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Abstract

Consider a switch which queues traffic from many independent input
flows. We show that in the large deviations limiting regime in which
the number of inputs increases and the service rate and buffer size are
increased in proportion, the statistical characteristics of a flow are es-
sentially unchanged by passage through the switch. This significantly
simplifies the analysis of networks of switches. It means that each traffic
flow in a network can be assigned an effective bandwidth, independent of
the other flows, and the behaviour of any switch in the network depends
only on the effective bandwidths of the flows using it.

Keywords. Effective bandwidths, feedforward networks, large devia-
tions, decoupling bandwidths, output of a switch, many sources.

1 Introduction

A switch is a device that routes traffic. A switch has several input flows of
traffic, each of which is routed to a specified destination; and inside the switch,
work from all of the inputs is queued together. Switches are the building blocks
of modern telecommunications networks.

The behaviour of isolated switches has been much studied. The theory
of Large Deviations can be used to estimate the probability that the queue
overflows, to study different queueing regimes, and to characterize the input
flows.

In this paper, we study networks of switches. The fundamental result is that,
under the many sources limiting regime, the large deviations characteristics of
a flow of traffic are not changed by passing through a switch. This means
that the techniques for analysing isolated switches can be applied inductively
to networks. It also means that it is useful to talk about the characteristics of a
type of traffic, without bothering about how many switches the flow has passed
through or what other flows it has interacted with.

This work was carried out under a Research Studentship from the UK Engineering and
Physical Sciences Research Council.
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The theory of Large Deviations is concerned with limiting regimes, and it
is the choice of limiting regime which makes possible such clean results for
networks. In the many sources limiting regime studied here, the number of
independent inputs to each switch increases, and the buffer size per input and
service rate per input stay fixed. Such a regime is well-suited to studying modern
high-speed telecommunications networks, in which switches typically have many
inputs but only a small buffer, and the cell loss probability is required to be
very small.

These results may be interpreted in terms of effective bandwidths, an intuitive
and appealing way of viewing switches as resources. A flow entering a switch has
effective bandwidth « if it has the same impact on the switch as would a flow of
constant rate «; the effective bandwidth of the flow is a function which depends
on the operating point of the switch (see Courcoubetis, Siris and Stamoulis
[2] for an account of this dependence). The theory of effective bandwidths at
isolated switches started a decade ago with a paper by Hui [7]. The results
proved here show that the effective bandwidth function for the output flow is
the same as for the input flow: so a flow has the same effective bandwidth
function through the entire network.

The rest of this paper is in four sections. Section 2 describes the large
deviations behaviour of an isolated switch. Section 3 proves the fundamental
result, that the statistical characteristics of a flow are not changed by passing
through a switch. Section 4 presents this result in the language of effective
bandwidths. Section 5 considers limitations and extensions of these results, and
compares them to results for another common limiting regime.

2 An Isolated Switch

This section introduces the large deviations theory used to describe the be-
haviour of an isolated switch. It summarises relevant results from Wischik [17].
For an introduction to large deviations, and definitions of the terms used here,
see Dembo and Zeitouni [5]. We will content ourselves with explaining what is
meant by a large deviations principle.

A sequence of random variables X in a Hausdorff space X with Borel o-
algebra B is said to satisfy a large deviations principle (LDP) with good rate
function I if for any B € B,

. o1 L
— < —
xlené'o I(X) hLm inf —logP(X*~ € B)

1
< limsup —logP(X* € B) < — inf I(X),
Loso L z€B

where I : X — Rt U {0} has compact level sets. If X is a space of processes,
this is called a sample path LDP.

The starting point is to give conditions under which a sample path large
deviations principle for the average of independent processes holds. From the
sample path LDP, it is easy to deduce LDPs for the amount of work queued
in the switch and for many other quantities of interest in queueing theory.
Essentially, it gives a complete characterization of a process, as far as the large
deviations queueing theorist is concerned. It will be shown in Section 3 that if
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the input flows satisfy the conditions for a sample path LDP to hold, then the
output flows also satisfy a sample path LDP.

The Sample Path LDP

First, the notation. We will be concerned with the space A of real-valued
processes indexed by the natural numbers. Throughout this paper, ¢ will denote
a natural number. Denote a process in X' by X (0, 00) or X, and its truncation to
the set {1...t} by X(0,¢]. Denote by X; the value of the process at time ¢, and
by X (0, t] the cumulative process X (0, ] = 22:1 X;, with X(0,0] = 0. Consider
a sequence of processes X”. Think of X’ as the average of L independent
processes each distributed like X (£).

Under the following conditions, X” satisfies the sample path LDP stated
in Theorem 1 below. Details of the proof may be found in Wischik [17], as
well as several examples including long-range dependent processes. The proof
works by finding an LDP for finite truncations X*(0, ] using the Giirtner-Ellis
theorem, extending this to & equipped with the projective limit topology using
the Dawson-Gértner theorem, and then strengthening the topology using the
Inverse Contraction theorem. These steps are similar to those used by O’Connell
[13] who finds a sample path LDP under a different limiting regime.

ConpITION 1 (Finite-time characteristics) For 0 € R!, define
1
AF(6) = 7 logEexp (L6 - XE(0,1]).

Assume that for each t and @, the limiting moment generating function

A:(0) = lim AF(0)
L—oo
erists as an extended real number, and that the origin belongs to the interior
of the effective domain of A¢, and that A; is an essentially smooth, lower-
semicontinuous function.

ConpITION 2 (Large timescale characteristics) A scaling function is a func-
tion v : N — R for which v(t)/logt — oo. For some scaling function v, define
the scaled cumulant moment generating function

AL (D) = %Af(levu)/t)

for 8 € R, where 1 is the constant vector of ones. From Condition 1, we know
that for each t there is an open neighbourhood of the origin in which the limit

A¢(6) = lim AL(9)

L—oo

exists. Assume that there is an open neighbourhood of the origin in which those
limits and the limit

A(6) = lim A,(6)

t— o0

exist uniformly in 6.
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We also know from Condition 1 that for § sufficiently small, the limit AL (6)—
Ai(0) — 0 is uniform as L — co. Assume that for 0 sufficiently small the limit

u(t)

logt

(A4®) - n(6)) = 0

is uniform in 6 as t, L — oo.

DEFINITION 3 (Stability) Define the mean rate A of XL to be the derivative
A'(0). Say that XU is stationary if the limiting moment generating functions

Ay correspond to a stationary process. We will also use these terms to describe
AtL. If XL is stationary, X\ is given by \ = %A;(Bl) at 8 =0 for all t.

THEOREM 1 (Sample Path LDP)
Suppose XL satisfies Conditions 1 and 2. Then for any p greater than its mean
rate, XL satisfy a LDP on the space

0,t
X, = {x e X y <u eventually}

equipped with the uniform topology

x(0, ]
t

’

Il = sup ‘
>0
with good rate function

I(x) = sup sup 0 -x(0,t] — A(0).
t>0 9eR?

The sample path LDP can be used to generate LDPs for a wide range of
queueing problems using the Contraction Principle. This says that if f is a
continuous function on X,,, then f(X%) satisfies an LDP with good rate function
I(y) = inf{I(x) : x € &}, f(x) = y}. Wischik [17] uses this to study standard
queues, likely sample paths to overflow, and priority queues. For the purposes
of this paper, we will mainly be interested in standard queues with finite buffers,
described in the next section.

The Queueing Model

Consider a standard first-in-first-out finite-buffer queue. Define Q)(x) to be the
amount of work in the queue at time 0 when fed with input z; at time —¢ and
served at a constant service rate C. Let B be the buffer size. Any work arriving
when the queue is full is lost. We will be concerned with the behaviour of a
queue fed with input process X%, the average of L independent processes.

To be concrete, let us assume that we are interested in the probability that
the queue overflows. The following theorem gives a large deviations estimate for
this event. Wischik [17] shows how it may be derived by contracting the sample
path LDP. It is also possible to derive it directly from the above assumptions,
as in Courcoubetis and Weber [3]. Duffield and Botvich [6] have proved a
similar result for queues with infinite buffers, as have Simonian and Guibert
[16] for the special case of Markov modulated fluid traffic. If we can show
that the output process from a queue satisfies the above assumptions, we can
immediately estimate the probability of overflow in a downstream queue.
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THEOREM 2 (Buffer Overflow) If X% satisfies Conditions 1 and 2, is sta-
tionary, and has mean rate strictly less than C, then the event that the queue
overflows has rate

irtlf sup (B + Ct) — A;(01).
o

In a sense, though, it does not matter what the downstream queueing regime
is: because for a wide range of queueing regimes there are similar results which
can be derived from the sample path LDP. That is why it is so useful.

To analyse the output of a switch, we will need another large deviations
result: an estimate for the probability that the queue is empty. If the queue is
empty at the beginning and end of an interval (and does not overflow during the
interval) then the amount of work leaving the queue in that interval is exactly
the amount of work entering the queue. As usual, the following lemma can be
proved by contracting the sample path LDP. It has also been proved directly by
Courcoubetis and Weber, and Duffield and Botvich have proved a similar result
for queues with infinite buffers.

LEMMA 3 (Buffer Empties) If X* satisfies Conditions 1 and 2, is stationary,
and has mean rate strictly less than C, then the event that the queue is non-
empty has large deviations upper bound

I =supbfC — A,(01).
9

This section has stressed the usefulness of the sample path LDP in analysing
the behaviour of isolated queues. It has also proposed a step in understanding
networks of switches: show that if the inputs to a switch satisfy the conditions
for the sample path LDP, then the outputs also satisfy a sample path LDP. This
will be proved in the following section.

3 Switch outputs, decoupling, and networks

In this section, we show that in feedforward networks of queues with a mixture
of traffic flows, under the many sources limiting regime, the large deviations
characteristics of a flow are the same at all points along its route. This makes
it easy to analyse such networks. First, we prove the fundamental result: that
for a single switch with many independent inputs of the same type, the large
deviations characteristics of an output are the same as those of an input.

3.1 The Output of a Switch

Consider the queueing model from the previous section, in which the total input
X% to queue L is the average of L independent identically distributed input pro-
cess. Let X(X) be a typical input process, and XZ) the corresponding output.
The generating function AtL for the aggregate input is therefore

AL(0) = logEexp (0 - XF)).

Similarly, the moment generating function for the aggregate of independent
copies of a typical output is

AL(0) = logEexp (@ - X1)),
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We consider this aggregate because, in our large deviations analysis, it is the
natural way to describe the behaviour of a single output.

Let AtL satisfy Conditions 1 and 2, and be stationary with mean rate strictly
less than the service rate. Let the limiting moment generating functions be A;.
We will show that the output moment generating function AtL also satisfies a
sample path LDP, with the same limiting moment generating functions A;.

The key observation is that the probability that the queue is empty over
a fixed interval tends to 1, and so the probability that the input and output
processes are identical over that interval tends to 1 also. The key result is
Theorem 4, which says that over a fixed interval there is not only convergence
in probability, but also convergence of the moment generating functions. This
shows that AL satisfies Condition 1, which is all that is needed to establish a
sample path LDP for the output over a fixed interval.

To obtain the full LDP of Theorem 1, we would like to show that AL satisfies
Condition 2, which is a technical condition on the uniformity of convergence.
In fact that condition is not satisfied, and we have not been able to establish
Theorem 1 for the output. This is not actually a problem. A sample path
LDP still holds, under the weak queue topology defined below. This topology
is weaker than the uniform topology, but as noted in Wischik [17] it is strong
enough to obtain all the results in that paper for queues with finite buffers,
including Theorem 2 and Lemma 3. The sample path LDP is shown in Theorem
5.

The output process is stable in the same sense as the input process: that is,
it does not exceed the mean rate in the long run. This is shown in Lemma 6.

THEOREM 4 (Finite-time characteristics of the output)
If the input X(I) satisfies Conditions 1 and 2, and is stationary with mean rate
strictly less than C, then the output X (L) satisfies Condition 1, with the same
limiting moment generating function as X)_ In other words,

Llim log Eexp(0 - XH)(0,1]) = Ay(8).

Proof. First note that X(£)(0,] < X(1)(0,t + | B/C]], since any work arriving
before —|B/C/|, even if it finds the queue full, must have left by time 0. In
what follows, we drop the |-] notation.

For fixed t, the collection {exp(@ - X(£)(0,#])} is uniformly integrable, since
0 < 0-X1)(0,¢] < max|0;| X )(0,t+B/C], and X)(0, t+ B/C] is LP-bounded
for some p > 1 (because the limiting moment generating function exists, by
Condition 1).

For any 1 < s < t, ]P(XSFL) # XSFL)) is bounded by the probability that the
queue is non-empty at either s — 1 or s. By Theorem 2, this tends to 0. So
exp(6 - X1)(0,1]) — exp(8 - X(1)(0,¢]) converges to 0 in probability.

Thus Eexp (8 - X(£)(0,t]) — Eexp(0 - X(£)(0,]) — 0, and taking logarithms
gives the result. O

DEFINITION 4 (Weak queue topology) Define the weak queue topology wq
on X by the metric

dxy) = Q00 - Q(y)| + 3 ke (1)
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and d(x,y) = o0 if Q(x) =00 or Q(y) = oco.

THEOREM 5 (Large timescale characteristics of the output)

If the input XL satisfies Conditions 1 and 2, and is stationary with mean rate
strictly less than C, then the output X&) satisfies satisfies an LDP in (X, wq)
with good rate function I.

Proof. First, by the Dawson-Gértner theorem for projective limits (see [5] Theo-
rem 4.6.1), the finite time LDPs of Theorem 4 can be extended to the full space
X equipped with the projective limit topology, with good rate function I. The
projective limit topology corresponds to pointwise convergence of sequences,
and can be made into a metric space with the metric given by the second term
in (1). Denote this topology by p.

We want to strengthen this LDP from (X,p) to (X, wq). To do this we
will use the Inverse Contraction Principle ([5] Theorem 4.2.4). Since wq is
stronger than p, the identity map from (X, wq) to (X,p) is continuous. And
X (1) satisfies an LDP in (X, p) with rate function I. So if X(%) is exponentially
tight in (X, wq) then it satisfies an LDP in (X, wq) with the same rate function,
and that rate function is good.

It remains to show that X&) is exponentially tight in (X, wq): in other
words that there exist compact sets K, in (X, wq) such that

lim limsuplogP(X¥) ¢ K,,) = —o0. (2)

a— 00 L—o00o

Let 11 be the mean rate of the X%, let d; = \/logt/v(t), and choose the sets

Ka = {X :0 < % < /1’+adt+B/C}-

First, to show that K, is compact. Since X is a metric space, it suffices
to show that it is sequentially compact. So let x* be a sequence of processes.
Since the T-dimensional truncation of K, is compact in R, the intersection
K, is compact under the projective topology. That is, there is a subsequence
x/ (k) which converges pointwise, say to x. It remains to show that x/ — x
under the weak queue topology. But if x € K, there exists a to such that for
t > tp, z(0,¢]/t < C, and this tp can be chosen independently of x. Therefore
the queue size is just Q(x7) = sup,;, #7(0,t] — Ct, which converges because the
xJ converge pointwise. Thus K, is compact.

Next, to show the equation (2). Since X(5)(0,¢] < X£)(0,t+ B/C], the left
hand side is bounded above by the expression in the statement of [17] Lemma
5, which is there shown to equal —oco. O

LEMMA 6 (Output stability) If the input X1) satisfies Conditions 1 and 2,
and is stationary with mean rate strictly less than C, then for any u greater
than the mean rate, the output process X5 satisfies a sample path LDP in X,
equipped with the weak queue topology, with good rate function I.

Proof. We want to restrict the LDP of Theorem 5 to X,. By [5] Lemma 4.1.5.
it suffices to show that I(x) = oo if x ¢ X, and that P(X* € X,) = 1. The
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proof of the first is identical to [17] Theorem 6. For the second, that theorem
also shows that for e sufficiently small, P(X%(0,t]/t < p — € eventually) = 1,
and since XZ(0,#] < X%(0,t + B/C], we obtain the result. O

3.2 Traffic Mixes

In the last section we assumed that the aggregate input X” to the switch was
the average of L independent identically distributed input processes. This was
used in two ways. First, it gave a large deviations estimate for the probability
that the queue is non-empty. Second, it let us describe a typical input using the
moment generating function for the aggregate, AtL .

We can still estimate the probability that the queue is non-empty and de-
scribe a typical input, even when the aggregate input is not made up of indepen-
dent identically distributed flows. Let YZ be the aggregate input, and let X (%)
be the single input we are interested in. Define the moment generating functions
ME(0) = LlogEexp(0 - YE) and A[(0) = logEexp (6 - X(2)). Suppose that
M and A satisfy Conditions 1 and 2, and are stationary, and that the mean
rate of the aggregate input is less than the service rate. Then M gives a large
deviations estimate for the event that the queue is non-empty, and A describes
the input we are interested in. Theorems 4 and 5 go through unchanged, except
that the rate I will depend on M rather than on A.

There are many different ways of scaling the system to meet these condi-
tions, with different numbers of inputs of different types. For example, let the
aggregate input be made up of a mix of traffic types: Lp(j) copies of X(£)(j)
for j =1...J, each traffic type satisfying Conditions 1 and 2. Then M is just a
linear combination of the moment generating functions for the different traffic
types.

Another example is when the aggregate input is made up of L flows that
were independent and identical when they entered the network, but which have
passed through several queues before reaching the queue ) we are considering.
Allow each flow to follow a different route, possibly involving feedback and
interaction with other flows. This is interesting because it makes the flows
neither independent nor identical. Let the maximum delay that each flow can
incur before reaching ) be less than D < oco. Let the aggregate input to () be
Y'£(0,1]; this is less than the original aggregate input X £(0,¢+ D] over a longer
time interval. It can be shown that if the mean rate of the X! is less than
C/D, a queue with service rate C fed with X (0, + D] still empties with high
probability, and so () empties with high probability, and the results of the last
section apply. (Unfortunately, since the inputs to a queue are not independent,
we cannot use this to find Y% and estimate the probability of overflow.)

3.3 Decoupling of Flows

Consider two independent inputs X and Y to a switch whose aggregate input
satisfies Conditions 1 and 2, and is stationary with mean rate less than the
service rate. (The (L) notation has been dropped here.) We know from the
previous sections that in the limit, X has the same distribution as X, and that
Y has the same distribution as Y. We can also view X + Y as a single input
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to the queue, note that X +Y has the same distribution as X +Y, and deduce
that in the limit X and Y are independent.

It might be expected that traffic flows would influence each other. For exam-
ple, if X is very bursty and Y is smooth, one might expect X to be less bursty
and Y to be less smooth. But we see that this is not the case. In other words,
X and Y do not depend on the traffic mix at the switch (so long as the total
mean input rate is less than the service rate). This is known as decoupling.

3.4 Networks of Switches

A feedforward network of switches is one in which the switches may be ordered
in such a way that for every flow the sequence of switches through which it
passes is strictly increasing. In the last section, it was shown that a flow passing
through a switch is essentially unchanged, even if several different types of flows
use the switch, in the limiting regime where the number of flows increases. This
can be applied to a feedforward network of switches, as long as the network is
scaled also.

Consider, for example, a simple network of two switches in tandem. Let the
first switch have L independent inputs, each distributed like X&), Let one of
the outputs X&) be fed into the downstream switch, along with a further L —1
independent copies of X(%) from other upstream switches. Then the aggregate
input to the downstream switch satisfies a sample path LDP with the same rate
function as that appearing in the LDP for the aggregate input to the upstream
switch, so we can estimate the overflow probability of the downstream queue
with standard techniques.

Figure 1: Switches in tandem. With just one input to each switch, the
traffic is smoothed, and the behaviour of the downstream switch will
depend on the degree of smoothing. With three inputs to each switch
(independent and identically distributed), there is little smoothing,
and the behaviour of the downstream switch is easy to predict.

Figure 1 gives simulation results to illustrate this, and to compare it to the
case of switches handling a single flow of traffic. (The graphs show the effective
bandwidth of a flow at different points in the network. The effective band-
width a(f,t) is a convenient representation of the moment generating function:
(0t)"tA4(01).) The source illustrated is a periodic process of random phase,
emitting one unit of work every fourth time step. The switches have service
rate 0.4 per input and buffer size 1.5 per input. When there is only one flow
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of traffic using the switch, it is smoothed. When there are three flows of traffic
using the switch, each flow is hardly smoothed at all.

For switches which are further downstream in the network, the proofs of
Section 3 still work, if the maximum delay incurred by a flow at a switch B/C
is replaced by the maximum delay incurred by a flow in reaching the switch
under consideration.

4 Effective Bandwidth

In this section, we recast the results of Sections 2 and 3 into the language of
effective bandwidths. For a full discussion of effective bandwidths, see Kelly
[9]. We will see that the idea of effective bandwidth extends from describing
flow-at-a-point to describing flow-through-the-network.

Effective Bandwidth for an isolated switch

As in Section 3.3, consider a switch with service rate C' and buffer size B, and
an input with moment generating functions A;. Recall from Theorem 2 that
the rate for overflowing is

I= iItlf sup (B + Ct) — 0ta(6,1), (3)
0

where the effective bandwidth « is defined to be «(6,t) = (6t) 71 A4 (61).

(This is shorthand for the following. Consider a sequence of switches indexed
by L, with switch L having service rate LC' and buffer size LB. Let switch L have
L independent inputs distributed like X(¥), where A; is the limiting moment
generating function of X(#)(0,¢]. Then, limy,_, ., L' log P(switch L overflows)
is equal to —I. But this is a cumbersome description, so we will stick with the
shorthand.)

Consider replacing a small proportion ¢ of the inputs by flows of which
produce work at a constant rate a; these have effective bandwidth a. The rate
function for overflowing is now

I(6) = inf sup 8(B + Ct) — 0t((1 — §)a(0,t) + ba).
t g

If the optimizing parameters are 6 and ¢, and under appropriate differentiability
conditions, the value of a that makes I’(0) = 0 is @ = «(f,t). In other words,
an input flow has the same effect on the system as would a constant flow of rate
(6, ). This is why a is called the effective bandwidth function.

If the the switch has multiple input flows of different types, then the effec-
tive bandwidth function measures the tradeoff between the different flows. For
example, if at the operating point (#,%) of the switch the effective bandwidth of
flow 1 is twice that of flow 2, then replacing a small number of flows of type 1
by twice that number of flows of type 2 will not affect the cell loss probability.

Effective Bandwidths for Networks

It is simple to extend effective bandwidths from isolated switches to networks,
using the results of Sections 3.3 and 3.4, which say that the statistical charac-
teristics of a flow are not altered by passing through a switch, even when that
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switch is shared with different types of flow. Therefore the effective bandwidth
function of a flow is the same at all points in the network (though the different
switches will typically have different operating points, so the values of the func-
tion will be different). This simplifies the theory and engineering of networks in
many ways.

It means, for example, that the effective bandwidth of a traffic flow in packet-
switched networks plays a similar role to the bandwidth of a call in loss networks.
This encourages the belief that well-understood techniques and insights from
loss networks can be applied to packet-switched networks. For a review of those
techniques and insights, see Kelly [8].

It also makes it easier to understand feedback and rate control for adaptive
traffic, that is, traffic which can alter its rate in response to congestion-indicating
signals from the network. It is natural to believe that feedback from a switch
to a user should depend on the characteristics of the traffic from that user, as
seen by the switch. If the effective bandwidth function changed along the route,
depending on interactions with other flows at other switches, then the user might
have difficulty in making effective use of the feedback signals, because she would
not know how her traffic had been shaped by the intervening switches. But it
does not change, and so she can better interpret feedback.

The key idea is that it is meaningful to talk about the characteristics of,
say, video traffic, because the flow retains these characteristics regardless of its
interactions with other flows in various switches throughout the network.

5 Discussion

The core of the argument is Theorem 4, which proves that the limiting moment
generating function of the output process is the same as that of the input. It
relies on the fact that when there are many independent sources, the queue
empties regularly, with high probability. This is a reasonable engineering con-
straint for high-performance networks, in which delay and cell loss probabilities
should be small. This constraint is satisfied by any work-conserving queue (i.e.,
any queue which does not idle when there is work waiting).

The theorem is proved for the case of a queue with a finite buffer. It seems
likely that the result still holds for queues with infinite buffers and for other
regimes like priority queues. The finiteness of the buffer is used to bound the
amount of work that can leave the queue over a period of time, to give uniform
integrability; for those other cases some other way of proving uniform integra-
bility would be needed.

We have not dwelt on the question of how many input processes are needed
for this limiting result to be accurate. Numerical simulation, illustrated in Fig-
ure 1, suggests that in some cases only a small number of independent inputs are
needed to make the input and output look nearly identical. The real question,
though, is: how many input processes are needed for reasonable convergence
over the scale of interest? If we are interested in the probability of overflow at a
downstream switch, we want reasonable convergence of the moment generating
function at the critical timescale and spacescale for that switch. (The critical
timescale and spacescale are the optimizing parameters # and ¢ appearing in
Theorem 2.) For fixed 6 and ¢, by keeping track of the bounds in Theorem 4,
the difference between the moment generating functions for the input and out-
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put can be approximated by an expression which decays exponentially in LI,
where L is the number of inputs and [ is the rate function for the event that the
upstream queue is nonempty. The accuracy of the large deviations estimate of
Theorem 2 must also be taken into account; this has been studied by Likhanov
and Mazumdar [10].

When feedforward networks are so simple, it is tempting to conjecture that
similar results might hold in general networks. There are numerous examples
of pathalogical behaviour in finite networks. But in large networks, under this
many sources regime, we expect that switches will still empty sufficiently often,
and the main result will still hold.

Other limiting regimes

The limiting regime studied here is called the many sources asymptotic, because
it looks at the limit where the number of independent sources increases (and
buffer size and service rate increase also). It is this choice of limiting regime
that permits such clean results for networks. Another limiting regime which
has been widely studied is the large buffer asymptotic, which looks at a single
process over increasing timescales (with the buffer size increasing also).

The output of a queue under this regime has been widely studied: see,
for example, O’Connell [14, 12], Paschalidis [15], Bertsimas, Paschalidis and
Tsitsiklis [1], Majewski [11] and de Veciana, Courcoubetis and Walrand [4].
Under this regime it can be shown that the statistical characteristics of a flow
are changed by passing through a queue: the output is less bursty than the
input. If the input is made up of several flows, they do mot decouple. So
although it is possible to define an effective bandwidth for a flow at a single
switch, this effective bandwidth does not extend naturally to networks, and a
more complicated network calculus is needed.

Conclusion

We have shown that the relevant statistical characteristics of a flow of traffic are
preserved by passage through a switch, in the limit where the number of inputs
to that switch increases.

This is a limiting result. But simulation suggests that it can still be rea-
sonably accurate even for a handful of independent sources. And the theory is
useful at least as much for the insights it gives as for numerical estimates.

It dramatically simplifies the analysis of networks of switches with different
classes of traffic.
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