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Abstract

In this report we describe a selection of probabilistic limit theorems,
and discuss which are relevant for modelling OBS networks. This report
accompanies “Mathematical modelling of Optical Burst-Switched (OBS)
Networks” [7].
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Introduction

The Central Limit theorem is a typical example of the sort of limit theorem
we are interested in. It says that, if (ξ1, ξ2, . . . ) is a sequence of independent
identically distributed random variables with mean µ and variance σ2 then
(under mild conditions on the distribution)

P

[ξ1 + · · · + ξL − Lµ√
L

> x
]
→ P

[
N(0, σ2) > x

]
as L → ∞. (1)
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For an example use of this, suppose we have an OBS buffer which empties every
T time units, fed by L independent identically distributed traffic flows, and Xi

is the amount of work from flow i that arrives in the interval (0, T ). Then we
would set ξi = Xi and use (1) as the approximation

P
[
X1 + · · · + XL > Lµ + x

√
L

] ≈ P
[
N(0, σ2) > x

]
, (2)

and be confident that this approximation is good when L is large. Suppose now
that we do not know L, we only know that the sum Y = X1 + · · · + XL is the
aggregate of many independent workloads. Suppose also that we do not know
x, we only know the total buffer size B = Lµ + x

√
L. Rearranging (2) we get

the naive approximation

P
[
Y > B

] ≈ P
[
N(0, L−1 Var Y ) > L−1/2(B − EY )

]
= P

[
N(EY, Var Y ) > B

]
. (3)

This should be accurate if Y is the aggregate of many independent flows, and
if the mean buffer utilization B/EY is of order 1 − L−1/2. It is incorrect to
say that “Y is approximately normal”; it is correct to say that “If the system
parameters are scaled in a certain fashion, then for the purposes of estimating
the probability of overflow Y may be approximated by a normal”. Example 3
gives a case where the incorrect statement can be seriously misleading.

There are many different ways to scale the system parameters, leading to
different sorts of limit theorem, and in this report we will summarize a num-
ber of them which are useful (or which have been used) to describe OBS net-
works. Table 1 summarizes them. Here is some notation used in that table, and
throughout this report. Let X(0, t) be the amount of work arriving in a traffic
flow in the interval (0, t). Write X for the entire arrival process. Write X⊕L

for the sum of L independent copies of X , and write X⊗L for the speeded-up
version X⊗L(0, t) = X(0, Lt). (These are referred to as the many-flows scaling
and the fast-time scaling of X).

We will present limit theorems like (1), and omit working through to ap-
proximations like (3). This is to stress the point that the limit theorems are
only relevant when system parameters are scaled in a suitable way.

1 Central limit theorem

We have already stated the central limit theorem in (1). This limit holds if
the ξi are independent and have finite mean and variance. It also holds when
they are not identical, and only nearly independent, under various conditions
[2, Section 27].

The corresponding result which can tell us about the loss ratio is

E

[ξ1 + · · · + ξL − Lµ√
n

− x
]+

→ E
[
N(0, σ2) − x

]+ as L → ∞.
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CLT- ⊕ (1.1) P
[
X⊕L(0, t) > Lµt + x

√
L

] ≈ P
[
N(0, σ2

t ) > x
]

CLT- ⊗ (1.2) P
[
X⊗L(0, t) > Lµt + x

√
L

] ≈ P
[
N(0, σ2) > x

]
LD- ⊕ (2.1)

1
L

log P
[
X⊕L(0, t) > Lx

] ≈ − sup
θ∈R

{
θx − Λt(θ)

}
LD- ⊗ (2.2)

1
L

log P
[
X⊗L(0, t) > Lx

] ≈ − sup
θ∈R

{
θx − Λ(θ)

}
LD-LRD- ⊗ (2.3)

1
L2(1−H)

log P
[
X⊗L(0, t) ≥ Lx

]
≈ − sup

θ∈R

{
θx − t2(1−H)Λ(θt−(1−2H))

}
MD- ⊕ (3.1)

1
Lβ

log P
[
X⊕L(0, t) > Lµ + L(1+β)/2x

] ≈ −x2/2σ2
t

Poisson-⊕ (4) P
[
X⊕L(0, L−1t) ≥ x

] ≈ P
[
Poisson(µt) ≥ x

]

Table 1: The different limiting results described in this report. The meanings of the
various symbols are given in the relevant section.

1.1 CLT-⊕
We have explained in (2) one way in which the central limit theorem can apply
to OBS networks. That equation can be thought of as referring to X⊕L(0, t),
with µ = t−1

EX(0, t) and σ2 = VarX(0, t).

Example 1
For example, let X be an M/G/∞ source: that is, X consists of jobs which arrive
as a Poisson process of rate λ, and which transmit at rate 1 for their duration,
and that durations are independent and identical. Suppose the duration D is
Pareto, that is, P(D > t) = (t + 1)−α for some α > 1. The formulae for µ and
σ2 are

µ = λtED

σ2 = A + Bt + Ct3−α

where the quantities A, B and C are as given in [1]. �

1.2 CLT-⊗
Let X be an arrival process with mean rate µ = t−1

EX(0, t). For a wide range
of arrival processes X (including Markov chains, though not including any that
are long-range dependent) it can be shown that

P

[
L1/2

(
L−1X⊗L(0, t) − µt

) ≥ x
]
→ P

[
N(0, σ2) ≥ x

]
, (4)

where σ2 = limt→∞ t−1 VarX(0, t). This is the limit at the foundation of heavy
traffic queueing theory [12, Chapter 5].
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This approximation makes sense when L is large, i.e. when we are interested
in X(0, Lt) for large L, sufficiently large that VarX(0, Lt) ≈ Ltσ2, i.e. that
correlations in the input traffic are negligible. What are the timescales of cor-
relations in Internet traffic? TCP is self-clocked, and its feedback delay is equal
to the round-trip time, so TCP traffic has correlations at timescales up to its
round-trip time (and longer). Now, a TCP flow which passes through a burst
assembler with assembly time T necessarily has round-trip time greater than T .
So, at timescale T , correlations in the input traffic will not be negligible. We
conclude that one needs to be very cautious in applying CLT- ⊗ to describe
burst assemblers.

A necessary condition for (4) is that the variance VarX(0, t) grow linearly
in t for large t. For long-range dependent flows, such as typical Internet flows,
this does not hold. This has led to an awful lot of fuss. In some cases, however,
an analogue does hold, which we now describe.

1.3 CLT-LRD- ⊗
For example let X be an on-off source with Pareto on and off times, with mean
rate µ, and let X̃ be given the CLT- ⊕ limit

X̃(0, t) = lim
M→∞

M1/2
(
M−1X⊕M(0, t) − Mµ

)
.

Then X̃⊗L satisfies a modified CLT- ⊗ limit: for suitable σ,

P

[
L1−H

(
L−1X̃⊗L(0, t)]

)
> x

]
→ P

[
N(0, σ2) > x

]
. (5)

Note that L1/2 has been replaced by L1−H , reflecting the fact that the variance
of X̃(0, t] grows like t2H . (We do not have to subtract the mean in this equation,
because X̃ has already been normalized to have mean rate zero.) This result is
described more fully by Willinger et al. [13]. See also [6], where it is shown that
(5) holds for a wide class of Gaussian processes.

We do not believe that this limit is useful for modelling OBS networks, for
the reasons given in Section 2.3 below.

2 Large deviations

Let ξ be a random variable, and let ξL be the sum of L independent copies of
ξ. It is a standard result known as Cramér’s theorem (see e.g. [5]) that

1
L

log P
[
ξL > Lx] → −I(x) (6)

where
I(x) = sup

θ∈R

{
θx − Λ(θ)

}
and Λ(θ) = log E exp(θξ) (7)
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if the log moment generating function Λ(θ) is finite in a neighbourhood of the
origin). There is a refined version of this estimate, known as the Bahadur-Rao
improvement:

P
[
ξL > Lx

]
=

1

θ̂

√
2πLσ2(θ̂)

e−LI(x)
(
1 + o(1)

)
(8)

where θ̂ is the optimizing parameter in I(x) and σ2(θ) = Λ′′(θ).
The same expression (6) holds for L−1 log E(ξL − Lx)+, and its refinement

is given in [11] as

E
[
ξL − Lx

]+ =
1

θ̂2

√
2πLσ2(θ̂)

e−LI(x)
(
1 + o(1)

)
(9)

Equation (6) concerns the log-probability of an event, as opposed to the cen-
tral limit equation (1) which concerns the actual probability. Log-probabilities
are governed by the principle of the largest term, which may heuristically be
expressed as

log P(ξ ∈ A) ≈ sup
a∈A

log P(ξ ≈ a).

This makes it very easy to manipulate expressions! Expressions such as (3) on
the other hand can be hard to manipulate, as they involve integrals. One should
think of LD as giving a first-order approximation to a probability, based only
on the most likely way for an event to occur: if it tells us that two probabilities
are different, they are substantially different. CLT is more refined, and may
distinguish between the probabilities of events which are indistinguishable at a
large deviations level.

The unrefined estimates can be quite far off, and one way to remedy this
is with the assistance of simulation. The trouble with small probabilities is
that it takes a very very long simulation to estimate them well (and it is small
probabilities that large deviations is concerned with). There is, happily, a branch
of simulation theory which deals with this, called fast simulation. The idea
behind fast simulation is that we can use knowledge of a large deviations result
to speed up the simulation, by biasing our random number generator: the bias
is given by the optimizing θ̂. This is a large field, which we will not go into. See
[3].

2.1 LD- ⊕
Let X⊕L be the aggregate of L independent copies of an arrival process X .
It is straightforward to apply the basic limit theorem above to approximate
P[X⊕L(0, T ) > B]. The approximation we get should be good when L is large,
when B is comparable to EX⊕L(0, T ) (e.g. B = 1.3 EX⊕L(0, T )), and the
loss probability is exp(−L O(1)). In other words, the large deviations limit is
suitable for describing regimes in which there is lower loss and also lower mean
buffer utilization than in the central limit.
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2.2 LD- ⊗
Large deviations also tells us about the fast-time scaling. It turns out that (6)
also holds when ξL is the sum of random variables that are nearly independent
in the sense that

Λ(θ) = lim
t→∞

1
t

log E exp θξL (10)

exists and is suitably smooth. This is known as the Gärtner-Ellis theorem [5].
(The refined expressions no longer hold.)

If we let ξL = X⊗L(0, t) then this result tells us about

lim
L→∞

1
L

log P
[
X⊗L(0, T ) > B

]
when B is of order L, i.e. when we are considering very large buffers. The
smoothness condition requires that the correlations between say X(0, Lt1) and
X(Lt1, Lt2) become negligible for large L so that X⊗L has asymptotically in-
dependent increments.

This result is not useful for modelling OBS networks, for same reason that
CLT-⊗ is not useful. It is also not useful for the simpler reason that (10) does
not hold when we are considering traffic flows which are long-range dependent.
For such flows we need a modified result, which we now describe.

2.3 LD-LRD- ⊗
The modified version of the LD- ⊗ estimate for long-range dependent traffic
says that

1
L2(1−H)

log P
[
L−1X⊗L(0, t) ≥ x

] → − sup
θ∈R

{
θx − t2(1−H)Λ

( θ

t(1−2H)

)}

where
Λ(θ) = lim

t→∞
1

t2(1−H)
log E exp

(
θt1−2HX(0, t]

)
. (11)

(This is in fact just a restatement of the Gärtner-Ellis result.) If we use this
to approximate P[X⊗L(0, T ) > B], then the approximation will be valid to the
extent that the limit (11) is approached, i.e. to the extent that the traffic is
well-described by its power-law scaling.

We argued in Section 1.2 that the problem with CLT- ⊗ is that it ignores
correlations in the traffic. But the LD-LRD-⊗ limit does allow for correlations
over long timescales—indeed this limit is most commonly used for describing
the impact of long-range dependence [8, 14]. The important question here is
what sort of correlations? It is widely accepted that, over long timescales, In-
ternet traffic is well-described by power-law scaling. This power-law scaling
derives perhaps from the fact that the files to be transferred are heavy-tailed.
However it is also well-known that, over short timescales, one needs a richer
description. Feldmann, Gilbert, and Willinger [9], for example, suggest a multi-
fractal description. However one characterizes it, the distinctive short-timescale

6



behaviour of Internet traffic seems to arise from short-timescale causes such as
the TCP control loop. As we argued in Section 1.2, the burst assembly time will
be shorter than the round trip time of a TCP flow, and therefore the power-law
scaling does not adequately describe traffic over the timescales we are interested
in. We acknowledge, of course, that traffic in optical networks will display long-
range dependence, but this only captures a minor part of what matters—what
matters being the traffic characteristics over the intrinsic timescale of burst
formation.
Example 2
Consider the ‘chunked fractional Brownian motion’ traffic source X , defined as
follows. Let Y (t) be a fractional Brownian motion with Hurst parameter H ,
drift µ and variance parameter σ2 (so that EY (t) = µt and VarY (t) = σ2t2H).
Pick some period U > 0, let φ be a random variable uniform in [0, U ], and set

X(0, t) = Y
(
U	U−1(t + U − φ)
).

Then

log EeθA(0,t) = θµt + 1
2θ2σ2t2H

+ log
{
(1 − δ) exp

[
−θµδU − 1

2θ2σ2U2H
(
(n + δ)2H − n2H

)]
+ δ exp

[
θµ(1 − δ)U + 1

2θ2σ2U2H
(
(n + 1)2H − (n + δ)2H

)]} (12)

and

VarA(0, t) = µ2U2δ(1 − δ) + σ2t2H
[
(1 − δ)

( n

n + δ

)2H

+ δ
(n + 1

n + δ

)2H]
and so

Λ(θ) = θµ + 1
2θ2σ2.

This will be a reasonable approximation if T is significantly larger than U . If T
is close to the period U , then n will be in the range 0, 1, 2, and so the correction
term in (12) will be significant. �

3 Moderate deviations

The central limit theorem tells us about common deviations from mean be-
haviour, which are governed by mean and variance, and have O(1) probability.
Large deviations tells us about large deviations from mean behaviour, which
depend on the entire distribution, and have e−L O(1) probability.

It turns out that mean and variance are sufficient to describe not only com-
mon events but also moderately rare events. Let ξL be the sum of L independent
copies of a random variable ξ. Let µ = Eξ and σ2 = Var ξ. It can be shown that,
under a minor technical condition on the distribution of ξ, for any β ∈ (0, 1)

1
Lβ

log P

(
L(1−β)/2

(
L−1ξL − µ

) ≥ x
)
→ − sup

θ∈R

{
θx − (θµ + 1

2θ2σ2)
}

(13)

= −x2/2σ2. (14)
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This is like the large deviations result (6), but where the log moment generating
function Λ has been replaced by its second-order approximation Λ(θ) ≈ θµ +
1
2θ2σ2, making it simple to calculate the supremum.

(In fact (13) is a special case of the Gärtner-Ellis theorem, as explained for
example in [10, Chapter 9].)

CLT is useful because it relies on a parsimonious description of the distribu-
tion (it uses only mean and variance); LD is useful because of the principle of
the largest term (which says we can replace integrals by supremums). Often it
will turn out that both CLT and LD are nevertheless analytically intractable:
the one because we need integrals to work out probabilities, the other because
the full statistical characteristics of a traffic flow are unwieldy. Then one can use
MD. Moderate deviations theory should be thought of as a first-order approxi-
mation of probabilities (like LD) combined with a second-order approximation
of distributions (like CLT). It combines the parsimony (and inaccuracy) of CLT
with the tractability (and inaccuracy) of LD.

Practically, MD means that easily-measured quantities like mean and vari-
ance can be used to predict hard-to-measure quantities like the (hopefully rare)
probability of overflow. CLT is not appropriate for this purpose, since it is only
appropriate for estimating probabilities which are O(1). Nor is LD appropriate,
since to use it we need to know the full log moment generating function Λ, yet
it can be as hard to measure Λ(θ) for large θ as it is to simulate the event of
interest.

We conjecture that the same expression (14) holds for expected loss, and that
refined expressions corresponding to the large deviations refined expressions (8)
and (9) also hold, when Λ(θ) is replaced by its second-order approximation.

3.1 MD- ⊕
It is straightforward to apply moderate deviations to approximate P[X⊕L(0, T ) >
B]. The approximation should be good when mean buffer utilization is O(1 −
L−(1−β)/2) and when the loss probability is exp(−LβO(1)), for some 0 < β < 1.
These are intermediate between the corresponding magnitudes for CLT- ⊕
(β = 0) and LD- ⊕ (β = 1).

The following example shows that one cannot wantonly make the approx-
imation Λ(θ) ≈ θµ + 1

2θ2σ2. It only works when the system parameters are
scaled properly.

Example 3 (How things can go wrong)
Let X be as specified in Example 2. Suppose that σ2 = 0, to make the following
calculations tractable. This means that X is a pure periodic source. Let T =
(n + δ)U . By CLT- ⊕ ,

P
[
X⊕L(0, T ) > B

] ≈ P
[
N(µT, σ2

T )⊕L > B
]

(15)

= P

[
N(0, 1) >

B − LµT

LσT

]
. (16)
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By LD- ⊕ ,

log P
[
X⊕L(0, T ) > B

] ≈ − sup
θ∈R

{
θB − L log EeθX(0,T )

}
(17)

where the log moment generating function is given by (12). It can be shown
that this expression is

=

{
L log δ for B = Lµ(t + Uδ)
−∞ for B > Lµ(t + Uδ)

(18)

These two statements (16) and (17) are indubitably correct, insofar as the
limits allow us to make the approximations. But we run into trouble when we
wantonly combine them. For example, applying the LD- ⊕ approximation to
(15),

log P
[
X⊕L(0, T ] > B

] ≈ − sup
θ∈R

{
θB − L(θµT + 1

2θ2σ2
t )

}

= − (B − LµT )2

2Lσ2
T

(19)

This contradicts (18). The problem here is that we need to be more subtle in
interpreting approximations like (16) and (17). Each only holds for high levels
of aggregation, and for B of a certain scale: (15) only holds when the buffer
utilization LµT/B is O(1 − L−1/2), and (17) only holds when it is O(1). As
aggregation increases these two scales diverge.

In fact, the MD- ⊕ scaling shows us that there is a scale of B in which the
approximation (19) holds: this scale is B = O(1−L−(1−β)/2) for any 0 < β < 1.
For buffers of that scale, it is legitimate to mix LD- ⊕ and CLT- ⊕ . �

3.2 MD- ⊗
There is also a family of moderate deviations results in between CLT- ⊗ and
LD- ⊗ : under suitable conditions, for β ∈ (0, 1)

1
Lβ

log P

(
L(1−β)/2

(
L−1X⊗L(0, t) − µt

) ≥ x
)
→ −x2/2σ2,

where σ2 = limt→∞ t−1 VarX(0, t), with related results. We believe this is
not appropriate for modelling OBS networks for the same reasons that neither
CLT- ⊗ nor LD- ⊗ is appropriate.

4 Poisson- ⊕ process limit

Here is another results about ⊕ scalings. Let X be a point process with mean
arrival rate µ. Then X⊕L converges to a Poisson process, over short timescales,
and

X⊕L(0, L−1t) → Poisson(µt) (20)
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where convergence is in distribution (which means we can replace the left hand
side by the right in estimating both the probability of overflow and the expected
loss). This result relies on the limit

lim
t→0

1
t

log E exp θX(0, t) = µ(eθ − 1). (21)

(The right-hand side is the log moment generating function for a Poisson random
variable.) For details on how this limit can be applied to conventional queueing
problems see [4].

In words, as aggregation increases, and as the timescale of interest decreases
in proportion, the aggregate traffic converges to a Poisson process. This should
be accurate over timescales t for which the limit (21) is good, that is, timescales
over which the number of packets from a single flow is approximately Poisson.
If t is a significant part of the round trip time, as it would be in a Type II OBS
network, then (as we argued in Sections 1 and 2) we would expect non-trivial
correlation structure over timescale t, and therefore the limit (21) will not be
good. If t is much shorter than the round trip time, as it would be in a Type I
OBS network, the approximation should be reasonable. We conclude that one
must be cautious in using this Poisson limit to model burst accumulators.

Note also that this limit concerns point processes. To use it in traffic mod-
elling, we would say that a point corresponds to a packet; we then need to decide
what size packet. It is mathematically awkward to have analyse models with
packets of different sizes.

We have already remarked that it is dangerous to combine different limits.
One must pay close attention to exactly what sort of scaling each limit entails
for the system parameters, if one is to produce meaningful answers. Here is
another example of what can go wrong.

Example 4 (How things can go wrong)
Let X be as described in Example 2. Let σ2 = 0, to make the calculations
tractable. So X is just a periodic point process, of random phase, with µ units
of work arriving every U time units. Let T = (n + δ)U .

It is easy to see that

P
[
X⊕L(0, T ) > B

]
= P

[
Bin(L, δ) > B − LµUn

]
. (22)

According to the Poisson-⊕ limit, X⊕L converges to a Poisson process of rate
Lµ. Now, according to the CLT-⊗ limit, if X⊕L were a Poisson process of rate
Lµ then for large T and B

P
[
X⊕L(0, T ) > B

] ≈ P

[
N(0, 1) >

B − TLµ√
TLµ

]
This has a totally different form to the true answer (22). (Consider how the two
formulae vary with δ.)

The trouble is that the Poisson-⊕ limit is concerned with short timescales,
and the CLT- ⊗ limit is concerned with long timescales. It is hard to see how
the two limits can be used together coherently. �
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