I−RT)ρ̂ for some ρ̂ ∈ 〈S〉.
The constraint that q̂ ∈ FEAS requires q̂ ≥ λ − (I − RT)ρ for some ρ ∈ 〈S〉, and Lemma
4(i) shows that q̂ ≤ λ. Recalling that ~R = (I − RT)−1 is non-negative, 0 ≤ ~R(λ − q̂) ≤ ρ.
By monotonicity, ~R(λ − q̂) = ρ̂ for some ρ̂ ∈ 〈S〉, hence q̂ = λ − (I −RT)ρ̂.

Now, consider the choice made by the α-fair policy at time t: it chooses σ(t) to maximize
G
(

(I−RT)ρ
)

over all ρ ∈ 〈S〉 such that (I−RT)ρ ≥ 0. Our choice ρ̂ satisfies this constraint.
Using concavity of G and optimality of σ(t) as in the single-hop case, we obtain

w
( q(t)

(I −RT)ρ̂

)α

·
(

(I −RT)σ(t)− (I −RT)ρ̂
)

≥ G
(

(I −RT)σ(t)
)

−G
(

(I −RT)ρ̂
)

≥ 0.

Rearranging this inequality yields (19) for a multihop network. This completes the proof.

Second inequality. The second inequality in Lemma 7 is straightforward, just as in Lemma
3. ut

7 Discussion

In this paper, we have studied fluid models of a switched network in overload, under the
max-weight and α-fair algorithms. We have shown that queue sizes grow linearly in time,
and characterized the growth rates.

One might ask what the purpose is of studying overload in the way we have. Any real
system has limited buffers, so queues will eventually fill up. So what is the relevance in
proving, as we have in this paper, that queue sizes grow linearly as time tends to infinity?

One response is to extend the work to incorporate impatient users, who leave the system
after a certain random abandonment time. An heuristic analysis has been proposed [6], for
α-fair scheduling in the bandwidth-sharing model, but it has not been formally proved.

Another response is to try to use our results to help design discard policies. This might be
useful for example in a data center, where queues contain requests and there is no mechanism
for customers to remove requests once they have entered the system. But the system does not
actually need to keep all unfinished requests in its queues: it could choose to discard requests
at rate q̂, where q̂ is the vector of queue growth rates from Theorem 1, while keeping count
of all requests (served plus discarded) in a virtual queue, and use the max-weight scheduling
rule based on virtual queue sizes rather than real queues. In this way the virtual queues
would grow like tq̂, but the actual queues could be kept small. For this scheme to be useful
in practice, one needs to strike a balance between letting the virtual queues grow (since this
is the learning mechanism by which the network adapts itself to the current arrival rates and
averages out random bursts in arrivals), and making the virtual queues ‘forget’ (in order to
adapt quickly when arrival rates change). We are investigating this in an ongoing work.

Finally, there seem to be deep links between fluid limits in overload, and large deviations
performance analysis in underload. Specifically, Venkataramanan and Lin [17] have analysed
a class of switched networks running the max-weight policy, and obtained a large deviations
principle. Their rate function involves the optimization problem from Definition 4. One
might expect there to be a link between large deviations and overload, in essence because
large deviations asks the question “What is the most likely overload arrival rate that will
lead to queue sizes exceeding a certain threshold?” and our analysis asks “Given overload
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arrival rates, at what rate do queue sizes grow?” In some sense, if a scheduling algorithm
behaves well in overload, then it will require sustained high arrival rates to cause overflow,
so the rate function should be large, which suggests that average queue sizes should be small
in the stable regime. Much more work is needed before we understand these connections.
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