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Abstract

In optical networks, the vast bandwidth available in an optical fibre may be
utilized by splitting it into several channels, each of a different wavelength.
This allows signals to be routed entirely in the optical domain. This es-
say studies such routings, and examines the number of different wavelengths
needed for irregular networks.

We find the number of wavelengths needed in large random networks, in
terms of the proportion of edges present. A simple greedy routing algorithm
which uses no wavelength conversion is sufficient.

We give an alternative lower bound on the number of wavelengths needed,
which performs poorly for large random networks, but which is more appro-
priate for certain existing networks. It can sometimes be used to show that
heuristically-found routings are optimal.

1 Introduction

Contemporary fibre-optic networks transmit data at speeds orders of magnitude
faster than standard electronic networks. But they have as yet only realised a small
fraction of their potential. If they are to do more than replace copper wires, they
must go beyond the limitations imposed by electronic technology.

Currently, optical signals are converted into electronic signals whenever they
need to be switched, and then back into optical signals for transmission. Electronic
processing becomes a bottleneck in fast networks. Routing a signal using exclusively
optical techniques may eventually be both cheaper and faster.

The simplest technique for optical routing, and also one of the most promising,
1s wavelength division multiplexing. This exploits the ability of an optical fibre
to carry a number of independent signals of different wavelengths. These different
wavelengths can be separated out and switched independently.

The huge capacities available with optical fibres and the simpler routing tech-
nology lead to design considerations different to those for conventional electronic
networks [2]. In an electronic circuit-switched network calls are typically routed
as they come on-line, in order to fully exploit the limited capacities. But in an
optically routed network, there would more commonly be fixed routes for calls to
take; and the routing pattern would only change over longer time-scales; to cope
with changes in average long-term traffic. This system is called quasi-static routing.
It is well-suited for national backbone networks, such as that proposed in [11].
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Figure 1: A wavelength-routed optical network.

A wavelength division multiplexed optical network consists of end nodes and
routing nodes connected by fibre-optic links, as in Figure 1. Each link can carry a
certain number of wavelengths. A routing node can route each wavelength from an
input port to an output port, independently of other wavelengths; it may also change
the wavelength of a signal with a wavelength converter. An end node consists of one
or more tunable optical transmitters and receivers, and is connected to a routing
node, usually by a single link, but sometimes by more. We are interested in setting
up connections between pairs of end nodes, assigning to each pair of interest a route
and a wavelength in such a way that, on any link, each wavelength is used by at
most one connection. We call the collection of routes and wavelengths assigned
a routing. The practicability of a routing will depend on the number of different
wavelengths it uses: current limits are of the order of tens of wavelengths.

The efficiency of a network 1s that proportion of the total throughput able to
be carried simultaneously. In this context, it is the largest proportion of node pairs
that may be connected at any one time. For example, for efficiency 1, each end
node must have as many transmitters and receivers as there are other end nodes
in the network. If, in addition, there is a single optical link from an end node to
its routing node, there must be at least this many wavelengths available. With less
than full efficiency, there arises the problem of coordination: the transmitting end
node and the receiving end node must both be tuned to the correct wavelength.

1.1 Previous Work

A permutation routing is a routing in which each end node has one transmitter and
one receiver, and each transmitter is connected to a single receiver, and each reciever
to a single transmitter. Aggarwal et al [1] consider the problem of constructing
networks which can route all permutations by different tunings of the receivers and
transmitters, in the case where each end-node is connected to a routing node by
a single link. They find bounds on the number of wavelengths necessary, and also
relate the number of wavelengths to the number of routing nodes.

Ramaswami and Sivarajan [9] show how to construct a linear programming
problem for an arbitrary network in order to maximize the number of simultaneous
connections; in their approach, the number of variables grows exponentially with
network size, and the constraint of the number of wavelengths is ignored.

Ramaswami and Svarajan [10] and Zhang and Acampora [12] consider packet-



switched networks, and separate the routing problem into two parts. First they
connect certain pairs of nodes to form a logical topology, by solving a linear pro-
gramming problem or by a variety of heuristic methods. Then, they overlay a
packet-switched network on top of this logical topology, an optical route in the
physical network corresponding to a single logical link. When some node-pairs
are not connected by an optical route, a packet may have to pass through several
intermediate optical routes to reach its destination; this is called multi-hop rout-
ing. Zhang and Acampora simulate various dynamic call admission schemes and
find that, although the logical topology is fixed in advance and may not change to
accomodate new requests, there is little loss of throughput.

Baroni [3] gives some exact results for standard network architectures, such as
the de Bruijn graph and ShuffleNet. But such networks are not easily scalable: their
‘numerology’ permits only certain numbers of nodes and links in specific configura-
tions. If these new technologies are to be applied to practical large-scale networks,
it is important to understand in general how the number of wavelengths depends
on the network topology. Baroni, Bayvel and Midwinter [4] examine empirically
the number of wavelengths needed in random networks. This essay will analytically
justify their results.

1.2 The Model

For simplicity, all links will be taken to consist of a single fibre which can transmit
signals in both directions. Each routing node will be identified with its end-node.
This might correspond to a full efficiency network, in which each end node has
many transmitters and receivers and is connected by a large number of fibres to
its routing node; or to a network of efficiency 1/(n — 1) where n is the number of
nodes, in which each end node has a single transmitter and receiver, and a single
fibre connecting it to its routing node.

The mathematical formulation is as follows. Let G be a graph, assumed to
be connected, with vertex set V(G) and edge set E(G). We define a lightpath
between vertices v and w in V to be a path in G between v and w, together with
an associated colour. A lightedge is an edge with an associated colour. We wish to
assign lightpaths to all pairs of distinct vertices, so that all lightpaths through a
given edge are of different colours.

Let A(G) be the least number of colours for which such an assignment is possible.
We will examine the relationship between the proportion of edges present in the
graph and A(G). Two different sorts of bounds on A(G) will be presented. FEach
bound will be defined, motivated by comparison to computer-simulated results, and
justified analytically.

1.3 Random graph preliminaries

In what follows, let n = |V| be the order of the graph, M = |E| the size of the
graph, N = (g) the maximum number of edges in a graph of order n, and o = M/N
be the proportion of edges present, also called the connectivity of G.

We will be concerned with two types of random graphs. G(n;«) is the space
of random graphs of order n in which each edge is independently present with
probability « or absent with probability 1 — «. G(n; M) is the space of random
graphs of order n and size M, in which each graph is equally likely. We will write
P o« and PP, ar for these two cases, and supress n and o or M when it is clear from
the context which is intended.

In either of the two cases, we say that almost all graphs have property @ if
limy, oo Pp(Q) = 1.



The following result provides a useful link between the two spaces. We say that
a property @ of graphs is increasing if G C H and Q(G) imply Q(H).

PROPOSITION 1 Let Q be an increasing property. If almost all graphs in G(«) have
Q, then almost all graphs in G(|aN|) have Q.

Proof. First, note that if My < M then Py, (Q) < Par,(Q). This can be seen by
coupling the two spaces. Consider adding M»> edges one by one. If Q holds after
M, edges have been added, then it holds when M5, have been added.

Suppose it is not the case that almost all graphs in G(|aN]) have Q. Then for
some € > ( there is a sequence of orders ny such that Py, |va| (@) < 1—cforall k.
So

N
Prya(@) = Z Prwa(M =m)Pps, o(QIM = m)
m=0
LaV] N
= Z Prpa(M =m)Ps, m(Q) + Z Pry,a(M =m)Py, m(Q)
m=0 m=|aN]|+1

IN

(1= )Py 0(M < [aN]) 4+ oy o(M > [aN])

which contradicts Pp, o(@) — 1l as k — 0. O

2 The Distance Bound

Given a graph G, all node pairs must be connected by a lightpath. If the shortest
path between two vertices v and w is of length d = d(v, w), where the length of
a path is the number of constituent edges, then the lightpath between them must
consist of at least d lightedges. The sets of lightedges used by different paths are
disjoint. If there i1s an assignment of lightpaths using A colours, then there are A- M
lightedges available; and so

A-M> Z d(v,w)

vEAWEV
and in particular
A(G) > maist (G)

where we define the distance bound mqist (G) to be ﬁ Zv;éw d(v,w).

The distance bound has obvious modifications when the network is subject to
different constraints. If only a subset of node pairs require to be connected, only
the distances between those pairs need be summed. If a link consists of more than
one optical fibre, the number of edges can be increased by one. If there are nodes
solely for routing, they need not be taken into account in the sum.

2.1 Motivation

This section derives an estimate for mg;st and compares it to the computer-simulated
results in [4].

Their method of simulation is as follows. They generate random graphs of given
size and connectivity, subject to two constraints: firstly that if any one edge is
removed the graph remains connected, which i1s important for the reliability of a
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Figure 2: (a) Average number of wavelengths needed by the Minimum Number of
Hops algorithm for graphs of various orders n, and varying connectivity «. (b) Ap-
proximate expected value of mgis, for a random graph in G(28; «), taking k = 1,2,3
terms in the expression (1).

network; and secondly that each node has degree less than some specified maximum
degree. The graphs are generated by putting down edges at random until the
required number of edges is reached, at each step only putting down edges which
would not violate the second condition; and finally checking the first condition.

The number of wavelengths needed for a graph is estimated using a heuristic al-
gorithm, called the Minimum Number of Hops algorithm. First, the set of shortest
paths between each node pair is found. Each node pair is arbitrarily assigned one of
these paths. Each node-pair is in turn considered, and if the maximum congestion
along an alternative path is lower than the maximum congestion along the current
path, that alternative path is chosen instead; this is repeated until no more substi-
tutions are possible. The congestion of an edge is the number of paths using that
edge. Finally, wavelengths are assigned by ordering the paths in decreasing order of
length, and to each in turn assigning the first available wavelength. This provides
an estimate A for A. Some results are shown in Figure 2 (a).

The results may be compared to the approximate expected value of mgys for
random graphs. They may only be compared approximately, because it is very
difficult to deal analytically with a probability space as complicated as the one used
above. Instead, we will deal only with G(n; M) and G(n; «) and ignore the problem
of disconnected graphs — which would make E(mgjst) = 0.

For a random graph in G(n; M) of connectivity «,

1 1 1
E (maist (G)) = [E(M > d(v, w)) = M[E(Z d(v, w)) = —ED
VAW VAW
where D 1s the length of the shortest path between an arbitrary pair of nodes in a
graph. We may approximate
k
ED>Y dP(D=d)+ (k+1)P(D > k). (1)
d=1

When k& = 2 this gives

ED > a+2p(1—a)+3(1-a)(l-p),



where p = P(D = 2|D > 1). We can find p by a simple counting argument, giving

n—2
p= Z P(D = 2|r tandem edges present)P(r tandem edges present)
r=0

) (<>M— ) (o) (01 20-9)

This is still rather unwieldy. It may however be very well approximated in
G(n; ). In this case the number of edges M is a random variable and dependent
on the sum of internodal distances, but we approximate:

D v AV, W) E(Y 0 d(v,w)) 1
[E( 7z o ) ~ fEM = —ED.

InG(n;a), P(D=1) = a,and P(D > 2|D > 1) = (1—a?)"~2. These two estimates
of myist are virtually identical for typical « and n.

In fact, we may go a little further. In G(n; &) it is possible to slightly improve the
approximation by finding P(D = 3). Let By be the number of vertices at distance
d from some fixed vertex, so that P(D = d) = %[E(Bd). Then By = 1; and by
considering ‘growing’ a cluster from that vertex, it can be seen that the conditional
distribution of Bgy1 given By ... By is

Bd+1|Bo...Bd~Bin(n—(Bo—|—~~~+Bd),1—(1—a)Bd).

This expression becomes unwieldy for d > 2, but it is still simple to calculate E(Bsg)
numerically, by summing the following over possible values for By:

E(Bs|B1) = (1—a)? (n—1-By) [1— <(1_a)(1_(1_Q)Bl)+(1—a)31)n_2_31:|

These estimates are plotted against simulated data in Figure 2 (b). They indicate
that mgjs; might be a reasonable estimate for A.

2.2 Bounds

PROPOSITION 2 If GG has connectivity  then mgis(G) > % —1.

Proof. The least mgig 1s attained from a graph with minimal sum of internodal
distances. When the number of edges is M = n — 1 so that G is either a tree or
disconnected, this minimum is clearly attained for a tree. The optimal tree is a
star, by induction on n: when a new node and edge are added, the new node must
be distance 1 from one node, and distance at least 2 from all other nodes; only in
the case of a star is the distance to all other nodes 2.

As more edges are added, optimal graphs are obtained from a star by adding
edges between any unconnected spokes; call some increasing sequence of these
graphs Hpys. In this way, Zv;éw d(v,w) decreases by 1 as each edge is added, from
n — 1 for when H is a star down to %n(n — 1) when H is complete. They are opti-
mal, for suppose they were not: that is, that there is a G with M edges for which
Maist (G) < maist (Har). Then mgis; must decrease by at least one as each edge is
added to G, until it is less than mais (Hn) when G has been made complete, which
is impossible. O



THEOREM 3 If A > % — 1 then almost all graphs in G(«) have a routing using A
or fewer colours.

The proof is rather long, and is left for the appendix. A simple greedy algorithm
which uses only lightpaths of lengths one and two is sufficient to construct the
routing, suggesting that for practical networks equally simple routing strategies
might behave well. Note that in the construction of the routing there was no
wavelength conversion. This shows that for large random networks, there is nothing
to be gained by using wavelength converters.

This problem is closely related to Kelly’s Triangle Problem. The problem as
originally posed is as follows. Consider a complete graph with n nodes. Let 0 <
p < 1/3 and independently colour each edge of the graph red with probability p and
white with probability 1 — p. A triangle is a set of three distinct edges, each pair
of which has a distinct common node; and a triangle is called good if it contains
exactly one red edge. How many disjoint good triangles is it possible to construct?

In the notation of this essay, the red edges correspond to links which are not
present. All pairs of nodes joined by links (white edges) are connected by a lightpath
along the edge between them, all using the same colour. We seek to connect all
node pairs not directly connected (connected by a red edge) by a lightpath through
a tandem pair of existing edges (form a good triangle) using a second colour. We
require all these lightpaths to be disjoint (all the good triangles to be disjoint). The
Triangle Problem asks: if & > 2/3, is it possible to connect all node pairs using 2
colours?

Hajek [7] proves that the answer is almost always yes. The result is established
using techniques from stochastic approximation theory. It provides the basis for the
proof of theorem 3.

This result has close connections with Dynamic Alternative Routing [6]. Calls,
arriving dynamically between nodes of a circuit-switched network, may be routed
over indirect routes when direct routes have insufficient free capacity. DAR is a
simple and efficient method of assigning alternative routes using only direct paths
and two-hop indirect paths, in effect solving the dynamic version of the Triangle
Problem.

We summarise the results of this section in the following corollary:

COROLLARY 4 For almost all graphs in G(|aN|),

211 <AG) < | 2]

Proof. The first inequality is from proposition 2, the second from theorem 3 and
proposition 1. O

3 The Partition Bound

The last section showed that random graphs have very good properties for optical
routing. In this section, we look at another bound suggested by F.P. Kelly [8], which
turns out to be weaker than the distance bound for random graphs, but stronger
when applied to some existing networks.

Given a graph G, let A C V(G). Let ¢(A) be the set of edges linking vertices in
A to vertices in GG\ A. The cut ¢(A4) must carry connections between |A| - |G\ A|



pairs of vertices. If G can be coloured with A colours, then the cut has capacity

Ale(A)] lightedges. So,

and in particular

where we define the partition bound mey:(G) to be sup 4o

3.1 Motivation

A-fe(A)] = |A] - |G\ A

A(G) 2 [mew(G)]

|ALIG\AL

Enumerating over all subsets A C V(G) is O(2"~!) which becomes impractical for
networks of even moderate size. A heuristic algorithm has been developed to find
an estimate meyy of meyy. The algorithm works as follows.

1. Let the cost of traversing an edge be 1.

2. Determine a cheapest path between each node pair.

3. Calculate the number of paths through each edge, i.e. the congestion of that

edge.

4. Increase the cost of the edges which are maximally congested by ¢.

5. Repeat steps 2-4 until a cut ¢(A) is observed on which costs are being repeat-

edly increased.

6. Use this cut to calculate mqys (It is clear that a cut is obtained. If the cut
partitions the network into more than two pieces, select the piece which gives

rise to the best Meys).

n |E] a =—1] maist A
Arpanet 20 31  0.16 11 17 33
EON 20 37 0.19 10 13 18
National 24 48 0.17 11 16 40
NSF 14 21 0.23 8 10 13

Table 1: Results for some planned or implemented networks. mcy; gives the value
of meyt found by the heuristic algorithm, and A gives the number of colours used in
the heuristic wavelength assignment algorithm. In all cases; the lower bounds and
the feasible solutions agree, showing that A is optimal.

Table 1 shows the results of this algorithm and the earlier algorithm for assigning
lightpaths when applied to various existing or planned networks. It can be seen that




in all cases the partition bound matches precisely the number of colours needed,
and performs significantly better than the distance bound. This indicates that these
networks were not designed for the sort of optical routing presented in this essay:
random networks tend to need fewer colours.

3.2 Bounds

PROPOSITION 5 If GG has connectivity o then mey(G) > 1/a.

Proof. Let v(A) = |A]| - |G\ A|/|e(A)| be the value of the cut ¢(A). Consider the
collection of cut values. By a simple counting argument, their sum is fixed. And by
looking at them as a collection of positive real numbers of fixed sum, their maximum
must be at least their average. But the average is what a cut value would be if all
cut values were equal, which is «|A| - |G\ A], giving the result. O

PRrROPOSITION 6 If C' > 1/« then for almost all graphs in G(&), meu:(G) < C.

Proof. Suppose not. Then there exists ¢ > 0 and a sequence n; such that
Pn, (meys > C) > €. But if meys > €, then for some cut A C V(G), v(A4) > C.
For a given cut A of order a, let X be the number of edges between A and

V(G)\ A. Then X ~ Bin(a(n — @), «) and
P, (0(A) 2 C) = Pp (X < a(ng — a)/C)
< [Enk(x‘(X‘“(”k‘a)/C))

= 2D (2 4 (1= ) ) forall ¢ > 1

x

Setting x = +2=(C' — 1) > 1, we see that P, (v(A4) > C) < p7=a) where
p=(1- oz)l_%oz%(c - 1)%_10 <1

so that by a union bound,

nk—l
Pnk(mcut > C’) < Z (Zk)pa(nk—a)

a=1

which tends to 0 as k& — oco. O

COROLLARY T For almost all graphs in G(|aN|) and for all ¢ > 0,

Q=

S mcut(G) < % + ¢

Proof. The first inequality is from proposition 5, the second from propositions 6
and 1. O



4 Conclusion

We have presented the distance bound, which gives exactly the number of wave-
lengths needed for wavelength routing in random networks of order tending to in-
finity. A simple greedy routing algorithm which uses no wavelength conversion has
been shown to be sufficient. It is generalisable to various different routing regimes,
such as allowing multiple links between nodes: we suspect that if a regime were to
be suitably framed, the distance bound would again prove to be exact. The pre-
dicted number of wavelengths is in reasonable accord with the results of a heuristic
routing algorithm applied to computer-simluated random networks.

The partition bound is a lower bound on the number of wavelengths needed.
It is far worse on large random networks, but works very well on certain practical
networks: for these networks, the lower bound agrees with a heuristically-found
feasible solution, and 1s therefore exact. This suggests that there are factors which
have not been taken into account which influence the design of networks: they may
have been designed for a particular non-uniform traffic matrix, or they may rely
upon different links having different capacities. There may be constraints on the
topology of the graph: arising from reliability requirements for the network, such
as stipulating that the graph remain connected when a single edge is removed; or
from engineering limitations, such as limiting the node degrees; or from the physical
geography of the network.

An important unanswered question is that of how an existing network might
best be modified to improve the number of wavelengths needed: Which links are
superfluous? Where is the best place for a new link?

5 Appendix

Proof of Theorem 3.

The proof involves constructing a simple greedy lightpath-assignment algorithm,
and finding a deterministic approximation for its behaviour. It is based on the
proof for the Triangle Problem given by Hajek [7]. This method is more generally
applicable: in the same paper he analyses the Independent Set Problem using a
similar technique.

We may assume that 0 < o < 1.

The Algorithm.

Let G € G(n;a). The edges that are present correspond to optical links, each
capable of carrying colours {1...A}.

First, to all node-pairs which are directly joined by an edge we assign a direct
lightpath of colour A. We then seek to connect all remaining node-pairs by assigning
them an indirect lightpath of length 2. We call the node-pairs not joined by an edge
virtual edges.

Suppose some such lightpaths have been assigned, and that the lightedges and
virtual edges involved have been marked as used. If there are no unused virtual
edges remaining, declare the algorithm successful and stop. Otherwise, select an
unused virtual edge at random. Examine all lightpaths of length two between its
endpoints. If both lightedges of a lightpath are unused, call the lightpath available.
If none of the lightpaths are available, declare the algorithm unsuccessful and stop.
Otherwise, select one at random. Assign that lightpath to the virtual edge, and
mark those two lightedges and the virtual edge as used. Repeat until the algorithm
stops.

10



Let E be the set of edges in (i, E the set of lightedges, and R the set of virtual
edges. Write e()) for the lightedge through edge e of colour A. We say a triangle of
colour X for a set of two lightedges of colour A and a virtual edge, which join each
pair from a set of three nodes; and call it good if the two lightedges and the virtual
edge are unused.

We define, for r € Rand e € / and x € RU E,

oo 1f x 1s never used

g {k if x is used at step k

XA(]C) _ Jnumber of good triangles of colour A containing r, if k& < S
| X2(S, — 1) otherwise

€

YAk = number of good triangles of colour A containing e(X), if k < S(x)
N Y€>‘(S€(>\)) otherwise

For any process (X(k))keZJr write AX(k) = X(k+ 1) — X(k). Let F; be the
o —algebra generated by R and X} (1)... X} (k), Y(1)...YM(K)for 1 <A< A1
and e € E, r € R. Note that for a virtual edge r, if £ < 5, then

E(AX)0)F) = ZZ|R| (Z xw) )

where f ranges over the 2X (k) lightedges in available lightpaths of colour A be-
tween the endpoints of , and s ranges over the Y (k) — 1 virtual edges apart from
r which might be routed through s. Similarly, for an edge e, if k < S then

-~ XL (S vw)
- (X ) ]

where f ranges over the Y (k) edges that may form a lightpath with e(}), s ranges
over the Yfk(k) — 1 virtual edges which may be routed via a, except for the one
containing f, and ¢ ranges over the virtual edges that may be routed via e.

(3)

The Approximation.

Choose ag with a < ag < 1. We will approximate the behaviour of the algorithm
over the first %nz(l — ayp) steps.

The idea behind the approximation is that for large n the edges are nearly inde-
pendent. If a certain number of lightedges have been used, then the probability that
a given lightedge is unused is nearly binomial and independent of other lightedges.
There are roughly %nza(A — 1) available lightedges altogether, and after £ steps we
have used 2k of them. There are roughly %nz(l — «) virtual edges altogether, and

after k steps we have used k of them. We define

X(k) = na®(1—q)*
Y(k) = 2n(1 — a)(1 = r)a(l - q)

where ¢ = 2k/(3n%a(A — 1)) and r = k/($n%(1 — o).

11



LEMMA 8 There exist constants L and 6 such that whenever €1 ...¢5 satisfy € =

max(ler], ..., |es]) < né then for sufficiently large n and k < %nz(l — ag),
2 (X (k) + e2)(Y(k) + €3) L
AX(k < —(1
‘ ()+%n2(1—a)—k+%n€1 (A —D)(X(k) + €a) _nz( +e)
1 (Y(k)+e3)(YV(k) +

AY (k) +

€ < ( €4) £ €
L2(1—a) — k+ Iney <(Y(k)+ 2 TS + o) )‘ <z+9

Proof. Define

z(t) = a*(1 — ¢)*
y(t) =2(1 = a)(1 = r)a(l —q)

where ¢ = 2t/(a(A — 1)), and r = t/a. Then

) =1 —_a2— 1 (Ay(—t)l)

.. 8
W=a-y

Since X (k) = nx(k/(%nz)), Taylor’s Theorem gives

AX (k) — %;b(linz) = ﬁ (4)

Now, #(t) is differentiable with constant derivative, and for 0 <t < 1 — ay,

O<ap—a<l—a—-t<]l—«
O<z(l—ap) <z()<1
0<y(t) <1

Therefore there exist constants L and é for which whenever 1,7, .. .54 are such that
n = maz(|n;|) < 8, then
2 (z() +12)(y() +m3) | _ 4

Ay T i i R

The triangle inequality applied to this and equation 4 yields the desired equation
for AX(k), when n > ﬁ. The equation for AY (k) is obtained similarly. O

Relation between algorithm and approximation.

We first prove a small lemma which will be used later.

LEMMA 9 If X is a random variable such that |X| < ¢, EX <0, and E(X?) < £,
then for  sufficiently small, depending only on c,

EetX < o87c/n

12



Proof. Since | X| < ¢, we may use Dominated Convergence to show

E(e <X)—1+<’[EX+Z [EX’“
k=2

<1+ [EX2Z & o
k=2
=14+EX? (e —1—=Ce)/c?
< (?EX?  for ¢ sufficiently small
<14 (%¢/n
< (Lcln

as required. O

We define

YAMk)—Y(k) fore€E
®p = max [Z2(k)| A Z(IR] - 3n*(1 - a))

1<A<A
€Zk<Se(A)

2 = {Xg\(k) — X(k) foreeR

LEMMA 10 Fiz & with 0 < & < 6. Then
P(®, < &n for all k < %nz(l —ap))—0

Proof. Fix e € ' and A < A — 1. Suppose that k < .S.(). Equations 2 and 3 and
lemma 8 show that if ®;, < né then

B 07| < =

We will show that the random values X2 (k) and Y} (k) are likely to lie within
a certain distance r; of their expected values. The distance r; will be chosen
sufficiently large to be likely, but not so large as to be uninformative. Let

(@ +1)

rg = n®, for some fixed a € (%, 1)
7°k—7°0+2 (r; +1)

Note that 7y = (n® + 1)(1 4+ L/n?)* — 1 so that 7 < rp2 < (n® + 1)el. Suppose
that n 1s sufficiently large that rp < n€. Let

D=min{k >0: P, > rp} A %nz(l — ap)

/\(k):{Ze(k—i—l)—Ze(k) for k < D

e e2(D—-1) for k> D

Then |E(e}(k)|Fr)| < L (ri 4+ 1). Also, by writing €} in terms of X2 and Y}, we
can find a constant ¢ mdependent of n such that

(k)| < ¢
E(e}(k)*|Fx) < ¢/n
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Now for a given A and e (which will be surpressed), defining 77;JE = (i) —
L (.
n_2(rl + 1),
{122(k)| = v} € {]2(0)
={12(0)
From the rate function for the binomial, the probability of the first term decreases

exponentially in n?%~!. For the remaining terms, note that from the corresponding
conditions on ¢ there is a constant d such that E(n;|F%) < 0 and

n U {leo+ -+ 1] > e — 0%}
1
3

| >
> Ipatydpt ... + o> LlpeyyfpT 4. = > lpa
| > 5n Udng +- -+, 2 5n U {ng + -+, > 50}

Ine| < d
E(ni|Fr) < d/n

-1

Applying lemma 9 with { = ﬁna , 1t follows that for n sufficiently large and

k< n?,
> < (S - )

1
< exp(¢Pdk/n — (n®) = exp (—Enza_l)

Thus the probability that |Z2}| > »; for some e and A and k& < min(D, Se(x)) tends

to 0 as n — oo. Since also P(‘|R| —n?(1l - oz)‘ > 1n*1) tends to zero, we have
P(®) > ry for some k < D) —0

and so
P(®) < &n for all k < in*(1—aq)) — 0

as desired. O

Almost certain success.

Since A > % — 1, we can choose ¢ sufficiently small that £ < § and X (k) > &n for
k< %nz(l — ap). Now, if &3 < €n, and k is such that & < %nz(l — «ap) and there
are some virtual edges left unused, then for some unused virtual edge r and colour
A, X}k) > 0. Hence the algorithm cannot fail at step k. Since, by lemma 10,
P(®, < én forall k < %nz(l — agp)) — 0, the probability that the algorithm fails
before %nz(l — ag) virtual edges have been assigned tends to zero as n — .

This does not assign lightpaths to all virtual edges. However, we are now in
position to prove the main theorem, by considering a modified algorithm. Choose
e with e < a — AL-H Independently delete each link with probability €. Then run
the original algorithm on the modified graph, though only using undeleted links.

LEMMA 11 This modified algorithm is almost surely successful.

Proof. Call the deleted edges false virtual edges. To an observer who could not

distinguish between true and false edges, the algorithm would seem statistically

identical to the original algorithm, although run for a larger set of edges, up until

the time when all the original virtual edges have been assigned lightpaths. The

probability that an undeleted link is present is a(1 — €). Replacing o by (1 — ¢)
1

and setting ao equal to a(1 — 5¢), we see that the modified algorithm almost surely

14



does not fail within the first %nz(l — «p) steps. But the number of true virtual
edges is almost surely less than %nz(l — ap). Therefore, all the true virtual edges
may be assigned lightpaths, almost surely. O

This lemma completes the proof of theorem 3.
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