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SWITCHED NETWORKS WITH MAXIMUM WEIGHT
POLICIES: FLUID APPROXIMATION AND MULTIPLICATIVE

STATE SPACE COLLAPSE

By Devavrat Shah∗ and Damon Wischik†

MIT and UCL

We consider a queueing network in which there are constraints
on which queues may be served simultaneously; such networks may
be used to model input-queued switches and wireless networks. The
scheduling policy for such a network specifies which queues to serve at
any point in time. We consider a family of scheduling policies, related
to the maximum-weight policy of Tassiulas and Ephremides [28], for
single-hop and multihop networks. We specify a fluid model, and show
that fluid-scaled performance processes can be approximated by fluid
model solutions. We study the behaviour of fluid model solutions
under critical load, and characterize invariant states as those states
which solve a certain network-wide optimization problem. We use
fluid model results to prove multiplicative state space collapse. A
notable feature of our results is that they do not assume complete
resource pooling.

1. Introduction. A switched network consists of a collection of queues, oper-
ating in discrete time. In each timeslot, queues are offered service according to a
service schedule chosen from a specified finite set. For example, in a three-queue
system, the set of allowed schedules might consist of “Serve 3 units of work each
from queues A & B” and “Serve 1 unit of work each from queues A & C, and 2
units from queue B”. The rule for choosing a schedule is called the scheduling policy.
New work may arrive in each timeslot; let each queue have a dedicated exogeneous
arrival process, with specified mean arrival rates. Once work is served, it may either
rejoin one of the queues or leave the network.

Switched networks are special cases of what Harrison [12] calls ‘stochastic pro-
cessing networks’. We believe that switched networks are general enough to model
a variety of interesting applications. For example, they have been used to model
input-queued switches, the devices at the heart of high-end Internet routers, whose
underlying silicon architecture imposes constraints on which traffic streams can be
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2 SHAH & WISCHIK

transmitted simultaneously [8]. They have also been used to model a multihop wire-
less network in which interference limits the amount of service that can be given to
each host [28].

The main result of this paper is Theorem 7.1, which proves multiplicative state
space collapse (as defined in Bramson [3]) for a switched network running a general-
ized version of the maximum-weight scheduling policy of Tassiulas and Ephremides
[28], in the diffusion (or heavy traffic) limit. Whereas previous works on switched
networks and stochastic processing networks in the diffusion limit [6, 7, 27] have
assumed the ‘complete resource pooling’ condition, which roughly means that there
is a single bottleneck cut constraint, we do not make this assumption. Section 3
discusses further the related work and our reasons for being interested in the case
without complete resource pooling.

To prove multiplicative state space collapse we follow the general method laid
out by Bramson [3]. In Section 2 we specify a stochastic switched network model
and describe the generalized maximum-weight policy. In Section 4 we specify a fluid
model, and prove that fluid-scaled performance processes of the switched network
are approximated by solutions of this fluid model. Sections 5 and 6 give properties
of the solutions of the fluid model for single-hop and multihop networks respectively.
Specifically, for non-overloaded fluid model solutions, we characterize the invariant
states and prove that fluid model solutions converge towards the set of invariant
states. In Section 7 we use these properties to prove multiplicative state space col-
lapse.

We use the cluster-point method of Bramson [3] to prove the fluid model approx-
imation in Section 4, rather than following an approach based on weak convergence.
The former yields uniform bounds on the error of fluid model approximations, and
these uniform bounds are needed in proving multiplicative state space collapse. How-
ever, the assumptions we make on the arrival process are not the same as those of
Bramson [3].

In Section 8 we give results concerning the fluid model behaviour of a general
single-hop switched network in critical load, and the set of invariant states for the
input-queued switch, under a condition that we call ‘complete loading’. Motivated
by these results, we define a scheduling policy which we conjecture is optimal in the
diffusion limit.

Notation. Let N be the set of natural numbers {1, 2, . . . }, let Z+ = {0, 1, 2, . . . },
let R be the set of real numbers, and let R+ = {x ∈ R : x ≥ 0}. Let 1{·} be
the indicator function, where 1true = 1 and 1false = 0. Let x ∧ y = min(x, y),
x ∨ y = max(x, y) and [x]+ = x ∨ 0. When x is a vector, the maximum is taken
componentwise.

We will reserve bold letters for vectors in RN , where N is the number of queues,
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NETWORK SCHEDULING 3

for example x = [xn]1≤n≤N . Superscripts on vectors are used to denote labels, not
exponents, except where otherwise noted; thus for example (x0,x1,x2) refers to three
arbitrary vectors. Let 0 be the vector of all 0s, and 1 be the vector of all 1s. Use the
norm |x| = maxn |xn|. For vectors u and v and functions f : R→ R, let

u·v =
N∑
n=1

unvn, uv = [unvn]1≤n≤N , and f(u) =
[
f(un)

]
1≤n≤N

and let matrix multiplication take precedence over dot product so that

u·Av =
N∑
n=1

un

(
N∑
m=1

Anmvm

)
.

Let AT be the transpose of matrix A. For a set S ⊂ RN , denote its convex hull by
〈S〉.

For a fixed T > 0, and I ∈ N, let CI(T ) be the set of continuous functions
[0, T ]→ RI , where RI is equipped with the norm |x| = maxi |xi|. Equip CI(T ) with
the norm

‖f‖ = sup
t∈[0,T ]

|f(t)|.

Let d(f, g) = ‖f − g‖ be the metric induced by this norm. For E ⊂ CI(T ) and
f ∈ CI(T ), let d(f,E) = inf{d(f, g) : g ∈ E}. Define the modulus of continuity
mcδ(·) by

mcδ(f) = sup
|s−t|<δ

∣∣f(s)− f(t)
∣∣

where s, t ∈ [0, T ]. Since [0, T ] is compact, each f ∈ CI(T ) is uniformly continuous,
therefore mcδ(f)→ 0 as δ → 0.

2. Switched network model. We now introduce the switched network model.
Section 2.1 describes the general system model, Section 2.2 specifies the class of
scheduling policies we are interested in, and Section 2.3 lists the probabilistic as-
sumptions about the arrival process that are needed for the main theorems.

2.1. Queueing dynamics. Consider a collection of N queues. Let time be dis-
crete, indexed by τ ∈ {0, 1, . . . }. Let Qn(τ) be the amount of work in queue
n ∈ {1, . . . , N} at timeslot τ . Following our general notation for vectors, we write
Q(τ) for [Qn(τ)]1≤n≤N . The initial queue sizes are Q(0). Let An(τ) be the total
amount of work arriving to queue n, and Bn(τ) be the cumulative potential service
to queue n, up to time τ , with A(0) = B(0) = 0.

imsart-aap ver. 2007/04/13 file: netsched.tex date: December 2, 2010



4 SHAH & WISCHIK

We first define the queueing dynamics for a single-hop switched network. Defining
dA(τ) = A(τ + 1)−A(τ) and dB(τ) = B(τ + 1)−B(τ), the basic Lindley recursion
that we will consider is

(1) Q(τ + 1) =
[
Q(τ)− dB(τ)

]+
+ dA(τ)

where the [·]+ is taken componentwise. The fundamental ‘switched network’ con-
straint is that there is some finite set S ⊂ RN+ such that

(2) dB(τ) ∈ S for all τ .

We will refer to π ∈ S as a schedule, and S as the set of allowed schedules. In the
applications in this paper, the schedule is chosen based on current queue sizes, which
is why it is natural to write the basic Lindley recursion as (1) rather than the more
standard [Q(τ) + dA(τ)− dB(τ)]+.

For the analyses in this paper it is useful to keep track of two other quantities.
Let Yn(τ) be the cumulative amount of idling at queue n, defined by Y(0) = 0 and

dY(τ) =
[
dB(τ)−Q(τ)

]+
,(3)

where dY(τ) = Y(τ + 1)−Y(τ). Then (1) can be rewritten

Q(τ) = Q(0) + A(τ)−B(τ) + Y(τ).(4)

Also, let Sπ(τ) be the cumulative time spent on schedule π up to time τ , so that

(5) B(τ) =
∑
π∈S

Sπ(τ)π.

For a multihop switched network, let R ∈ {0, 1}N×N be the routing matrix,
Rmn = 1 if work served from queue m is sent to queue n, and Rmn = 0 otherwise;
if Rmn = 0 for all n then work served from queue m departs the network. For each
m we require Rmn = 1 for at most one n. (Tassiulas and Ephremides [28] described
a network model with routing choice, whereas we have restricted ourselves to fixed
routing for the sake of simplicity.) The scheduling constraint (2) is as before, the
definition of idling (3) is as before, and the queueing dynamics are now defined by

Qn(τ + 1) = Qn(τ) + dAn(τ)−
(
dBn(τ)− dYn(τ)

)
+
∑
m

Rmn
(
dBm(τ)− dYm(τ)

)
.

Equivalently,

(6) Q(τ) = Q(0) + A(τ)− (I −RT)
(
B(τ)−Y(τ)

)
.
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NETWORK SCHEDULING 5

Note that A includes only exogenous arrivals to the network, not internally routed
traffic. We will assume that routing is acyclic, i.e. that work served from some queue
n never returns to queue n. For example, Border Gateway Protocol (BGP) utilized
for routing in the Internet is designed to be acyclic [30]. This implies that the inverse
~R = (I − RT)−1 exists; by considering the expansion ~R = I + RT + (RT)2 + · · · it
is clear that ~Rmn ∈ {0, 1} for all m, n and that ~Rmn = 1 if work injected at queue
n eventually passes through m, and ~Rmn = 0 otherwise. When R = 0 we obtain a
single-hop switched network.

A straightforward bound we shall need is

(7) Qn(τ) ≤ Qn(τ ′) +An(τ)−An(τ ′) +
∑
m

Rmn
(
Bm(τ)−Bm(τ ′)

)
for τ ′ ≤ τ .

2.2. Scheduling policy. A policy that decides which schedule to choose at each
timeslot τ ∈ Z+ is called a scheduling policy. In this paper we will be interested
in the Max-Weight scheduling policy, introduced by Tassiulas and Ephremides [28].
We will refer to it as MW.

2.2.1. Max-weight policy for single-hop network. We describe the policy first for
a single-hop network. Let Q(τ) be the vector of queue sizes at time τ . Define the
weight of a schedule π ∈ S to be π·Q(τ). The MW policy then chooses1 for timeslot
τ a schedule dB(τ) with the greatest weight,

(8) dB(τ) ∈ argmax
π∈S

π ·Q(τ).

This policy can be generalized to choose a schedule which maximizes π·Q(τ)α, where
the exponent is taken componentwise for some α > 0; call this the MW-α policy.
More generally, one could choose a schedule such that

(9) dB(τ) ∈ argmax
π∈S

π ·f(Q(τ))

for some function f : R+ → R+; call this the MW-f policy. It is assumed that f
satisfies the following scale-invariance property:

1There may be several schedules which jointly have the greatest weight. To be concrete, we
might specify some fixed numbering of schedules, and choose the highest-numbered maximum-
weight schedule. Alternatively, we might treat MW not as a policy per se but as a constraint on
the set of allowed sample paths. For example, in a stochastic setting, we might allow dB(τ) to be
a random variable, measurable with respect to the underlying probability space, satisfying (8) for
every randomness. This permits ‘break ties at random’. For the analyses in this paper, it makes no
difference which of these two options is used.
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6 SHAH & WISCHIK

Assumption 2.1 Assume f is differentiable and strictly increasing with f(0) = 0.
Assume also that for any q ∈ RN+ and π ∈ S, with m(q) = maxρ∈S ρ·f(q),

π ·f(q) = m(q) =⇒ π ·f(κq) = m(κq) for all κ ∈ R+.

This is satisfied by f(x) = xα, α > 0, but it is not satisfied for example for an
input-queued switch with f(x) = log(1 + x).

2.2.2. Max-weight policy for multihop network. Now we define the multihop ver-
sion of the MW-f scheduling policy. This policy chooses a schedule dB(τ) at time
τ such that

dB(τ) ∈ argmax
π∈S

π · (I −R)f
(
Q(τ)

)
.

Recall that matrix multiplication takes precedence over the · operator, so the argmax
is of π ·

{
(I −R)f(Q(τ))

}
; note also that

[Rf(Q)]n =
∑
m

Rnmf(Qm) = f
(
[RQ]n

)
where [RQ]n is the queue size at the first queue downstream of n (or 0 if there is no
queue downstream). Thus

(10)
[
(I −R)f(Q)

]
n

= f(Qn)− f
(
[RQ]n

)
.

The difference f(Qn) − f([RQ]n) is interpreted as the pressure to send work from
queue n to the queue downstream of n; if the downstream queue has more work in
it than the upstream queue then there is no pressure to send work downstream. For
this reason, it is also known as backpressure policy.

As before we will assume that f satisfies a scale-invariance property, the multihop
equivalent of Assumption 2.1:

Assumption 2.2 Assume f is differentiable and strictly increasing with f(0) = 0.
Assume also that for any q ∈ RN+ and π ∈ S, with m(q) = maxρ∈S ρ·(I −R)f(q),

π ·(I −R)f(q) = m(q) =⇒ π ·(I −R)f(κq) = m(κq) for all κ ∈ R+.

We further require that the scheduler always have the option of not sending work
downstream at any individual queue. Our Lyapunov function, and indeed our whole
fluid analysis in Section 6, rely on this assumption.

Assumption 2.3 For the multihop setting, assume that S satisfies the following: if
π ∈ S is an allowed schedule, and ρ ∈ RN+ is some other vector with ρn ∈ {0, πn}
for all n, then ρ ∈ S.

In the rest of this paper, whenever we refer to a network running the MW-f back-
pressure policy, we mean that Assumptions 2.2 and 2.3 are satisfied.
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NETWORK SCHEDULING 7

2.3. Stochastic model. Some of the results in this paper are about fluid-scaled
processes, and others are about multiplicative state space collapse in the diffusion
scaling, and the different results make different assumptions about the arrival pro-
cess.

Assumption 2.4 (Assumptions for the fluid scale) Let A(·) be a random pro-
cess with stationary increments. Assume it has a well-defined mean arrival rate vec-
tor λ, i.e. assume limτ→∞An(τ)/τ exists almost surely and is deterministic for
every queue 1 ≤ n ≤ N , and define

(11) λn = lim
τ→∞

1

τ
An(τ).

Assume there is a sequence of deviation terms δr ∈ R+, r ∈ N, such that δr → 0 as
r →∞ and

P
(

sup
τ≤r

1

r

∣∣A(τ)− λτ
∣∣ ≥ δr)→ 0 as r →∞.

Assumption 2.5 (Assumptions for multiplicative state space collapse) Let
Ar(·) be a sequence of random processes indexed by r ∈ N. For each r, assume that
Ar has stationary increments, and a well-defined mean arrival rate vector λr, and
that there is some limiting arrival rate vector λ such that

λr → λ as r →∞.

Assume there is a sequence of deviation terms δz ∈ R+, z ∈ N, such that δz → 0 as
z →∞ and

z(log z)2 P
(

sup
τ≤z

1

z

∣∣Ar(τ)− λrτ
∣∣ ≥ δz)→ 0 as z →∞, uniformly in r.

If the arrival process is the same for all r, say Ar = A where A has a well-defined
mean arrival rate vector, then Assumption 2.5 reduces to

(12) P
(

sup
τ≤r

1

r

∣∣A(τ)− λτ
∣∣ ≥ δr) = o

( 1

r(log r)2

)
and it implies Assumption 2.4. For any arrival process with i.i.d. increments that
are uniformly bounded, i.e. such that there is an Amax for which

An(τ + 1)−An(τ) ∈
[
0, Amax

]
for all n, τ ,

equation (12) holds with δr = C
√

log r/
√
r, with choice of an appropriate constant

C that depends on Amax, by an application of concentration inequality by Azuma [2]
and Hoeffding [14]. More generally, it holds when the increments are not uniformly
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8 SHAH & WISCHIK

bounded but instead satisfy a reasonable moment bound. For example, an applica-
tion of Doob’s maximal inequality [10] with bounded fourth moment and δr = r−1/6

yields a stronger result than (12); this can be used to show that a Poisson process
satisfies that equation. Furthermore (12) holds for a much larger class of station-
ary arrival processes beyond processes with i.i.d. increments, for example Markov
modulated processes (see Dembo and Zeitouni [9]).

2.4. Motivating example. An Internet router has several input ports and output
ports. A data transmission cable is attached to each of these ports. Packets arrive
at the input ports. The function of the router is to work out which output port each
packet should go to, and to transfer packets to the correct output ports. This last
function is called switching. There are a number of possible switch architectures; we
will consider the commercially popular input-queued switch architecture.

Figure 1 illustrates an input-queued switch with three input ports and three out-
put ports. Packets arriving at input i destined for output j are stored at input port
i, in queue Qi,j , thus there are N = 9 queues in total. (For this example it is more
natural to use double indexing, e.g. Q3,2, whereas for general switched networks it
is more natural to use single indexing, e.g. Qn for 1 ≤ n ≤ N .)

The switch operates in discrete time. In each timeslot, the switch fabric can trans-
mit a number of packets from input ports to output ports, subject to the two con-
straints that each input can transmit at most one packet and that each output can
receive at most one packet. In other words, at each timeslot the switch can choose
a matching from inputs to outputs. The schedule π ∈ R3×3

+ is given by πi,j = 1 if
input port i is matched to output port j in a given timeslot, and πi,j = 0 otherwise.
Clearly π is a permutation matrix, and the set S of allowed schedules is the set of
3× 3 permutation matrices.

Figure 1 shows two possible matchings. In the left hand figure, the matching
allows a packet to be transmitted from input port 3 to output port 2, but since Q3,2

is empty, no packet is actually transmitted.

3. Related work. Keslassy and McKeown [20] found from extensive simula-
tions of an input-queued switch that the average queueing delay is different under
MW-α policies for different values of α > 0. They conjecture:

Conjecture 3.1 For an input-queued switch running the MW-α policy, the average
queueing delay decreases as α decreases.

Though our work is motivated by the desire to establish Conjecture 3.1, we have
not been able to prove it. But whereas the two main analytic approaches that have
been employed in the literature yield results for the input-queued switch that are
insensitive to α, our result about multiplicative state space collapse is sensitive, as
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Fig 1. An input-queued switch, and two example matching of inputs to outputs.

shown in Section 8. We speculate that our result might eventually form part of a
proof of the conjecture.

The two main analytic approaches that have been employed in the literature are
stability analysis and heavy traffic analysis. In stability analysis, one calculates the
set of arrival rates for which a policy is stable (in the sense of [1, 8, 20, 24, 25, 28]).
All the prior work in this context leads to the conclusion that MW-α has the optimal
stability region, regardless of α.

In heavy traffic analysis, one looks at queue size behavior under a diffusion (or
heavy traffic) scaling. This regime was first described by Kingman [21]; since then a
substantial body of theory has developed, and modern treatments can be found in [3,
11, 29, 31]. Stolyar has studied MW-α for a generalized switch model in the diffusion
scaling, and obtained a complete characterization of the diffusion approximation for
the queue size process, under a condition known as ‘complete resource pooling’. This
condition effectively requires that a clever scheduling policy be able to balance work
between all the heavily loaded queues. Stolyar [27] showed in a remarkable paper
that the limiting queue size lives in a one-dimensional state space. Operationally, this
means that all one needs to keep track of is the one-dimensional total amount of work
in the system (called the workload), and at any point in time one can assume that
the individual queues have all been balanced. Dai and Lin [6, 7] have established that
similar result holds in the more general setting of a stochastic processing network.

Under the complete resource pooling condition, the results in [6, 7, 27] imply
that the performance of MW-α in an input-queued switch is always optimal (in
the diffusion scaling) regardless of the value of α > 0. Therefore these results do
not help in addressing Conjecture 3.1. This is our motivation for studying switched
networks in the absence of complete resource pooling. Technically, the lifting map
for a critically-loaded input-queued switch is degenerate and insensitive to α under
complete resource pooling, but it is sensitive to α otherwise.

We prove multiplicative state space collapse, following the method of Bramson
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10 SHAH & WISCHIK

[3]. The complement of Bramson’s work is by Williams [31], and consists in proving
a diffusion approximation, using an appropriate invariance principle along with the
multiplicative state space collapse. We do not carry out this complementary aspect.
Stolyar [27] and Dai and Lin [6, 7] have proved the diffusion approximation under
complete resource pooling condition; and Kang and Williams [17] have made progress
towards it in the case without complete resource pooling, for an input-queued switch
under the MW-1 policy.

Whereas in heavy traffic models of other systems [3, 11, 27, 31] the lifting map
from workloads to queue sizes is linear, we find instead that it is nonlinear—in fact
it can be expressed as the solution to an optimization problem. The objective func-
tion of the problem is a natural generalization of the Lyapunov function introduced
by Tassiulas and Ephremides [28] for proving stability of the MW-1 policy; the con-
straints of the problem are closely linked to the canonical representation of workload
identified by Harrison [12]. The objective function for MW-α depends on α, and this
hints that the performance measures might also depend on α.

Finally, we take note of two related results. First, in [26] we have reported some
results about a critically loaded input-queued switch without complete resource pool-
ing condition. Second, a sequence of works by Kelly and Williams [19] and Kang
et al. [16] has resulted in a diffusion approximation for a bandwidth sharing network
model operating under proportionally fair rate allocation, assuming a technical ‘lo-
cal traffic’ condition, but without assuming complete resource pooling. They show
that the resulting diffusion approximation model has a product form stationary dis-
tribution.

4. The fluid approximation. This section introduces the fluid model and es-
tablishes it as an approximation to a fluid-scaled descriptor of the switched network.
Intuitively, the fluid model describes the dynamics of the system at the ‘rate’ level
rather than at finer granularity. The reader is referred to a recent monography by
Bramson [4] and lecture notes by Dai [5] for a detailed account of fluid approxima-
tion for multiclass queueing networks. In Section 4.1 we specify the fluid model, in
Section 4.2 we state the main result, and in Section 4.3 we prove it.

4.1. Definition of fluid model. Let time be measured by t ∈ [0, T ] for some fixed
T > 0. Let q, a and y all be continuous functions mapping [0, T ] into RN+ , and let s =
(sπ)π∈S be a collection of continuous functions mapping [0, T ] into R+. Let x(·) =
(q(·),a(·),y(·), s(·)). This lies in CI(T ) where I = 3N + |S|. The definition below
requires these functions to be absolutely continuous; such functions are differentiable
almost everywhere, and the time instants where they are differentiable are called
regular times. Any equations we write involving derivatives are taken to apply only
at regular times.
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NETWORK SCHEDULING 11

Definition 4.1 (Fluid model solution for single-hop network) Let f : R+ →
R+ satisfy Assumption 2.1. Say that x(·) is a fluid model solution for a single-hop
switched network with arrival rate λ ∈ RN+ operating under the MW-f policy if it
satisfies equations (13)–(20) below. Write FMS for the set of all such x ∈ CI(T ).
Additionally, define

FMSK =
{
x ∈ FMS : |q(0)| ≤ K

}
FMS(q0) =

{
x ∈ FMS : q(0) = q0

}
.

The equations are

q(t) = q(0) + a(t)−
∑
π

sπ(t)π + y(t)(13)

a(t) = λt(14) ∑
π∈S

sπ(t) = t(15)

y(t) ≤
∑
π∈S

sπ(t)π(16)

each sπ(·) and yn(·) is increasing (not necessarily strictly increasing)(17)

all the components of x(·) are absolutely continuous(18)

for regular times t, all n, ẏn(t) = 0 if qn(t) > 0(19)

for regular times t, all π ∈ S, ṡπ(t) = 0 if π ·f(q(t)) < max
ρ∈S

ρ·f(q(t))(20)

Here, q(t) represents the vector of queue sizes at time t, a(t) represents the cu-
mulative arrivals up to time t, y(t) represents the cumulative idleness up to time
t, and sπ(t) represents the total amount of time spent on schedule π up to time t.
The equation in (13) is the continuous analogue of (4) combined with (5), and the
inequality is the analogue of the single-hop version of (7). Equation (14) represents
an assumption about the arrival process, related to (11). Equation (15) says that the
scheduling policy must choose some schedule at every timestep. Both (16) and (19)
derive from the definition of idling, (3). Equation (20) is the continuous analogue of
(9).

Definition 4.2 (Fluid model solution for multihop network) Let f : R+ →
R+ satisfy Assumption 2.2, and let S satisfy Assumption 2.3. Say that x(·) is a
fluid model solution for a multihop switched network operating under the MW-f
policy if it satisfies equations (14)–(19), and additionally (21) and (22) below. Let
FMSm be the set of all such x ∈ CI(T ). Also, let FMSmK and FMSm(q0) be defined
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12 SHAH & WISCHIK

analogously to the single-hop case. The extra equations are

q(t) = q(0) + a(t)− (I −RT)
(∑
π

sπ(t)π − y(t)
)

(21)

for all regular times t, all π ∈ S,(22)

ṡπ(t) = 0 if π ·(I −R)f(q(t)) < max
ρ∈S

ρ·(I −R)f(q(t))

When we refer to ‘fluid model solutions for any scheduling policy’, we mean pro-
cesses x(·) ∈ CI(T ) satisfying (13) to (19) in the single-hop case, or satisfying (14)
to (19) plus (21) in the multihop case.

4.2. Main fluid model result. The development in this section follows the general
pattern of Bramson [3]. There is however a difference in presentation that is worth
noting. The main result of this section, Theorem 4.3, is a general purpose sample
path-wise result: it does not make any probabilistic claim nor does it depend on any
probabilistic assumptions. It can be applied to a switched network with stochastic
arrivals in two ways: to obtain a result about fluid approximations (Corollary 4.4),
and to obtain a result about multiplicative state space collapse (Section 7).

We start by defining the fluid scaling. Consider a switched network of the type
described in Section 2.1 running a scheduling policy of the type described in Sec-
tion 2.2. Write X(τ) = (Q(τ),A(τ),Y(τ), S(τ)), τ ∈ Z+ to denote its sample
path. Given a scaling parameter z ≥ 1, define the fluid-scaled sample path x̃(t) =
(q̃(t), ã(t), ỹ(t), s̃(t)) for t ∈ R+ by

q̃(t) = Q(zt)/z ã(t) = A(zt)/z

ỹ(t) = Y(zt)/z s̃π(t) = Sπ(zt)/z

after extending the domain of X(·) to R+ by linear interpolation in each interval
(τ, τ + 1). In this section we are interested in the evolution of x̃(t) over t ∈ [0, T ] for
some fixed T > 0, therefore we take x̃ to lie in CI(T ) with I = 3N + |S|.

The following theorem concerns uniform convergence of a set of fluid-scaled sam-
ple paths. Every fluid-scaled sample path is assumed to relate to some (unscaled)
switched network, and all the switched networks are assumed to have the same net-
work data, i.e. the same number of queues N , the same set of allowed schedules S,
the same routing matrix R, and the same scheduling policy.

The convergence is indexed by a parameter j lying in some totally ordered count-
able set. For Corollary 4.4 we will use j ∈ N, and for Section 7 we will use a subset
of N × N as the index set. We are purposefully using the symbol j here as an in-
dex, rather than the r used elsewhere, to remind the reader that the index set is
interpreted differently in different results.
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NETWORK SCHEDULING 13

Theorem 4.3 Let X be the set of all possible sample paths for single-hop switched
networks with the network data specified above, running the MW-f scheduling policy,
where f satisfies Assumption 2.1. Fix K > 0 and λ ∈ RN+ . Let there be sequences
εj ∈ R+ and λj ∈ RN+ , indexed by j in some totally ordered countable set, such that

(23) εj → 0 and λj → λ, as j →∞.

Consider a sequence of subsets Gj ⊂ CI(T )× [1,∞) which satisfy the following: for
every (x̃, z) ∈ Gj there is some unscaled sample path X ∈ X such that x̃ is the fluid-
scaled version of X with scaling parameter z (here z is permitted to be a function of
X); and furthermore

inf
{
z : (x̃, z) ∈ Gj

}
→∞ as j →∞,(24)

sup
(x̃,z)∈Gj

sup
t∈[0,T ]

∣∣ã(t)− λjt
∣∣ ≤ εj for all j, and(25)

sup
(x̃,z)∈Gj

∣∣q̃(0)
∣∣ ≤ K for all j.(26)

Then

(27) sup
(x̃,z)∈Gj

d
(
x̃,FMSK

)
→ 0 as j →∞.

Furthermore, fix q0 ∈ RN+ and a sequence ε′j → 0, and assume that the sets Gj also
satisfy

(28) sup
(x̃,z)∈Gj

∣∣q̃(0)− q0

∣∣ ≤ ε′j for all j.

Then

(29) sup
(x̃,z)∈Gj

d(x̃,FMS(q0))→ 0 as j →∞.

Equivalent results to (27) and (29) apply to multihop switched networks, with ref-
erences to FMS replaced by FMSm and the set X modified to refer to multihop
networks running the MW-f scheduling policy where f satisfies Assumption 2.2 and
S satisfies Assumption 2.3.

The above theorem as stated applies to the MW-f scheduling policy, but it is
clear from the proof that a corresponding limit result holds, relating sample paths
of any scheduling policy to fluid models defined by equations (13)–(19).

The following corollary is a straightforward application of Theorem 4.3. It spe-
cializes the theorem to the case of a single random system X, and the sequence of
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14 SHAH & WISCHIK

fluid-scaled versions indexed by r ∈ N where the rth version uses scaling parame-
ter r. The arrival process is assumed to satisfy certain stochastic assumptions. This
corollary is useful when studying the behaviour of a single switched network with
random arrivals, over long timescales.

Corollary 4.4 Consider a single-hop switched network as described in Section 2.1,
running the MW-f policy as described in Section 2.2 where f satisfies Assumption
2.1. Let the arrival process A(·) satisfy Assumption 2.4, and let the initial queue
size Q(0) ∈ RN+ be random. For r ∈ N, let

q̃r(t) = Q(rt)/r ãr(t) = A(rt)/r

ỹr(t) = Y(rt)/r s̃rπ(t) = Sπ(rt)/r,

and let x̃r(t) = (q̃r(t), ãr(t), ỹr(t), s̃r(t)), for t ∈ [0, T ] where T > 0 is some fixed
time horizon. Then for any δ > 0

P
(
d
(
x̃r(·),FMS(0)

)
< δ
)
→ 1 as r →∞.

The same conclusion holds for a multihop switched network running the MW-f back-
pressure policy where f satisfies Assumption 2.2 and S satisfies Assumption 2.3, with
FMS replaced by FMSm.

Proof. First define the event Er by

Er =
{

sup
τ≤r

1

r

∣∣∣A(τ)− λτ
∣∣∣ < δr and

∣∣Q(0)
∣∣ ≤ √r}

where λ and δr are as in Assumption 2.4. By this we mean that Er is a subset of
the probability sample space, and we write X(·)(ω) etc. for ω ∈ Er to emphasize
the dependence on Er.

We will apply Theorem 4.3 with index set j ≡ r ∈ N to the sequence of sets

Gj ≡ Gr =
{(
x̃r(·)(ω), r

)
: ω ∈ Er

}
.

In order to apply the theorem we will pick constants as follows. Let K = 1, let λ be
as in Assumption 2.4, λj = λ for all j, εj ≡ εr = Tδr where δr is as in Assumption
2.4, q0 = 0 and ε′r = 1/

√
r. We now need to verify the conditions of Theorem 4.3.

Equation (23) holds by the choice of λj and by Assumption 2.4. Equation (24) holds
automatically by choice of Gj . To see that (25) holds, rewrite event Er in terms of
the fluid scaled arrival process ãr to see

sup
t∈[0,T ]

∣∣ãr(t)(ω)− λt
∣∣ < Tδr for all r and ω ∈ Er
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which implies (25). Likewise (26) and (28). We conclude that (29) holds. It may be
rewritten in terms of Er as

(30) sup
ω∈Er

d
(
x̃r(·)(ω),FMS(0)

)
→ 0 as r →∞.

We next argue that P(Er) → 1 as r → ∞. The event Er is the intersection
of two events, one concerning arrivals and the other concerning initial queue size.
The probability of the former → 1 as r → ∞ by Assumption 2.4. For the latter,
P(|Q(0)| ≤

√
r) → 1 as r → ∞ since Q(0) is assumed not to be infinite. Therefore

P(Er)→ 1. Combining this with (30) gives the desired result for single-hop networks.
The multihop version follows similarly. 2

4.3. Proof of Theorem 4.3. We shall present the proof of Theorem 4.3 for a
single-hop network in detail followed by main ideas required to extend it to multihop
networks.

4.3.1. Cluster points. Here we are interested in convergence in CI(T ), where
I = 3N + |S| and T > 0 is fixed, equipped with the norm ‖ · ‖. The appropriate
concept for proving convergence is cluster points. Consider any metric space E with
metric d and a sequence (E1, E2, . . . ) of subsets of E. Say that x ∈ E is a cluster point
of the sequence if lim infj→∞ d(x,Ej) = 0 where d(x,Ej) = inf{d(x, y) : y ∈ Ej}.

Proposition 4.5 (Cluster points in CI(T )) 2 Given K > 0, A > 0 and a se-
quence Bj → 0, let

Kj =
{
x ∈ CI(T ) : |x(0)| ≤ K and mcδ(x) ≤ Aδ +Bj for all δ > 0

}
and consider a sequence (E1, E2, . . . ) of subsets of CI(T ) for which Ej ⊂ Kj.
Then supy∈Ej d(y,CP) → 0 as j → ∞, where CP is the set of cluster points of
(E1, E2, . . . ).

4.3.2. Proof of Theorem 4.3. Let Ej = {x̃ : (x̃, z) ∈ Gj}. Lemma 4.6 below
shows that Ej ⊂ Kj , with Kj as defined in Proposition 4.5 for appropriate constants
K, A and Bj . By applying that proposition,

sup
x̃∈Ej

d
(
x̃,CP

)
→ 0 as j →∞

where CP is the set of cluster points of the Ej sequence. Lemma 4.7 below shows
that all cluster points of the Ej sequence satisfy the fluid model equations. Every
cluster point x must also satisfy |q(0)| ≤ K, by (26). Therefore

sup
x̃∈Ej

d
(
x̃,FMSK

)
→ 0 as j →∞.

2taken from Bramson [3, Proposition 4.1]
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16 SHAH & WISCHIK

If in addition (28) holds then every cluster point x must also satisfy q(0) = q0.
Therefore

sup
x̃∈Ej

d
(
x̃,FMS(q0)

)
→ 0 as j →∞.

2

Lemma 4.6 (Tightness of fluid scaling) Let K and Gj be as in Theorem 4.3.
Then there exist a constant A > 0 and a sequence Bj → 0 such that for every
(x̃, z) ∈ Gj, |x̃(0)| ≤ K and∣∣x̃(u)− x̃(t)

∣∣ ≤ A |u− t|+Bj for all 0 ≤ t, u ≤ T .

Proof. Consider (x̃, z) ∈ Gj , where x̃ = (q̃, ã, ỹ, s̃). As per the definitions in Section
2.1, the only non-zero component of x̃(0) is q̃(0), and |q̃(0)| ≤ K by choice of Gj ,
hence |x̃(0)| ≤ K. For the second inequality, without loss of generality pick any
0 ≤ t < u ≤ T , and let us now look at each component of |x̃(u)− x̃(t)| in turn.

For arrivals, let λmax = supj |λj |; this is finite by the assumption that λj → λ in
Theorem 4.3. Then for (x̃, z) ∈ Gj ,∣∣ã(u)− ã(t)

∣∣ ≤ ∣∣ã(u)− λju
∣∣+
∣∣λj(u− t)∣∣+

∣∣ã(t)− λjt
∣∣

≤ 2εj + |λj |(u− t) by (25)

≤ 2εj + λmax(u− t).

For idling, let Smax = maxπ∈S maxn πn. This is the maximum amount of service
that can be offered to any queue per unit time, and it must be finite since |S| is
finite. Then, based on (3),∣∣ỹn(u)− ỹn(t)

∣∣ ≤ (u− t)Smax + 2Smax/z

≤ (u− t)Smax + 2Smax/zmin
j ,

where zmin
j = inf{z : (x̃, z) ∈ Gj}. For service, let Sπ(·) be the unscaled process

that corresponds to s̃π(·); since Sπ(·) is increasing and since a schedule must be
chosen not more than once every timeslot,

∣∣s̃π(u)− s̃π(t)
∣∣ ≤ 1

z

(
Sπ(dzue)− Sπ(bztc)

)
≤ (u− t) + 2/z ≤ (u− t) + 2/zmin

j .

For queue size, note that (4) carries through to the fluid model scaling, i.e.

q̃(t) = q̃(0) + ã(t)−
∑
π

s̃π(t)π + ỹ(t),
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NETWORK SCHEDULING 17

thus∣∣q̃n(u)− q̃n(t)
∣∣ ≤ ∣∣ãn(u)− ãn(t)

∣∣+
∑
π

πn
∣∣s̃π(u)− s̃π(t)

∣∣+
∣∣ỹn(u)− ỹn(t)

∣∣
≤ (u− t)

(
λmax + |S|Smax + Smax

)
+
(

2|S|Smax + 2Smax
)
/zmin
j + 2εj .

Putting all these together,

|x̃(u)− x̃(t)| ≤ A(u− t) +Bj ,(31)

where the constants are

A = (N + 1)λmax + 2NSmax + |S|+N |S|Smax, and

Bj =
(

4NSmax + 2|S|+ 2N |S|Smax
) 1

zmin
j

+ (2 + 2N)εj .

By the assumptions of Theorem 4.3, εj → 0 and zmin
j →∞ as j →∞, thus Bj → 0

as required. 2

Lemma 4.7 (Dynamics at cluster points) Make the same assumptions as The-
orem 4.3 and let Ej = {x̃ : (x̃, z) ∈ Gj}. Then x ∈ FMSK if x is a cluster point of
the Ej sequence.

Proof. From Lemma 4.6 and Proposition 4.5, it follows that lim supx̃∈Ej d(x̃,CP)→
0 as j → ∞ where CP is the set of cluster points of the sequence Ej . Let x be one
such cluster point. That is, there exists a subsequence jk and a collection x̃jk ∈ Ejk
such that x̃jk → x. It easily follows that |x(0)| ≤ K since |x̃jk(0)| ≤ K for all
x̃jk ∈ Ejk as argued in Lemma 4.6. Using this, we wish to establish that x satisfies
all the fluid model equations to conclude x ∈ FMSK . For convenience, we shall omit
the subscript k in the rest of the proof, that is we shall use j in place of jk and
j →∞.

Proof of (13), (15), (17). The discrete (unscaled) system satisfies these properties,
therefore the scaled systems x̃j do too. Taking the limit yields the fluid equations.

Proof of (16). In (3), dB(τ) and Q(τ) are both non-negative (component-wise),
hence dY(τ) ≤ dB(τ) for all τ . Summing up over τ , we see the discrete (unscaled)
system satisfies the equivalent of (16), so as above we obtain the fluid equation.

Proof of (14). Observe that

sup
t∈[0,T ]

∣∣a(t)− λt
∣∣ ≤ sup

t∈[0,T ]

∣∣a(t)− ãj(t)
∣∣+ sup

t∈[0,T ]

∣∣ãj(t)− λjt∣∣+ T
∣∣λj − λ∣∣.

Each term converges to 0 as j → ∞: the first because x̃j → x, the second because
x̃j ∈ Ej so the deviation in ãj is bounded by εj and εj → 0, and the third because
λj → λ. Since the left hand side does not depend on j, it must be that a(t) = λt.
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18 SHAH & WISCHIK

Proof of (18). In Lemma 4.6 we found constants A and Bj such that for all x̃ ∈ Ej∣∣x̃(u)− x̃(t)
∣∣ ≤ A|u− t|+Bj ,

with Bj → 0 as j → ∞. Taking the limit of |x̃j(u)− x̃j(t)| as j → ∞, we find that
|x(u) − x(t)| ≤ A|u − t|, i.e. x is (globally) Lipschitz continuous (of order 1 with
respect to the appropriate metric as defined earlier). This immediately implies that
x is absolutely continuous.

Proof of (19). Since x = (q,a,y, s) is absolutely continuous, each component is
too, which means that yn is differentiable for almost all t. Pick some such t, and
suppose that qn(t) > 0. Consider some small interval I = [t, t + δ] about t. Since
qn is continuous, we can choose δ sufficiently small that infs∈I qn(s) > 0. Since
‖q̃j −q‖ → 0, we can find c > 0 such that infs∈I q̃

j
n(s) > c for all j sufficiently large.

Since x̃j ∈ Ej , there exists a corresponding unscaled version of the system, say Xj ,
and scaling parameter, say zj , so that x̃j(·) = Xj(zj ·)/zj . Therefore, it must be that

the corresponding unscaled queue satisfies infs∈I Q
j
n(zjs) > zjc. That is, the queue

size in the entire interval never vanishes to 0 and hence idling in the entire interval
is not possible. Therefore after rescaling we find ỹjn(t + δ/2) = ỹjn(t). (The switch
from δ to δ/2 sidesteps any discretization problems.) Therefore the same holds for
yn in the limit. We assumed yn to be differentiable at t, the derivative must be 0.

Proof of (20). Pick a t at which sπ is differentiable, and suppose that π·f(q(t)) <
maxρ ρ ·f(q(t)). As above, pick some small interval I = [t, t + δ] and j sufficiently
large that

π ·f
(
q̃j(s)

)
< max

ρ∈S
ρ·f

(
q̃j(s)

)
for s ∈ I.

Writing this in terms of the unscaled system and applying Assumption 2.1,

π ·f
(
Qj(zjs)

)
< max

ρ∈S
ρ·f

(
Qj(zjs)

)
for s ∈ I.

The MW-f policy ensures by (9) that π will not be chosen throughout this entire
interval, so after rescaling we find s̃jπ(t+ δ/2)− s̃jπ(t) = 0, and taking the limit gives
sπ(t+δ/2) = sπ(t). Since sπ is assumed to be differentiable at t; the derivative must
be 0. 2

4.3.3. Proof of Theorem 4.3 for multihop networks. The proof of Theorem 4.3
for single-hop network applies verbatim, except that the two lemmas need to be
replaced.
Lemma 4.6 (Tightness of fluid scaling) −→ Lemma 4.8
Lemma 4.7 (Dynamics at cluster points) −→ Lemma 4.9
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Lemma 4.8 (Tightness of fluid scaling) Make the same assumptions as The-
orem 4.3, multihop case, and use the same definition of Gj. Then there exist a
constant A > 0 and a sequence Bj → 0 such that for every (x̃, z) ∈ Gj, |x̃(0)| ≤ K
and ∣∣x̃(u)− x̃(t)

∣∣ ≤ A |u− t|+Bj for all 0 ≤ t, u ≤ T .

Proof. Consider (x̃, z) ∈ Gj , x̃ = (q̃, ã, ỹ, s̃). The bound |x̃(0)| ≤ K follows from
argument similar to that in the single-hop case. The bounds on the arrival process,
the idleness, and service allocation, are as in the single-hop case: for any 0 ≤ t <
u ≤ T , ∣∣ã(u)− ã(t)

∣∣ ≤ (u− t)λmax + 2εj ,∣∣ỹn(u)− ỹn(t)
∣∣ ≤ (u− t)Smax + 2Smax/zmin

j ,∣∣s̃π(t)− s̃π(s)
∣∣ ≤ (u− t) + 2/zmin

j ,

where zmin
j = inf{z : (x̃, z) ∈ Gj}. The bound on queue size is a little different.

Note that (6) carries through to the fluid-scaling, i.e.

q̃(t) = q̃(0) + ã(t)− (I −RT)
∑
π

s̃π(t)π + ỹ(t),

thus∣∣q̃n(u)− q̃n(t)
∣∣ ≤ ∣∣ãn(u)− ãn(t)

∣∣+
∑
π

∣∣∣[(I −RT)π]n

∣∣∣ ∣∣s̃π(u)− s̃π(t)
∣∣+
∣∣ỹn(u)− ỹn(t)

∣∣
≤ (u− t)

(
λmax + |S|(NSmax)Smax + Smax

)
+
(

2|S|(NSmax)Smax + 2Smax
)
/zmin
j + 2εj .

Putting all these together, for any (x̃, z) ∈ Gj ,

|x̃(u)− x̃(t)| ≤ A(t− s) +Bj ,

where the constants A and Bj are

A = (1 +N)λmax + 2NSmax + |S|+ |S|(NSmax)2

Bj =
(

4NSmax + 2|S|+ 2|S|(NSmax)2
) 1

zmin
j

+ (2N + 2)εj .
(32)

Here Bj → 0 as j →∞ since εj → 0 by (23) and zmin
j →∞ as j →∞ by (24). 2

Lemma 4.9 (Dynamics at cluster points) Under the setup of Theorem 4.3 for
a multihop network, let Ej = {x̃ : (x̃, z) ∈ Gj}. Then x ∈ FMSmK if x is a cluster
point of the Ej sequence.
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Proof. Given a cluster point x = (q,a,y, s), let there be (x̃j , zj) ∈ Gj so that
x̃j → x, as in the proof of Lemma 4.7. Now the bound |x(0)| ≤ K and equations
(14)–(19) all work exactly as in the single-hop case, as does the queue size equation
(21). The only equation that needs further argument is the MW-f backpressure
equations (22).

Proof of (22). Pick a t at which sπ is differentiable, and suppose that π · (I −
R)f(q(t)) < maxρ ρ·(I−R)f(q(t)). As in Lemma 4.7, proof of (20), it must be that
there is some small interval I = [zjt, zjt + zjδ] such that π is not chosen for any
τ ∈ I, therefore ṡπ(t) = 0. 2

5. Fluid model behaviour (single-hop case). In this section we prove cer-
tain properties of fluid model solutions, which will be needed for the main result
of this paper, multiplicative state space collapse. In order to state these properties,
we first need some definitions. We then state a portmanteau theorem listing all the
properties, and give an example to illustrate the definitions. The rest of the section
is given over to proofs and supplementary lemmas.

This section deals with a single-hop switched network; in the next section we give
corresponding results for multihop. Our reason for giving separate single-hop and
multihop proofs, rather than just treating single-hop as a special case of multihop, is
that our multihop results place additional restrictions on the set of allowed schedules
(Assumption 2.3) beyond what is required for single-hop networks. This mainly
affects the proof; the portmanteau theorem for multihop is nearly identical to that
for single-hop.

Definition 5.1 (Admissible region) Let S ⊂ RN+ be the set of allowed schedules.
Let 〈S〉 be the convex hull of S,

〈S〉 =
{∑
π∈S

αππ :
∑
π∈S

απ = 1, and απ ≥ 0 for all π
}
.

Define the admissible region Λ to be

Λ =
{
λ ∈ RN+ : λ ≤ σ componentwise, for some σ ∈ 〈S〉

}
.

Definition 5.2 (Static planning problems and virtual resources) Define the
optimization problem PRIMAL(λ) for λ ∈ RN+ to be

minimize
∑
π∈S

απ over απ ∈ R+ for all π ∈ S

such that λ ≤
∑
π∈S

αππ componentwise

imsart-aap ver. 2007/04/13 file: netsched.tex date: December 2, 2010



NETWORK SCHEDULING 21

Let DUAL(λ) be the dual to this: it is

maximize ξ ·λ over ξ ∈ RN+
such that max

π∈S
ξ ·π ≤ 1

Let E be the set of extreme points of the feasible region of the dual problem; the
feasible region is a finite convex polytope so E is finite. Define the set of virtual
resources S∗ ⊂ RN+ to be the set of maximal extreme points,

S∗ =
{
ξ ∈ E : for all ζ ∈ E, ξ ≤ ζ =⇒ ξ = ζ

}
.

Define the set of critically loaded virtual resources Ξ(λ) to be

Ξ(λ) =
{
ξ ∈ S∗ : ξ ·λ = 1

}
.

Both problems are clearly feasible, and the optimum is attained in each. By
Slater’s condition there is strong duality, i.e. PRIMAL(λ) = DUAL(λ). (When we
write PRIMAL(λ) or DUAL(λ) in mathematical expressions, we mean the optimum
value, not the optimizer.) Clearly, PRIMAL(λ) ≤ 1 if and only if λ is feasible.

Laws [22, 23] and Kelly and Laws [18] used primal and dual problems of this
general sort for describing multihop queueing networks with routing choice. Harrison
[12] extended the problems for stochastic processing networks.

Definition 5.3 (Lyapunov function and lifting map) Let the scheduling pol-
icy be MW-f , where f satisfies Assumption 2.1. Define the function L : RN+ → R+

by

L(q) = F (q)·1

where F (x) =
∫ x

0 f(y) dy for x ∈ R, and F (q) = [F (qn)]1≤n≤N as per the notation
in Section 1. Define the optimization problem ALGD(q) to be

minimize L(r) over r ∈ RN+
such that ξ ·r ≥ ξ ·q for all ξ ∈ Ξ(λ)

and rn ≤ qn for all n such that λn = 0.

Note that F is strictly convex and increasing, and the feasible region is convex,
hence this problem has a unique optimizer. Define the lifting map ∆W : RN+ → RN+
by setting ∆W (q) to be the optimizer.

Note that ALGD and ∆W both depend on λ and f , but we will surpress this
dependency when the context makes it clear which λ and f are meant.
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The results in this section apply to any λ ∈ Λ. However, if PRIMAL(λ) < 1
then Ξ(λ) is empty, so ∆W (q) = 0 for all q. The results are only interesting when
PRIMAL(λ) = 1, so we define

∂Λ =
{
λ ∈ Λ : PRIMAL(λ) = 1

}
.

We can now state the main result of this section.

Theorem 5.4 (Portmanteau theorem, single-hop version) Let λ ∈ Λ. Con-
sider a single-hop switched network running MW-f , where f satisfies Assumption
2.1.

(i) For any K <∞, {q ∈ RN+ : L(q) ≤ K} is compact. Also, for any fluid model
solution with arrival rate λ, L(q(t)) ≤ L(q(0)) for all t ≥ 0.

(ii) ∆W is continuous.
(iii) If q = ∆W (q) then ∆W (κq) = κ∆W (q) for all κ > 0.
(iv) Say that q0 is an invariant state if all fluid model solutions q(·) with arrival

rate λ, starting at q(0) = q0, satisfy q(t) = q0 for all t ≥ 0. Then q0 is an
invariant state ⇐⇒ q0 = ∆W (q0).

(v) For any ε > 0 there exists some Hε < ∞ such that, if q(·) is a fluid model
solution with arrival rate λ, and |q(0)| ≤ 1, then |q(t)−∆W (q(t))| < ε for
all t ≥ Hε.

A loose interpretation of these results is that the MW-f scheduling policy seeks
always to reduce L(q) (part (i)), but it is constrained from reducing it too much,
because it is not permitted to reduce the workload at any of the critically loaded
virtual resource (the constraints of ALGD). However, it can choose how to allocate
work between queues, subject to those constraints. It heads towards a state where
it is impossible to reduce L(q) any further (parts (iv) & (v)). In all the examples
we have looked at, the fluid model solutions reach an invariant state in finite time,
i.e. (v) holds also for ε = 0, but we have not been able to prove this in general.

5.1. Example to illustrate Λ, ∂Λ, S∗ and Ξ. Consider a system with N = 2
queues, A and B. Suppose the set S of possible schedules consists of “serve three
packets from queue A” and “serve one packet each from A and B”. Write these two
schedules as π1 = (3, 0) and π2 = (1, 1) respectively. Let λA and λB be the arrival
rates at the two queues, measured in packets per timeslot.

Determining Λ and ∂Λ. The arrival rate vector λ = (λA, λB) is feasible if there is
some σ = (1 − x)π1 + xπ2 with 0 ≤ x ≤ 1 such that λ ≤ σ. In words, the arrival
rates are feasible if the switch can divide its time between the two possible schedules
in such a way that the service rates at the two queues are at least as big as the
arrival rates. Schedule π2 is the only schedule which serves queue B, so we would
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need x ≥ λB. If λB > 1 then it is impossible to serve all the work that arrives at
queue B. Otherwise, we may as well set x = λB. The total amount of service given
to queue A is then 3(1 − x) + x = 3 − 2λB; if λA ≤ 3 − 2λB then it is possible to
serve all the work arriving at queue A. We have concluded that

Λ =
{

(λA, λB) : λB ≤ 1 and
1

3
λA +

2

3
λB ≤ 1

}
.

Further algebra tells us that

PRIMAL(λ) = max
(
λB,

1

3
λA +

2

3
λB

)
.

Hence

∂Λ =
{

(λA, λB) ∈ Λ : λB = 1 or
1

3
λA +

2

3
λB = 1

}
.

Determining S∗ and Ξ. The feasible region of DUAL(λ) is{
(ξ1, ξ2) ∈ R2

+ : 3ξ1 ≤ 1 and ξ1 + ξ2 ≤ 1
}
.

The extreme points may be found by sketching the feasible region; they are (0, 0),
(1/3, 0), (1/3, 2/3), and (0, 1). Clearly the maximal extreme points, i.e. the virtual
resources, are

S∗ =
{

(1/3, 2/3), (0, 1)
}
.

The set of critically loaded virtual resources depends on λA and λB: (0, 1) ∈ Ξ(λ)
iff λB = 1, and (1/3, 2/3) ∈ Ξ(λ) iff λA/3 + 2λB/3 = 1.

Interpretation of virtual resources1. Each virtual resource ξ ∈ S∗ may be inter-
preted as a virtual queue. For example, take ξ = (1/3, 2/3), and define the virtual
queue size to be ξ ·Q = QA/3 + 2QB/3. Think of the virtual queue as consisting of
tokens: every time a packet arrives to queue A put 1/3 tokens into the virtual queue,
and every time a packet arrives to queue B put in 2/3 tokens. The schedule π1 can
remove at most 3× 1/3 = 1 token, and schedule π2 can remove at most 1/3 + 2/3 = 1
token. In order that the total rate at which tokens arrive should be no more than
the maximum rate at which we can remove tokens, we need

λA/3 + 2λB/3 ≤ 1

i.e. λ ·ξ ≤ 1. If DUAL(λ) = PRIMAL(λ) > 1, then there is some ξ ∈ S∗ such that
λ ·ξ > 1, which means that the corresponding virtual queue is unstable, hence the
original system is unstable.

3cf. Laws [22, Example 4.4.3]
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5.2. Proofs for the portmanteau theorem. Throughout this subsection we con-
sider a single-hop switched network running MW-f with arrival rates λ ∈ Λ.

The first claim of Theorem 5.4(i), that {q ∈ RN+ : L(q) ≤ K} is compact for any
K < ∞, follows straightforwardly from the facts that L(q) → ∞ as |q| → ∞, and
L(·) is continuous. The second claim follows from a standard result (first given by
Dai and Prabhakar [8], for an input-queued switch), which we include here for the
sake of completeness.

Lemma 5.5 For all q ∈ RN+ ,

(33) λ·f(q)−max
π∈S

π ·f(q) ≤ 0.

Also, every fluid model solution satisfies

d

dt
L(q(t)) = λ·f(q(t))−max

π∈S
π ·f(q(t)) ≤ 0.

Proof. Since λ ∈ Λ, we can write λ ≤ σ componentwise for some σ =
∑
π αππ with

απ ≥ 0 and
∑
απ = 1. Hence

λ·f(q)−max
ρ
ρ·f(q) =

∑
π

αππ ·f(q)−max
ρ
ρ·f(q)

≤
(∑
π

απ − 1
)

max
ρ
ρ·f(q) ≤ 0.

For the claim about fluid model solutions,

d

dt
L(q(t)) = q̇(t)·f(q(t))

=
(
λ−

∑
π∈S

ṡπ(t)π + ẏ(t)
)
· f(q(t)) by differentiating (13)

=
(
λ−

∑
π

ṡπ(t)π
)
· f(q(t)) by (19), using f(0) = 0

= λ·f(q(t))−max
ρ
ρ·f(q(t))

∑
π

ṡπ(t) by (20)

= λ·f(q(t))−max
ρ
ρ·f(q(t)) by (15)

≤ 0 by (33). 2

To prove Theorem 5.4(ii), it is useful to work with a ‘fuller’ representation of the
lifting map. Let E be the set of extreme feasible solutions of DUAL(λ), and define

(34) Ξ+(λ) =
{
ξ ∈ E : ξ ·λ = 1

}
.

This includes non-maximal extreme points, whereas Ξ(λ) only includes maximal
extreme points.
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Lemma 5.6 The lifting map ∆W (q) is the unique solution to the optimization
problem ALGD+(q),

minimize L(r) over r ∈ RN+
such that ξ ·r ≥ ξ ·q for all ξ ∈ Ξ+(λ)

Proof. ALGD+(q) has a unique minimum for the same reason that ALGD(q) has a
unique minimum.

Next we claim that if r is feasible for ALGD(q) then it is feasible for ALGD+(q).
Pick any ξ ∈ Ξ+(λ). By definition, ξ is an extreme feasible solution of DUAL(λ)
and ξ·λ = 1. Since it is an extreme feasible solution, ξ ≤ ζ for some virtual resource
ζ ∈ S∗. Since ξ ·λ = 1 we know ζ ·λ ≥ 1, but by assumption λ ∈ Λ; hence ζ ·λ = 1
and furthermore ξn < ζn only for n where λn = 0. Now,

ξ ·r− ξ ·q =
(
ζ ·r− ζ ·q

)
+ (ξ − ζ)·(r− q).

We assumed that r is feasible for ALGD(q); by the first constraint of ALGD(q) the
first term in the preceding equation is positive; by the second constraint the second
term is positive. We have shown that ξ·r ≥ ξ·q for all ξ ∈ Ξ+(λ), hence r is feasible
for ALGD+(q).

Next we claim that if r is optimal for ALGD+(q) then it is feasible for ALGD(q).
Clearly it satisfies the first constraint of ALGD(q). Suppose it does not satisfy the
second constraint, i.e. that rn > qn for some n where λn = 0, and define r′ by
r′m = rm if m 6= n and r′n = qn. Then r′ < r hence L(r′) < L(r). Also, r′ is feasible
for ALGD+(λ). To see this, pick any ζ ∈ Ξ+(λ), and let ξ ∈ Ξ+(λ) be such that
ζm = ξm if m 6= n and ξn = 0. Then

ζ ·r′ = ξ ·r′ + ζnr
′
n = ξ ·r + ζnr

′
n ≥ ξ ·q + ζnr

′
n = ζ ·q.

The inequality is because r is feasible for ALGD+(q). This contradicts optimality
of r.

Putting these two claims together completes the proof. 2

With this representation, the lifting map ∆W can be split into two parts. Let
Ξ+(λ) = {ξ1, . . . , ξV } and define the workload map W : RN+ → RV+ by W (q) =
[ξv ·q]1≤v≤V . Also define ∆ : RV+ → RN+ by

(35) ∆(w) = argmin
{
L(r) : r ∈ RN+ and ξv ·r ≥ wv for 1 ≤ v ≤ V

}
.

(This has a unique optimum for the same reason that ALGD+ and ALGD have.)
Then the lifting map is simply the composition of ∆ and W . It is clear that W is
continuous; to prove Theorem 5.4(ii) we just need to prove that ∆ is continuous.
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Lemma 5.7 ∆ is continuous.

Proof. If Ξ+(λ) is empty, then ∆ is trivial and the result is trivial. In what follows, we
shall assume that Ξ+(λ) is non-empty, and we will abbreviate it to Ξ+. Furthermore
note that for every ξ ∈ Ξ+ there is some queue n such that ξn > 0; this is because
ξ ·λ = 1 by definition of Ξ+.

Pick any sequence wk → w ∈ RV+, and let rk = ∆(wk) and r = ∆(w). We want
to prove that rk → r. We shall first prove that there is a compact set [0, h]N such
that rk ∈ [0, h]N for all k. We shall then prove that any convergent subsequence of
rk converges to r; this establishes continuity of ∆.

First, compactness. A suitable value for h is

h = max
1≤v≤V

max
n:ξn>0

sup
k

wkv
ξvn
.

Note than the maximums are over a non-empty set, as noted at the beginning of the
proof. Note also that h is finite because w is finite. Now, suppose that rk 6∈ [0, h]N

for some k, i.e. that there is some queue n for which rkn > h, and let r′ = rk in
each component except for r′n = h. We claim that r′ satisfies the constraints of the
optimization problem for ∆(wk). To see this, pick any ξv ∈ Ξ+; either ξvn = 0 in
which case ξv ·r′ = ξv ·rk ≥ wkv , or ξvn > 0 in which case ξv ·r′ ≥ ξvnh ≥ wkv by
construction of h. Applying this repeatedly, if rk 6∈ [0, h]N then we can reduce it
to a queue size vector in [0, h]N , thereby improving on L(rk), yet still meeting the
constraints of the optimization problem for ∆(wk); this contradicts the optimality
of rk. Hence rk ∈ [0, h]N .

Next, convergence on subsequences. With a slight abuse of notation, let ∆(wk) =
rk → s be a convergent subsequence, and recall that ∆(w) = r and wk → w. By
continuity of the constraints, s is feasible for the optimization problem for ∆(w); we
shall next show that L(s) ≤ L(r). Since r is the unique optimum, it must be that
s = r.

It remains to show that L(s) ≤ L(r). Consider the sequence r + εk1 as candidate
solutions to the problem ∆(wk) where

εk = max
1≤v≤V

wkv − wv
ξv ·1

.

This choice ensures that the candidates are feasible, since

ξv ·(r + εk1) = ξv ·r + εkξv ·1 ≥ ξv ·r + wkv − wv ≥ wkv .

(If we had used ξ ∈ Ξ rather than ξ ∈ Ξ+, it would not necessarily be true that the
candidates are feasible; this is why we introduced Lemma 5.6.) Since the candidates
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are feasible solutions to the problem ∆(wk), and rk is an optimal solution, it must
be that

L(rk) ≤ L(r + εk1).

Taking the limit as k →∞, and noting that L is continuous and εk → 0, we find

L(s) ≤ L(r)

as required. This completes the proof. 2

For the proof of Theorem 5.4(iii), it is useful to work with a different representation
of the constraint of ALGD, provided by the following lemma.

Lemma 5.8 (i) ∆W (q) = [q + t(λ− σ)]+ for some t ≥ 0 and σ ∈ 〈S〉.
(ii) [q + t(λ− σ)]+ is feasible for ALGD(q) for all t ≥ 0 and σ ∈ 〈S〉.

Proof of Lemma 5.8(i). We will shortly prove that the following are equivalent, for
all q and r ∈ RN+ :

r ≥ q + t(λ− σ) for some t ≥ 0, σ ∈ 〈S〉,(36)

ξ ·r ≥ ξ ·q for all ξ ∈ Ξ+(λ).(37)

We use this equivalence as follows. From Lemma 5.6 we know that ∆W (q) is the
solution of ALGD+(q). That is, letting q′ = ∆W (q), equation (37) holds with q′ in
the place of r. Hence (36) holds for some t ≥ 0 and σ ∈ 〈S〉; moreover since q′ ≥ 0
it must be that

q′ ≥ [q + t(λ− σ)]+.

We claim that this inequality is in fact an equality. To see this, note that r =
[q + t(λ−σ)]+ satisfies (36), hence it satisfies (37), hence it is a feasible solution of
ALGD+(q). Note also that L(·) is increasing componentwise, hence L(q′) ≥ L(r).
But ALGD+(q) has a unique minimum, hence q′ = r as required. This completes
the proof of Lemma 5.8(i), once we have proved the equivalence between (36) and
(37).

Proof that (36) =⇒ (37). Pick any ξ ∈ Ξ+(λ). By definition of Ξ+(λ), we know:
ξ ≥ 0; ξ ·π ≤ 1 for all π ∈ S, hence ξ ·σ ≤ 1 for all σ ∈ 〈S〉; and ξ ·λ = 1. Hence

ξ ·r ≥ ξ ·q + t
(
ξ ·λ− ξ ·σ) assuming q, r ∈ RN+ satisfying (36)

= ξ ·q + t
(
1− ξ ·σ) ≥ ξ ·q + t(1− 1) = ξ ·q.

imsart-aap ver. 2007/04/13 file: netsched.tex date: December 2, 2010



28 SHAH & WISCHIK

Proof that (36) ⇐= (37). Let q and r satisfy (37), and let σ′ = λ − (r − q)/t
for some sufficiently large t ∈ R+. We shortly show that the value of DUAL(σ′) at
its optimum is ≤ 1. By strong duality the value of PRIMAL(σ′) at its optimum is
likewise ≤ 1, and so by definition of PRIMAL(σ′) we can find some σ ∈ 〈S〉 such
that σ′ ≤ σ componentwise. Then

r = q + t(λ− σ′) ≥ q + t(λ− σ)

i.e. r satisfies (36).
It remains to show that the value of DUAL(σ′) at its optimum is ≤ 1, i.e. that

ζ ·σ′ ≤ 1 for all dual-feasible ζ. We have assumed that λ ∈ Λ, hence ζ ·λ ≤ 1. On
one hand, if ζ ·λ = 1 then it follows from the definition of Ξ+ that ζ ∈ 〈Ξ+(λ)〉,
hence

ζ ·σ′ = ζ ·λ− ζ ·(r− q)/t

= 1− ζ ·(r− q)/t since ζ ·λ = 1

≤ 1 by (37).

On the other hand, if ζ ·λ < 1 then

ζ ·σ′ < 1− ζ ·(r− q)/t

and this is < 1 for t sufficiently large. Either way, ζ · σ′ ≤ 1. Therefore the value of
DUAL(σ′) at its optimum is ≤ 1.

Proof of Lemma 5.8(ii). For this, we need to check two feasibility conditions of
ALGD(q). The first feasibility condition is

ξ ·[q + t(λ− σ)]+ ≥ ξ ·q for all ξ ∈ Ξ(λ).

Pick any ξ ∈ Ξ(λ). By definition of Ξ(λ), ξ ≥ 0, ξ·π ≤ 1 for all π ∈ S hence ξ·σ ≤ 1
for all σ ∈ 〈S〉, and ξ ·λ = 1, thus

ξ ·[q + t(λ− σ)]+ ≥ ξ ·[q + t(λ− σ)] = ξ ·q + t(1− ξ ·σ) ≥ ξ ·q

as required. The second feasibility condition is that if λn = 0 for some n then

[qn + t(λn − σn)]+ = [qn − tσn]+ ≤ qn.

This is true because σ ≥ 0 componentwise for all σ ∈ 〈S〉. 2

Theorem 5.4(iii) is a corollary of the following lemma.

Lemma 5.9 (Scale-invariance of ∆W ) Let q ∈ RN+ . Then ∆W (κq) = κ∆W (q)
for all κ > 0.

Proof. We will first establish three preliminary properties of ∆W . Preliminary 1 is
used to prove 2, and 2 & 3 are used in the main proof.
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Preliminary 1. If q = ∆W (q′) for some q′ ∈ RN+ then

(38) λ·f(q) = max
π∈S

π ·f(q).

To see this, suppose π ∈ S has maximal weight and consider r =
[
q + t(λ − π)

]+
.

This is feasible for ALGD(q) by Lemma 5.8. Now, using the fact that f(0) = 0,

d

dt
L
([

q + t(λ− π)
]+)∣∣∣

t=0
= (λ− π)·f(q).

Since q is optimal for ALGD(q′) it is a forteriori optimal for ALGD(q), hence
λ ·f(q) ≥ π ·f(q). On the other hand, λ ∈ Λ so λ ≤ σ for some σ ∈ 〈S〉, hence
λ·f(q) ≤ σ ·f(q) ≤ π ·f(q). Hence the result follows.

Preliminary 2. Suppose that r = ∆W (q). From Lemma 5.8, r =
[
q + t(λ− σ)

]+
for some t ≥ 0 and σ ∈ 〈S〉. Then either t = 0 or

(39) σ ·f(r) = max
π∈S

π ·f(r).

This is because t is an optimal choice, so either t is constrained to be 0 or

d

du
L
([

q + u(λ− σ)
]+)∣∣∣

u=t
= (λ− σ)·f(r) = 0.

In this second case, λ·f(r) = maxπ π ·f(r) by (38) so the same is true for σ.

Preliminary 3. Suppose that r = ∆W (q). From Lemma 5.8, we can write it as

r =
[
q + t(λ− σ)

]+
for some σ ∈ 〈S〉. In fact, for any T ≥ t we can write it as

(40) r =
[
q + T (λ− ρ)

]+
for some ρ ∈ 〈S〉.

To see this, recall that PRIMAL(λ) ≤ 1, so we can pick some λ̄ ∈ 〈S〉 such that
λ ≤ λ̄, whence

r ≥
[
q + t(λ− σ) + (T − t)(λ− λ̄)

]+
=
[
q + T (λ− ρ)

]+
where ρ =

t

T
σ +

T − t
T

λ̄ ∈ 〈S〉.

This last expression is feasible for ALGD(q) by Lemma 5.8. Since r is optimal for
ALGD(q), and the objective function is increasing pointwise, r = [q + T (λ − ρ)]+

as claimed.
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Main proof. Let r = ∆W (q) and κr′ = ∆W (κq). We know that κr is feasible for
ALGD(κq) because the constraints are linear; we will now show that L(κr) ≤ L(κr′);
hence κr is also optimal for ALGD(κq). By uniqueness of the optimum, κr = κr′ as
required.

It remains to prove that L(κr) ≤ L(κr′). Since r solves ALGD(q) and κr′ solves
ALGD(κq), we can use Lemma 5.8 to write

r =
[
q + t(λ− σ)

]+
, κr′ =

[
κq + κt′(λ− σ′)

]+
for t, t′ ∈ R+ and σ,σ′ ∈ 〈S〉. Indeed, for T > max(t, t′) we can use (40) to write

r = q + T (λ− ρ+ y) for ρ ∈ 〈S〉, y ∈ RN+ , where yn = 0 if rn > 0

r′ = q + T (λ− ρ′ + y′) for ρ′ ∈ 〈S〉, y′ ∈ RN+ , where y′n = 0 if r′n > 0.

Now consider the value of L(·) along the trajectory from κr to κr′. Along this
trajectory,

d

du
L
(
κr + (r′ − r)u/T

)∣∣∣
u=0

= (r′ − r)·f(κr)/T

=
(
ρ− ρ′ − y + y′

)
·f(κr)

≥
(
ρ− ρ′ − y

)
·f(κr) since y′ ≥ 0

=
(
ρ− ρ′

)
·f(κr) since yn = 0 if rn > 0

≥ ρ·f(κr)−max
π∈S

π ·f(κr) for any ρ′ ∈ 〈S〉

= 0.

The final equality is because ρ·f(r) = maxπ π ·f(r) by (39), so ρ·f(κr) = maxπ π ·
f(κr) by Assumption 2.1. Since L(·) is convex, it follows that L(κr′) ≥ L(κr). This
completes the proof. 2

The proof of Theorem 5.4(iv) relies on the following lemma.

Lemma 5.10 (Fluid model trajectories preserve ALGD feasibility) Consider
any fluid model solution, for any scheduling policy, with initial queue size q(0). Then
q(t) is feasible for ALGD

(
q(0)

)
for all t ≥ 0.

Proof. Pick any critically loaded virtual resource ξ ∈ Ξ(λ). By (13),

ξ ·q(t) = ξ ·q(0) + t
(
ξ ·λ− ξ ·σ(t)

)
+ ξ ·y(t) where σ(t) =

∑
πsπ(t)/t

≥ ξ ·q(0) + t
(
ξ ·λ− ξ ·σ(t)

)
since y(t) ≥ 0

≥ ξ ·q(0) + t(1− 1) = ξ ·q(0).
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The last inequality is because ξ ∈ Ξ(λ); so ξ·λ = 1, and ξ·π ≤ 1 for all π ∈ S hence
ξ ·σ ≤ 1 for all σ ∈ 〈S〉. Finally, q(t) ≤ q(0) + tλ by (13) and (16), and this yields
the second constraint of ALGD(λ) for queues n with 0 arrival rate. 2

Theorem 5.4(iv) is implied by parts (i) and (ii) of the following lemma.

Lemma 5.11 (Characterization of invariant states of MW-f) The following
are equivalent, for q0 ∈ RN+ :

(i) q0 = ∆W (q0)
(ii) q0 is an invariant state
(iii) there exists a fluid model solution with q(t) = q0 for all t
(iv) λ·f(q0) = maxπ∈S π ·f(q0)

Proof that (i) =⇒ (ii). Suppose that q0 = ∆W (q0), i.e. that q0 is optimal for
ALGD(q0), and consider any fluid model solution which starts with q(0) = q0.
On one hand, Lemma 5.5 says that L(q(t)) ≤ L(q0). On the other hand, Lemma
5.10 says that q(t) is feasible for ALGD(q0). Since ALGD(q0) has a unique solution,
it must be that q(t) = q0.

Proof that (ii) =⇒ (iii). It is easy to find a fluid model solution which starts at
q(0) = q0: a limit point of the stochastic model from Theorem 4.3 will do. By (ii),
the queue size vector is constant.

Proof that (iii) =⇒ (iv). Suppose there is a fluid model solution with q(t) =
q0. Since q(·) is constant, L̇(q(t)) = 0. Lemma 5.5 says that L̇(q(t)) ≤ 0, so the
inequality in the proof must be tight for all t, i.e.

(41) λ·f(q0) = max
π∈S

π ·f(q0).

Proof that (iv) =⇒ (i). If q0 = 0 then the result is trivial. Otherwise, let r =
∆W (q0). By Lemma 5.8, r = [q0 + t(λ−σ)]+ for some t ≥ 0 and σ ∈ 〈S〉. Consider
the value of L(·) along the trajectory from q0 to r:

d

du
L
([

q0+(λ− σ)u
]+)∣∣∣

u=0
=
(
λ− σ

)
·f(q0) relying on f(0) = 0

=
(

max
π∈S

π ·f(q0)
)
− σ ·f(q0) by part (iv)

≥ 0 because σ ∈ 〈S〉.

By convexity of L, L(r) ≥ L(q0); and q0 is obviously feasible for ALGD(q0); but
we chose r to be optimal for ALGD(q0) and the optimum is unique. Therefore
q0 = ∆W (q0). 2

Theorem 5.4(v) is given by the following lemma. Recall that we are using the
norm |x| = maxn |xn|.
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Lemma 5.12 Given λ ∈ Λ, for any ε > 0 there exists an Hε such that for every
fluid model solution with arrival rate λ, for which |q(0)| ≤ 1, |q(t)−∆W (q(t))| < ε
for all t ≥ Hε.

Proof. The proof is inspired by Kelly and Williams [19, Theorem 5.2, Lemma 6.3].
We start with some definitions. Let

D =
{
q ∈ RN+ : L(q) ≤ L(1)

}
for L(·) as in Definition 5.3

I =
{
q ∈ D : ∆W (q) = q

}
Iδ =

{
q ∈ D : |q− r| < δ for some r ∈ I

}
Jε =

{
q ∈ R+ :

∣∣q−∆W (q)
∣∣ < ε

}
Kδ =

{
q ∈ D : L(q)− L

(
∆W (q)

)
< inf

r∈D\Iδ
L(r)− L

(
∆W (r)

)}
We will argue that the function K(q) = L(q) − L

(
∆W (q)

)
is decreasing along

fluid model trajectories, so once you hit Kδ you stay there. We will then argue that
I ⊂ Kδ ⊂ Iδ ⊂ Jε for sufficiently small δ. Finally, we will bound the time it takes
to hit Kδ.

K is decreasing. Lemma 5.5 says that for any fluid model solution, L(q(·)) is de-
creasing. From Lemma 5.10, the feasible set for ALGD(q(u)) is a subset of the
feasible set for ALGD(q(t)) for any u ≥ t ≥ 0, hence ∆W (q(u)) ≥ ∆W (q(t)), i.e.
∆W (q(·)) is increasing. Therefore K is decreasing (not necessarily strictly).

I ⊂ Kδ ⊂ Iδ ⊂ Jε. To show I ⊂ Kδ: The map ∆W is continuous by Theorem
5.4(ii), and L(·) is clearly continuous, so K(·) is continuous; also the set D is compact
by Theorem 5.4(i), and Iδ is open, so D \ Iδ is compact; so the infimum in the
definition of Kδ is attained at some r̂ ∈ D \ Iδ. Now, K(q) > 0 for q ∈ D \ I, so
K(r̂) > 0. Yet K(q) = 0 for q ∈ I. Thus I ⊂ Kδ.

It is clear by construction that Kδ ⊂ Iδ.
To show Iδ ⊂ Jε: The map ∆W (·) is continuous, hence it is uniformly continuous

on the compact set D, so for any ε > 0 there exists a δ > 0 such that

|q− r| < δ =⇒
∣∣∆W (q)−∆W (r)

∣∣ < ε/2 for q, r ∈ D.

If q ∈ Iδ then it is within δ of some r ∈ I, hence∣∣q−∆W (q)
∣∣ ≤ |q− r|+

∣∣ r−∆W (r)
∣∣+
∣∣∆W (r)−∆W (q)

∣∣
< δ + 0 + ε/2

< ε for δ sufficiently small.
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Time to hit Kδ. Consider first the rate of change of K(·) while the process is in
D \ Kδ:

K̇(q(t)) ≤ L̇(q(t)) = λ·f(q(t))−max
π∈S

π ·f(q(t))

≤ sup
r∈D\Kδ

[
λ·f(r)−max

π∈S
π ·f(r)

]
(42)

≤ 0 by Lemma 5.5.

The supremum in (42) is of a continuous function of r, taken over a compact set,
hence the supremum is attained at some r̂ ∈ D \Kδ. If the supremum were equal to
0 then λ·f(r̂) = maxπ π ·f(r̂) so r̂ ∈ I by Lemma 5.11; but r̂ ∈ D \ Kδ and we just
proved that I ⊂ Kδ; hence the supremum is some −ηδ < 0.

Now consider any fluid model solution starting at q(0) with |q(0)| ≤ 1. If q(0) ∈
Kδ then it remains in Kδ so the theorem holds trivially. If not, then q(0) ≤ 1
componentwise, so L(q(0)) ≤ L(1), so q(0) ∈ D; also L(q(t)) is decreasing so
q(t) ∈ D for all t ≥ 0. Now, K̇(q(t)) ≤ −ηδ all the time that q(t) ∈ D \Kδ, and this
can’t go on for longer than Hε = K(q(0))/ηδ ≤ L(1)/ηδ. 2

6. Fluid model behaviour (multihop case). In this section we describe
properties of fluid model solutions for a multihop switched network running MW-f
backpressure, as described in Section 2.

Let R be the routing matrix, and ~R = (I − RT)−1; recall that ~Rmn = 1 if work
injected at queue n eventually passes through m, and 0 otherwise. For a vector
x ∈ RN , let ~x = ~Rx: for arrival rate vector λ, ~λn is the total arrival rate of work
destined to pass through queue n; for a queue size vector q, ~qn is the total amount
of work at queue n and queues upstream of n.

The set Λ, the PRIMAL(·) and DUAL(·) problems, the set S∗ of virtual resources,
and Ξ(·) are defined as in the single-hop case. The difference is that we will require
~λ ∈ Λ, and we will define the set of critically loaded virtual resources to be Ξ(~λ).
We also need to modify the definition of ALGD and the lifting map:

Definition 6.1 (Lifting map) With L : RN+ → R+ as in the single-hop case, de-
fine the optimization problem ALGD(q) to be

minimize L(r) over r ∈ RN+
such that ξ ·~r ≥ ξ ·~q for all ξ ∈ Ξ(~λ)

and ~rn ≤ ~qn for all n such that ~λn = 0.

Note that L is strictly convex and increasing componentwise, and the feasible region
is convex, hence this problem has a unique optimizer. Define the lifting map ∆W :
RN+ → RN+ by setting ∆W (q) to be the optimizer.
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The main result of this section is the following. Throughout this section we are
considering a multihop network with arrival rate vector λ ≥ 0 such that ~λ ∈ Λ,
running MW-f backpressure.

Theorem 6.2 (Portmanteau theorem, multihop version) The statements of
Theorem 5.4 parts (i)–(v) hold, for multihop fluid model solutions and using the
multihop definition of ∆W .

Some of the proofs for the single-hop case carry through to the multihop case.
Other proofs rely on the fact that for single-hop networks, λ ∈ Λ =⇒ λ ≤ σ for
some σ ∈ 〈S〉, and these proofs require modification. We will modify them to use
the following result.

Lemma 6.3 Under Assumption 2.3, if σ ∈ 〈S〉 and σ′ ∈ RN+ is such that σ′ ≤ σ,
then σ′ ∈ 〈S〉.

Proof. It is sufficient to establish the result for the case when σ′ differs from σ in
only one component, as the repeated application of this will yield the full result.
Without loss of generality, assume the queues are numbered such that 0 ≤ σ′1 < σ1

and σ′n = σn for n ≥ 2. Since σ ∈ 〈S〉 there is a collection of positive constants
(aπ)π∈S such that

∑
π aπ = 1 and σ =

∑
π aππ. By Assumption 2.3, if π ∈ S then

π′ ∈ S where

π′n =

{
0 if n = 1

πn otherwise,

thus σ′′ ∈ 〈S〉 where σ′′ =
∑
π aππ

′. By construction, σ′′1 = 0 and σ′′n = σn for
n ≥ 2. By choosing the appropriate convex combination

σ′ = (1− x)σ′′ + xσ with x = σ′1/σ1 ∈ [0, 1]

we see σ′ ∈ 〈S〉. 2

Now we proceed towards establishing Theorem 6.2. The proof of the first claim
of Theorem 6.2(i) is just as for the single-hop case. The second claim follows from
the following lemma.

Lemma 6.4 For all q ∈ RN+ ,

(43) λ·f(q)−max
π∈S

π ·(I −R)f(q) ≤ 0.

Also, every fluid model solution satisfies

d

dt
L(q(t)) = λ·f(q(t))−max

π∈S
π ·(I −R)f(q(t)) ≤ 0.
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Proof. Since ~λ ∈ Λ, ~Rλ ≤ σ componentwise for some σ ∈ 〈S〉. Because ~R ≥ 0 and
λ ≥ 0, ~Rλ ≥ 0 componentwise. By Lemma 6.3, λ = (I −RT)σ′ for some σ′ ∈ 〈S〉.
Hence

λ·f(q)−max
π∈S

π ·(I −R)f(q) = σ′ ·(I −R)f(q)−max
π∈S

π ·(I −R)f(q) ≤ 0.

For the claim about fluid model solutions,

d

dt
L(q(t)) = q̇(t)·f(q(t))

=
(
λ− (I −RT)

[∑
π

ṡπ(t)π + ẏ(t)
])
· f(q(t)) by differentiating (21)

= λ·f(q(t))−
∑
π

ṡπ(t)π ·(I −R)f(q(t)) + ẏ(t)·(I −R)f(q(t)).

For the middle term,∑
π

ṡπ(t)π ·(I −R)f(q(t)) = max
ρ
ρ·(I −R)f(q(t))

∑
π

ṡπ(t) by (22)

= max
ρ
ρ·(I −R)f(q(t)) by (15).

For the last term, we claim that

(44) ẏ(t)·(I −R)f(q(t)) = 0.

To see this, consider first a queue n with [(I − R)f(q(t))]n > 0. As noted in (10),
this implies f(qn(t)) > f([Rq(t)]n). By Assumption 2.2 it must be that qn(t) > 0,
hence ẏn(t) = 0 by (19). Second, consider a queue n with [(I − R)f(q(t))]n < 0. It
must be that all of the active schedules do not serve this queue, i.e. ṡπ(t) > 0 =⇒
πn = 0, since otherwise by Assumption 2.3 there is another schedule that has bigger
weight than π, contradicting (22). Third, if [(I − R)f(q(t))]n = 0 then obviously
ẏn(t)[(I −R)f(q(t))]n = 0. Putting these three together proves (44).

Putting together these findings for the middle and last terms,

d

dt
L(q(t)) = λ·f(q(t))−max

ρ
ρ·(I −R)f(q(t)).

Applying (43) this is ≤ 0. 2

The proof of Theorem 6.2(ii) is broadly similar to the single-hop case, Lemma
5.7, but the formulae all have to be adjusted to deal with multihop.

Lemma 6.5 ∆W is continuous.

imsart-aap ver. 2007/04/13 file: netsched.tex date: December 2, 2010



36 SHAH & WISCHIK

Proof. If Ξ(~λ) is empty, then the lifting map is trivial and the result is trivial. In
what follows, we shall assume that Ξ(~λ) is non-empty, and we will abbreviate it to
Ξ. Furthermore note that for every ξ ∈ Ξ we know ξ ·~λ = 1 by definition of Ξ, and
hence there is some queue n such that ξn > 0 and ~λn > 0.

Pick any sequence qk → q, and let rk = ∆W (qk) and r = ∆W (q). We want to
prove that rk → r. We shall first prove that there is a compact set [0, h]N such that
rk ∈ [0, h]N for all k. We shall then prove that any convergent subsequence of rk

converges to r; this establishes continuity of ∆W .
First, compactness. A suitable value for h is

h = max
ξ∈Ξ

max
n:ξn>0

sup
k

ξ ·~qk

ξn
.

Note that the maximums are over a non-empty set, as noted at the beginning of the
proof. Note also that h is finite because q is finite. Now, suppose that rk 6∈ [0, h]N

for some k, i.e. that there is some queue n for which rkn > h, and let r′ = rk in
every coordinate except for r′n = h. We claim that r′ satisfies the two constraints
of ALGD(qk). To see that it satisfies the second constraint, note that r′ ≤ rk and
hence if ~λn = 0 then ~r ′n ≤ ~r kn ≤ ~qn. To see that it satisfies the first constraint, pick
any ξ ∈ Ξ. Either ξm = 0 for all queues m that are downstream of n, i.e. for which
~Rmn = 1; if this is so then

ξ ·~r′ = ξ ·~rk + ξ ·(~r′ −~rk) = ξ ·~rk +
∑
l

(r′l − rkl )
∑
m

ξm~Rml = ξ ·~rk.

Or ξm > 0 for some queue m that is downstream of n; if this is so then

ξ ·~r′ ≥ ξm~r′m ≥ ξmh ≥ ξ ·~qk by construction of h.

Applying this repeatedly, if rk 6∈ [0, h]N then we can reduce it to a queue size
vector in [0, h]N , thereby improving on L(rk), yet still meeting the constraints of
ALGD(qk); this contradicts the optimality of rk. Hence rk ∈ [0, h]N .

Next, convergence on subsequences. With a slight abuse of notation, let ∆W (qk) =
rk → s be a convergent subsequence, and recall that ∆W (q) = r and qk → q. By
continuity of the constraints of ALGD, s is feasible for ALGD(q); we shall next show
that L(s) ≤ L(r). Since r is the unique optimum, it must be that s = r.

It remains to show that L(s) ≤ L(r). We will construct a sequence r− δk + εkP
of candidate solutions to ALGD(qk), choosing δk ≥ 0 and εkP ≥ 0 to ensure that
the candidate solutions are feasible. Specifically, we define

δkn =

{
0 if ~λn > 0

(~qn − ~q kn)+ if ~λn = 0
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and Pn = 1~λn>0, and

εk = max
ξ∈Ξ

(
ξ ·~qk − ξ ·~q

)+
+ ξ ·~δk

ξ ·~P
.

We will first deal with the feasibility constraint that pertains when ~λn = 0. Note that
this implies λm = 0 for all queues m that are upstream of n, since ~λn =

∑
m
~Rnmλm,

and hence that ~λm = 0 for all upstream queues. Using this we find[
~R(r− δk + εkP)

]
n

=
∑
m

~Rnm
[
r− δk + εkP

]
m

=
∑
m

~Rnm
(
rm − (~qm − ~q km)+

)
since ~λm = 0 when ~Rnm = 1

=
(∑

m

~Rnmrm

)
−
(∑

m

~Rnm(~qm − ~q km)+
)

≤
(∑

m

~Rnmrm

)
− (~qn − ~q kn)+ as ~Rnn = 1, ~Rnm ≥ 0 for all m

= ~rn − (~qn − ~q kn)+

≤ ~qn − (~qn − ~q kn)+ since r is feasible for ALGD(q)

= min(~qn, ~q
k
n) ≤ ~q kn.

Hence r− δk + εkP satisfies the second feasibility constraint of ALGD(qk). For the
other feasibility constraint of ALGD(qk), pick any ξ ∈ Ξ. Then

ξ ·~R(r− δk + εkP) = ξ ·(~r− ~δk) + εkξ ·~P

≥ ξ ·(~r− ~δk) +
(
ξ ·~qk − ξ ·~q

)+
+ ξ ·~δk by construction of εk

≥ ξ ·~q−
(
ξ ·~qk − ξ ·~q

)+
since ~r is feasible for ALGD(~q)

= max(ξ ·~q, ξ ·~qk) ≥ ξ ·~qk.

Since the candidates are feasible solutions to ALGD(qk), and rk is an optimal solu-
tion, it must be that

L(rk) ≤ L(r− δk + εkP).

Taking the limit as k →∞, and noting that L is continuous and δk → 0 and εk → 0,
we find

L(s) ≤ L(r)

as required. This completes the proof. 2
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For the proof of Theorem 6.2(iii), it is useful to work with a different representation
of ∆W , provided by the following lemma, which draws on monotonicity of S.

Lemma 6.6 For any q ∈ RN+ , ∆W (q) can be written

∆W (q) = q + t
(
λ− (I −RT)σ

)
for some t ≥ 0,σ ∈ 〈S〉.

Proof. We will choose σ simply by multiplying each side of the desired equation by
~R:

~r = ~q + t(~λ− σ) where r = ∆W (q)

or, rearranging,

σ = ~λ− (~r− ~q)/t.

We will show that 0 ≤ σ ≤ ρ for some ρ ∈ 〈S〉, hence by Lemma 6.3 σ ∈ 〈S〉.
First, we show 0 ≤ σ. If ~λn > 0 this can be achieved by choosing t sufficiently

large. If ~λn = 0 then by the second constraint of ALGD(q) we know that ~rn ≤ ~qn
so σn ≥ 0.

Second, we show σ·ξ ≤ 1 for all ξ that are feasible for DUAL(~λ). Either ξ·~λ = 1, in
which case ξ ∈

〈
Ξ(~λ)

〉
and so by the first constraint of ALGD we know that~r·ξ ≥ ~q·ξ.

Or ξ ·~λ < 1, in which case we simply need to choose t sufficiently large. Either way,
σ ·ξ ≤ 1 for all dual-feasible ξ, hence DUAL(σ) ≤ 1, hence PRIMAL(σ) ≤ 1, hence
σ ≤ ρ for some ρ ∈ 〈S〉 by the definition of PRIMAL(σ). 2

The proof of Theorem 6.2(iii) is given by the following lemma. This proof is similar
to the single-hop case, Lemma 5.9, but it is much shorter because the monotonicity
assumption gives us a stronger representation of the lifting map, Lemma 6.6. Also,
this version makes a weaker claim, namely that the lifting map is scale-invariant
at invariant states, whereas the single-hop version shows that the lifting map is
invariant everywhere.

Lemma 6.7 (Scale-invariance of the lifting map) If q = ∆W (q) then κq =
∆W (κq) for all κ > 0.

Proof. Suppose that q = ∆W (q), and let κr = ∆W (κq). Clearly κq is feasible
for ALGD(κq); we shall show that L(κr) ≥ L(κq), whence κq is also optimal for
ALGD(κq), whence κq = κr by uniqueness of the optimum.

It remains to prove that L(κr) ≥ L(κq). By Lemma 6.6, we can write κr as

κr = κq + t
(
λ− (I −RT)σ

)
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for some t ≥ 0 and some σ ∈ Σ. Now consider the value of L along a straight-line
trajectory from κq to κr:

d

du
L
(
κq+(λ− (I −RT)σ)u

)∣∣∣
u=0

=
(
λ− (I −RT)σ

)
·f(κq)

= λ·f(κq)− σ ·(I −R)f(κq)

≥ λ·f(κq)−max
ρ∈S

ρ·(I −R)f(κq) for any σ ∈ 〈S〉

= 0.

The final equality is because

λ·f(q) = ~λ·(I −R)f(q) = max
π∈S

π ·(I −R)f(q)

by Lemma 6.9(iv) below (the proof of which does not assume the result of this
lemma). Hence

λ·f(κq) = ~λ·(I −R)f(κq) = max
π∈S

π ·(I −R)f(κq),

using Assumption 2.2 and the fact that ~λ ∈ 〈S〉 by Lemma 6.3. 2

The proof of Theorem 6.2(iv) relies on the following lemma.

Lemma 6.8 (Fluid model trajectories preserve ALGD feasibility) Consider
any fluid model solution, for any scheduling policy, with initial queue size q(0). Then
q(t) is feasible for ALGD(q(0)) for all t ≥ 0.

Proof. Feasibility for ALGD(q(0)) has two parts. For the first part, pick any crit-
ically loaded virtual resource ξ ∈ Ξ(~λ), and multiply each side of (21) by ~R =
(I −RT )−1 and then by ξ to get

ξ ·~q(t) = ξ ·~q(0) + ξ ·~Ra(t)− ξ ·
(∑
π

sπ(t)π − y(t)
)
.

Defining σ(t) =
∑
πsπ(t)/t, which is in 〈S〉 by (15),

ξ ·~q(t) ≥ ξ ·~q(0) + t
(
ξ ·~λ− ξ ·σ(t)

)
by (14) and because y(t) ≥ 0

= ξ ·~q(0) + t
(
1− ξ ·σ(t)

)
since ξ ∈ Ξ(~λ)

≥ ξ ·~q(0) + t
(
1− 1

)
since ξ is a virtual resource and σ ∈ 〈S〉

= ξ ·~q(0)

as required for the first part of ALGD-feasibility. For the second part, suppose that
~λn = 0 for some queue n. Multiply each side of (21) by ~R to get

~q(t) = ~q(0) + ~λt−
∑
π

πsπ(t) + y(t) ≤ ~q(0) + ~λt
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where the inequality is by (16). Since we assumed ~λn = 0, ~qn(t) ≤ ~qn(0). This
completes the proof that q(t) is feasible for ALGD(q(0)). 2

The proof of Theorem 6.2(iv) is implied by parts (i) and (ii) of the following
lemma.

Lemma 6.9 (Characterization of invariant states of MW-f backpressure)
The following are equivalent, for q0 ∈ RN+ :

(i) q0 = ∆W (q0)
(ii) q0 is an invariant state
(iii) there exists a fluid model solution with q(t) = q0 for all t
(iv) λ·f(q0) = maxπ∈S π ·(I −R)f(q0)

Proof. That (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) is proved in the same way as in the
single-hop case. We just need to appeal to Lemma 6.4 rather than 5.5 for the fact
that L(q(t)) is decreasing, and to Lemma 6.8 rather than 5.10 for the fact that q(t)
remains feasible.

Proof that (iv) =⇒ (i). Let r = ∆W (q0). By Lemma 6.6, r = q0 +t(λ−(I−RT)σ)
for some t ≥ 0 and σ ∈ 〈S〉. By considering the value of L(·) along the trajectory
from q0 to r, and using (iv), we conclude that L(r) ≥ L(q0). By the same argument
as in the single-hop case, q0 = ∆W (q0). 2

The proof of Theorem 6.2(v) is given by the following lemma.

Lemma 6.10 Given ~λ ∈ Λ, for any ε > 0 there exists an Hε > 0 such that for every
fluid model solution with arrival rate λ, for which |q(0)| ≤ 1, |q(t)−∆W (q(t))| < ε
for all t ≥ Hε.

Proof. The proof of Lemma 5.12 goes through almost verbatim. The only changes
are in the penultimate paragraph, which should be replaced by the following:

Time to hit Kδ. Consider first the rate of change of K(·) while the process is in
D \ Kδ:

K̇(q(t)) ≤ L̇(q(t)) = λ·f(q(t))−max
π∈S

π ·(I −R)f(q(t))

≤ sup
r∈D\Kδ

[
λ·f(r)−max

π∈S
π ·(I −R)f(r)

]
≤ 0 by Lemma 6.4.

This supremum is of a continuous function of r, taken over a closed and bounded
set, hence the supremum is attained at some r̂ ∈ D\Kδ. If the supremum were equal
to 0 then λ·f(r̂) = maxπ π·(I −R)f(r̂) so r̂ ∈ I by Lemma 6.9; but r̂ ∈ D \Kδ and
we just proved that I ⊂ Kδ; hence the supremum is some −ηδ < 0. 2
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7. Multiplicative state-space collapse. This section establishes multiplica-
tive state space collapse of queue size. It shows that under the MW-f policy and with
suitable initial conditions when the network is not overloaded (i.e. when λ ∈ Λ), the
appropriately normalized queue size vector is constrained to lie in or close to the set
of invariant states

I =
{
q ∈ RN+ : q = ∆W (q)

}
.

We assume that arrivals satisfy Assumption 2.5, and let the arrival rate vector
λ be as specified in that assumption. The function ∆W depends on λ and f , as
specified in Sections 5 and 6 for single-hop and multihop networks respectively, and
the interesting case is where λ ∈ ∂Λ (since otherwise ∆W is trivial).

This section mostly follows the method developed by Bramson [3], except that
our proof avoids the need for regenerative assumptions on the arrival process by
imposing slightly tighter bounds on the uniformity of their convergence, as expressed
by Assumption 2.5.

Consider a sequence of systems of the type described in Section 2.1 running a
scheduling policy of the type described in Section 2.2. Let the systems all have the
same number of queues N , the same set of allowed schedules S, the same routing
matrix R, and the same scheduling policy. Let the sequence of systems be indexed
by r ∈ N. Write

Xr(τ) = (Qr(τ),Ar(τ),Zr(τ), Sr(τ)), τ ∈ Z+,

for the rth system. Define the scaled system x̂r(t) = (q̂r(t), âr(t), ẑr(t), ŝr(t)) for
t ∈ R+ by

q̂r(t) = Qr(r2t)/r âr(t) = Ar(r2t)/r

ẑr(t) = Zr(r2t)/r ŝrπ(t) = Srπ(r2t)/r

after extending the domain of Xr(·) to R+ by linear interpolation in each interval
(τ, τ + 1). Note that each sample path of a scaled system x̂r(t) over the interval
t ∈ [0, T ] lies in CI(T ) with I = 3N + |S|. T > 0 will be fixed for the remainder of
this section. Recall the norm ‖x‖ = sup0≤t≤T |x(t)|. The main result of this paper is
the following.

Theorem 7.1 (Multiplicative state-space collapse) Consider a sequence of (single-
hop or multihop) switched networks indexed by r ∈ N, operating under the MW-f
policy (with f satisfying Assumption 2.1 or 2.2 and S with 2.3), as described above.
Assume that the arrival processes satisfy Assumption 2.5 with λ ∈ Λ. Also assume
that the initial queue sizes are non-random, and satisfy limr→∞ q̂r(0) = q̂0 for some
q̂0 ∈ I. Then for any δ > 0,

(45) P
(∥∥q̂r(·)−∆W (q̂r(·))

∥∥∥∥q̂r(·)∥∥ ∨ 1
< δ

)
→ 1 as r →∞.
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Simulations suggest that a stronger result holds in the widely-studied diffusion or
heavy traffic scaling: λr = λ − Γ/r for some non-trivial Γ ∈ RN+ and λ ∈ ∂Λ. We
conjecture the following.

Conjecture 7.2 Under the assumptions of Theorem 7.1 and the additional assump-
tion that increments in the arrival process are i.i.d. and uniformly bounded, under
the diffusion scaling for any δ > 0

(46) P
(∥∥q̂r(·)−∆W (q̂r(·))

∥∥ < δ
)
→ 1 as r →∞.

7.1. Outline of the proof of Theorem 7.1. The outline of the proof of Theorem
7.1 is as follows. We are interested in the dynamics of q̂r(t) over t ∈ [0, T ], i.e. of
Qr(τ) over τ ∈ [0, r2T ]. We will split this time interval into brT c+ 1 pieces starting
at 0, r, 2r, . . . , and look at each piece under a fluid scaling. We will define a ‘good
event’ Êr under which the arrivals in all of the pieces are well-behaved (Section
7.1.1). We then apply Theorem 4.3 to deduce that, under this event, the queue size
process in each of the pieces can be (uniformly) approximated by a fluid model
solution (Lemma 7.3). We then use the properties of the fluid model solution stated
in Theorem 5.4 to show that in each of the pieces, the queue size is (uniformly)
close to the set of invariant states (Lemmas 7.4 and 7.5). Figure 2 depicts the idea.
Finally we show that P(Êr)→ 1 (Lemma 7.6). The formal proof is given in Section
7.1.2.

Note that Lemmas 7.3–7.5 are all sample path-wise results that hold for every
ω ∈ Êr, and so questions of independence etc. do not arise. The only part of the
proof where probability comes in is Lemma 7.6.

The proof is written out for a single-hop switched network. For the multihop case,
the argument holds verbatim; simply replace all references to the single-hop fluid
limit Theorem 4.3 by references to the equivalent multihop result, and replace all
references to the description of single-hop fluid model solutions in Theorem 5.4 by
references to the multihop version Theorem 6.2.

7.1.1. The good event, and the fluid-scaled pieces. Define the fluid-scaled pieces
x̃r,m,z(u) = (q̃r,m,z(u), ãr,m,z(u), ỹr,m,z(u), s̃r,m,z(u)) of the original process by

q̃r,m,z(u) = Qr(rm+ zu)/z

ãr,m,z(u) =
(
Ar(rm+ zu)−Ar(rm)

)
/z

ỹr,m,z(u) =
(
Yr(rm+ zu)−Yr(rm)

)
/z

s̃r,m,z(u) =
(
Sr(rm+ zu)− Sr(rm)

)
/z

for 0 ≤ m ≤ brT c, z ≥ r and u ≥ 0. Here r indicates which process we are
considering, m indicates the piece, and z indicates the fluid-scaling parameter. The
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1 2
t

Q

Fig 2. Splitting the process into fluid-scaled parts, starting at 0, r, 2r, . . . .

scaling parameter zr,m = |Qr(rm)|∨r is particularly important, and for convenience
we will define x̃r,m(u) = (q̃r,m(u), ãr,m(u), ỹr,m(u), s̃r,m(u)) by

q̃r,m(u) = q̃r,m,zr,m(u) ãr,m(u) = ãr,m,zr,m(u)

ỹr,m(u) = ỹr,m,zr,m(u) s̃r,m(u) = s̃r,m,zr,m(u).

The good event is defined to be

(47) Êr =

{
sup

u∈[0,Tfluid]

∣∣ãr,m,wr,k(u)− λru
∣∣ < ηr for all 0 ≤ m ≤ brT c

and 0 ≤ k ≤ bLr log rc, where wr,k = r(1 + k/ log r)

}
.

By this, we mean that Êr is a subset of the sample space for the rth system, and we
write x̃r,m,wr,k(·)(ω) etc. for ω ∈ Êr when we wish to emphasize the dependence on
Êr. The constants here are T fluid = (2 + λmax +NSmax)(Hζ + 1), λmax = supr |λr|,
ζ > 0 is chosen as specified in Section 7.1.2 below, Hζ is chosen as in Theorem 5.4(v),
L = 1 + T (1 + λmax + NSmax), Smax = maxπ∈S |π|, and the sequence of deviation
terms ηr ∈ [0, 1] is chosen as specified in Lemma 7.6 such that ηr → 0 as r →∞.

Lemma 7.3 Let FMS be the set of fluid model solutions over time horizon [0, T fluid]
for arrival rate vector λ, and let FMS(q0) and FMS1 be as specified in Definition
4.1. Then

sup
ω∈Êr

max
0≤m≤brT c

d
(
x̃r,m(·)(ω),FMS1

)
→ 0 as r →∞(48)

and

sup
ω∈Êr

d
(
x̃r,0(·)(ω),FMS(q0)

)
→ 0 as r →∞(49)

where q0 = q̂0/(|q̂0| ∨ 1).
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Proof. The proof of each equation will use Theorem 4.3. We start with (48). The
theorem requires the use of an index j in some totally ordered countable set; here
we shall use the pair j ≡ (r,m) ordered lexicographically, where r ∈ N and 0 ≤ m ≤
brT c. Lexicographic ordering means (r,m) ≥ (r′,m′) iff either r > r′ or both r = r′

and m ≥ m′. Note that j →∞ implies r →∞ (and vice versa).

To apply the theorem, we first need to pick constants. Let K = 1, let λ and
λj = λr → λ as per Assumption 2.5, and let εj = ηr(1 + 1/ log r) so that εj → 0.
Thus condition (23) of Theorem 4.3 is satisfied. Now let

Gj ≡ Gr,m =
{(
x̃r,m(·)(ω), zr,m(ω)

)
: ω ∈ Êr

}
.

It is worth stressing that Gj ≡ Gr,m is a set of sample paths and associated scal-
ing parameters, not a probabilistic event, and so any questions about the lack of
independence between x̃r,m(·)(ω) and zr,m(ω) are void. Note also that although the
events Êr lie in different probability spaces for each r, this has no bearing on the
definition of Gj nor on the application of Theorem 4.3.

We next show that Gj satisfies conditions (24)–(26) of Theorem 4.3, for j suffi-
ciently large. Equation (24) follows straightforwardly from the fact that zr,m ≥ r,
hence inf{z : (x̃, z) ∈ Gr,m} ≥ r, hence inf{z : (x̃, z) ∈ Gj} → ∞. For equation (25):
later in the proof we will establish that, under Êr for r large enough,

(50) sup
t∈[0,Tfluid]

∣∣ãr,m(t)− λrt
∣∣ < ηr

(
1 +

1

log r

)
for all 0 ≤ m ≤ brT c

which implies that for all (x̃, z) ∈ Gj ≡ Gr,m, supt∈[0,Tfluid] |ãj(t) − λjt| < εj as
required. Equation (26) follows straightforwardly from the scaling used to define
q̃j(0) ≡ q̃r,m(0): for every ω, not merely ω ∈ Êr,

∣∣q̃r,m(0)
∣∣ =

∣∣∣Qr(rm)

zr,m

∣∣∣ =
∣∣∣ Qr(rm)

|Qr(rm)| ∨ r

∣∣∣ ≤ 1.

Since Gj satisfies the conditions of Theorem 4.3 for sufficiently large j, we can
apply that theorem to deduce

sup
(x̃,z)∈Gj

d(x̃,FMS1)→ 0 as j →∞.

Rewriting j as (r,m), and turning the limit statement into a lim sup statement,

sup
(r′,m)≥(r,0)

sup
(x̃,z)∈Gr′,m

d(x̃,FMS1)→ 0 as r →∞
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and in particular

max
0≤m≤brT c

sup
(x̃,z)∈Gr,m

d(x̃,FMS1)→ 0 as r →∞.

Rewriting (x̃, z) ∈ Gr,m in terms of ω ∈ Êr, as per the definition of Gr,m,

max
0≤m≤brT c

sup
ω∈Êr

d(x̃r,m(·)(ω),FMS1)→ 0 as r →∞.

Interchanging the max and the sup gives (48).
To establish (49), we will again apply Theorem 4.3 but this time using the index

j ≡ r, λj = λr → λ and εj = ηr(1 + 1/ log r) as above, and define

Gj ≡ Gr =
{(
x̃r,0(·)(ω), zr,0(ω)

)
: ω ∈ Êr

}
.

Equations (23)–(26) hold just as before. For equation (28), we will use q0 as in the
statement of this lemma, and ε′j = |q̃r,0(0) − q0|. This is a well-defined constant
(i.e. it does not depend on the randomness ω), because we assumed in Theorem
7.1 that the initial queue sizes Qr(0) are non-random, and by definition q̃r,0(0) =
Qr(0)/(|Qr(0)| ∨ r). Furthermore, Theorem 7.1 assumes q̂r(0)→ q̂0, which implies
q̃r,0(0) → q0 hence ε′j → 0. Equation (28) then follows straightforwardly, for every

ω not merely ω ∈ Êr. Applying Theorem 4.3, we deduce that

sup
(x̃,z)∈Gj

d
(
x̃,FMS(q0)

)
→ 0 as j →∞.

Equivalently,
sup
ω∈Êr

d
(
x̃r,0(·)(ω),FMS(q0)

)
→ 0 as r →∞

as required.

To complete the proof of Lemma 7.3, the only remaining claim that needs to be
established is (50). We will proceed in two steps. First we prove that |Qr(rm)| ≤ Lr2

under Êr, for r sufficiently large and for all 0 ≤ m ≤ brT c. To see this, note from
(7) that

Qr(rm) ≤ Qr(0) + Ar(rm) +NrmSmax.

Now Êr gives a suitable bound on arrivals: for all 0 ≤ m′ ≤ brT c, and using the fact
that 1 ≤ T fluid,∣∣∣Ar(rm′ + r)−Ar(rm′)

r
− λr

∣∣∣ =
∣∣ãr,m′,wr,0(1)− λr

∣∣ < ηr
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and by applying this from m′ = 0 to m′ = m−1 we find |Ar(rm)| ≤ rm(λmax +ηr).
The assumptions of Theorem 7.1 tell us that Qr(0)/r → q̂0 for some q̂0 ∈ RN+ .
Putting all this together, we find that for sufficiently large r

|Qr(rm)| ≤ r2
(
1 + T (1 + λmax +NSmax)

)
= Lr2, for any 0 ≤ m ≤ brT c.

Now we proceed to prove (50), under Êr for r sufficiently large. Observe that (for
r > 2) there exists k ∈ {1, . . . , bLr log rc} such that wr,k−1 ≤ zr,m ≤ wr,k; this
follows from r ≤ zr,m = |Qr(rm)| ∨ r ≤ Lr2 and the definition of wr,k in (47). Hence
for any t ∈ [0, T fluid],

∣∣ãr,m(t)− λrt
∣∣ =

∣∣∣Ar(rm+ zr,mt)−Ar(rm)

zr,m
− λrt

∣∣∣
=
∣∣∣Ar(rm+ wr,ku)−Ar(rm)

wr,k
− λru

∣∣∣(wr,k
zr,m

)
where u = tzr,m/wr,k

=
∣∣ãr,m,wr,k(u)− λru

∣∣(wr,k
zr,m

)
< ηr

wr,k
zr,m

since Êr holds and u ≤ t ≤ T fluid

≤ ηr
wr,k
wr,k−1

since zr,m ≥ wr,k−1

= ηr

(
1 +

1

k − 1 + log r

)
≤ ηr

(
1 +

1

log r

)
.

This establishes (50) and completes the proof. 2

Lemma 7.4 (Choice of approximating piece) Given t ∈ [0, T ] and r ∈ N, de-
fine m∗ = m∗(r, t) and u∗ = u∗(r, t) by

m∗ = min
{
m ∈ Z+ : rm ≤ r2t ≤ rm+ T fluidzr,m

}
, u∗ =

r2t− rm∗

zr,m∗
.

This is a sound definition (i.e. the set for m∗ is non-empty). Further, under event
Êr, either m∗ = 0 and 0 ≤ u∗ ≤ T fluid, or 0 < m∗ ≤ brT c and Hζ < u∗ ≤ T fluid.

Proof. The set for m∗ is non-empty because zr,m ≥ r and T fluid ≥ 1. The upper
bound for m∗ is trivial. The upper bound for u∗ in either case is trivial. To prove
the lower bound for u∗ when m∗ > 0, r2t > r(m∗ − 1) + T fluidzr,m∗−1 due to the
minimality of m∗. Hence

u∗ =
r2t− rm∗

zr,m∗
>
T fluidzr,m∗−1 − r

zr,m∗
≥ T fluid zr,m∗−1

zr,m∗
− 1.
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To bound zr,m∗−1/zr,m∗ , we can use (7) and the bound on ar,m,wr,0(1) provided by
Êr to show that for any m

zr,m =
∣∣Qr(rm)

∣∣ ∨ r
≤
(∣∣Qr(rm− r)

∣∣+ r
(
λmax + ηr +NSmax

))
∨ r

≤
∣∣Qr(rm− r)

∣∣ ∨ r + r
(
λmax + 1 +NSmax

)
since ηr ≤ 1

≤ zr,m−1

(
2 + λmax +NSmax

)
since zr,m−1 ≥ r.

Substituting this back into the earlier bound for u∗,

u∗ >
T fluid

2 + λmax +NSmax
− 1

and this is equal to Hζ by choice of T fluid. 2

Lemma 7.5 (Pathwise multiplicative state space collapse) Let 0 < ζ < 1,
t ∈ [0, T ] and r ∈ N be given. Suppose there exist m ∈ {0, . . . , brT c}, u ∈ [0, T fluid]
and x ∈ FMS such that r2t = rm + zr,mu and ‖x̃r,m − x‖ < ζ, and furthermore
either (i) m > 0 and u > Hζ and x ∈ FMS1, or (ii) m = 0 and x ∈ FMS(q0) where
q0 is as defined in Lemma 7.3. Then

(51)

∣∣q̂r(t)−∆W (q̂r(t))
∣∣

‖q̂r(·)
∥∥ ∨ 1

≤
∣∣q̂r(t)−∆W (q̂r(t))

∣∣
zr,m/r

< 2ζ + mcζ(∆W )

where mcζ(∆W ) is the modulus of continuity of the map q 7→ ∆W (q) over

D =
{
q′ ∈ RN+ : |q′ − q| ≤ 1 for some q such that L(q) ≤ L(1)

}
for L(·) as in Definition 5.3.

Proof. The first inequality is trivially true because

zr,m
r

=
|Qr(rm)| ∨ r

r
≤
(

sup
u∈[0,T ]

q̂r(u)
)
∨ 1.

For the second inequality, note that after unwrapping the q̂r(·) scaling and wrapping
it up again in the q̃r,m scaling, the middle term in (51) is

MT =
∣∣q̃r,m(u)−∆W (q̃r,m(u))

∣∣.
Writing q for the queue component of x,

MT ≤
∣∣∣q̃r,m(u)− q(u)

∣∣∣+
∣∣∣q(u)−∆W (q(u))

∣∣∣+
∣∣∣∆W (q(u))−∆W (q̃r,m(u))

∣∣∣
= (52a) + (52b) + (52c) respectively.

We can bound each term as follows:
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(52a) is < ζ since ‖x̃r,m − x‖ < ζ by an assumption of the lemma.
(52b) is < ζ in the case m > 0: By the assumptions of the lemma, x ∈ FMS1 so

|q(0)| ≤ 1, and also u > Hζ . The requirements of Theorem 5.4(v) are met,
hence we obtain the inequality.

(52b) is = 0 in the case m∗ = 0: In this case, by assumption of the lemma x ∈
FMS(q0) i.e. q(0) = q0. By assumption of Theorem 7.1 q̂0 ∈ I, that is q̂0 =
∆W (q̂0), therefore by Theorem 5.4(iii) q0 ∈ I, therefore by Theorem 5.4(iv)
the fluid model solution q(·) stays constant at q0 and so (52b)= 0.

(52c) is ≤ mcζ(∆W ): By assumption of the lemma, either m > 0 and x ∈ FMS1, or
m = 0 and x ∈ FMS(q0) where q0 ≤ 1 componentwise; either way q(0) ≤ 1
componentwise, so L(q(0)) ≤ L(1). By Theorem 5.4(i) L(q(u)) ≤ L(1) so
q(u) ∈ D. Furthermore, since ‖x̃r,m − x‖ < ζ by assumption of the lemma,
|q̃r,m(u)−q(u)| < ζ < 1 and so q̃r,m(u) ∈ D. The inequality then follows from
the definition of the modulus of continuity. 2

Lemma 7.6 (The good event has high probability) Under the assumptions of
Theorem 7.1, P(Êr) → 1 as r → ∞. The deviation terms are given by ηr =
min

(
1, supz≥r T

fluidδbz Tfluidc
)
, and ηr → 0 as r →∞.

Proof. By a simple union bound, and then using the fact that the arrival process
has stationary increments,

P(Êr) ≥ 1−
brT c∑
m=0

bLr log rc∑
k=0

P
(

sup
u∈[0,Tfluid]

∣∣ãr,m,wr,k(u)− λru
∣∣ ≥ ηr)

= 1− (1 + brT c)
bLr log rc∑
k=0

P
(

sup
u∈[0,Tfluid]

∣∣ãr,0,wr,k(u)− λru
∣∣ ≥ ηr)

= 1− (1 + rT )

bLr log rc∑
k=0

P
(

sup
u∈[0,Tfluid]

∣∣∣Ar(wr,ku)

wr,k
− λru

∣∣∣ ≥ ηr).
To bound this we will use Assumption 2.5, which says that

z(log z)2P
(

sup
τ≤z

1

z

∣∣Ar(τ)− λrτ
∣∣ ≥ δz)→ 0 as z →∞

uniformly in r. After extending the domain of Ar to R+ by linear interpolation in
each interval (τ, τ+1), and extending the domain of δz to z ∈ R+ by δ(z) = δbzc∨δdze,
and rescaling z by T fluid,

z(log z)2P
(

sup
u∈[0,Tfluid]

∣∣∣Ar(zu)

z
− λru

∣∣∣ ≥ T fluidδ(z T fluid)

)
→ 0 as z →∞
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uniformly in r. In other words, for any φ > 0 there exists z0 such that for all z ≥ z0

and all r,

P
(

sup
u∈[0,Tfluid]

∣∣∣Ar(zu)

z
− λru

∣∣∣ ≥ T fluidδ(z T fluid)

)
<

φ

z(log z)2
.

Now pick r0 sufficiently large that r0 ≥ z0 and supz≥r0 T
fluidδ(zT fluid) < 1, which we

can do since δ(z)→ 0 as z →∞ by Assumption 2.5. This choice implies that for any
r ≥ r0 and z ≥ r, T fluidδ(zT fluid) ≤ ηr (recall that ηr = min

(
1, supz≥r T

fluidδbz Tfluidc
)
).

Hence, for any r ≥ r0 and z ≥ r,

P
(

sup
u∈[0,Tfluid]

∣∣∣Ar(zu)

z
− λru

∣∣∣ ≥ ηr) <
φ

z(log z)2
.

Applying this bound to P(Êr), and using the facts that wr,k ≥ r and wr,k(logwr,k)
2 ≥

r(1 + k/ log r)(log r)2,

1− P(Êr) < φ
(1 + brT c
r(log r)2

) bLr log rc∑
k=0

1

1 + k/ log r
= φ

(1 + brT c
r log r

) bLr log rc∑
k=0

1

k + log r

≤ φ
(1 + brT c

r log r

)∫ bLr log rc

`=0

1

`− 1 + log r
d`

= φ
(1 + brT c

r log r

)
log
(

1 +
bLr log rc
log r − 1

)
.

The final expression converges to φT as r → ∞. Since φ can be chosen arbitrarily
small, P(Êr)→ 1 as r →∞. 2

7.1.2. Proof of Theorem 7.1. Given δ > 0, pick ζ > 0 such that 2ζ+mcζ(∆W ) <
δ ∧ 1 where mcζ(∆W ) is the modulus of continuity of ∆W over the set D specified
in Lemma 7.5. We can achieve the desired bound by making ζ sufficiently small; this
is because ∆W is continuous, hence uniformly continuous on compact sets, and D is
compact as a consequence of Theorem 5.4(i), hence mcζ(∆W )→ 0 as ζ → 0. With

this choice of ζ, define the good sets Êr and the constants T fluid and Hζ as specified
by (47).

By Lemma 7.3, there exists r0 such that for r ≥ r0 and for all ω ∈ Êr and all m,
d(x̃r,m,FMS1) < ζ and d(x̃r,0,FMS(q0)) < ζ, where q0 is defined in the statement
of the lemma.

Now, pick any t ∈ [0, T fluid] and r ≥ r0, and assume Êr holds. Lemma 7.4 says
that we can choose m ∈ {0, . . . , brT c} and u ∈ [0, T fluid] such that r2t = rm+zr,mu,
and furthermore either (i) m > 0 and u > Hζ or (ii) m = 0. By Lemma 7.3, we
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can pick x ∈ FMS (depending on r, t and the ω) such that ‖x̃r,m − x‖ < ζ and
furthermore either (i) m > 0 and x ∈ FMS1 or (ii) m = 0 and x ∈ FMS(q0). Then,
by Lemma 7.5, ∣∣q̂r(t)−∆W (q̂r(t))

∣∣
‖q̂r(·)

∥∥ ∨ 1
< δ.

This bound holds for every t ∈ [0, T ] and r ≥ r0, in a sample path-wise sense,
whenever ω ∈ Êr.

Finally, Lemma 7.6 says that P(Êr)→ 1. This completes the proof. 2

8. An optimal policy? Our motivation for this work was Conjecture 3.1,
which says that for an input-queued switch the performance of MW-α improves
as α % 0. We have not been able to prove this. However, under a condition on
the arrival rate, we can show (i) that the critically-loaded fluid model solutions for
a single-hop switched network approach optimal (in the sense of minimizing total
amount of work in the network) as α % 0; and (ii) that for an input-queued switch
the set of invariant states I defined in Section 7 is sensitive to α. We speculate that
these findings might eventually form part of a proof of a heavy traffic limit theorem
supporting Conjecture 3.1, given that critically loaded fluid models and invariant
states play an important role in heavy traffic theorems.

In this section we state the condition on the arrival rates, and give the results
(i) and (ii). Motivated by these results, we make a conjecture about an optimal
scheduling policy.

Definition 8.1 (Complete loading) Consider a switched network with arrival rate
vector λ. Say that λ satisfies the complete loading condition if λ ∈ Λ and there is
a convex combination of critically loaded virtual resources that gives equal weight to
each queue; in other words if

1

maxπ∈S 1·π
∈
〈
Ξ(λ)

〉
.

Theorem 8.2 (Near-optimality of fluid models under complete loading)
Consider a single-hop switched network with arrival rate vector λ ∈ Λ.

(i) For any fluid model solution for the MW-α policy, 1·q(t) ≤ Nα/(1+α)1·q(0)
(ii) For any fluid model solution for any scheduling policy, if λ satisfies the

complete loading condition then 1·q(t) ≥ 1·q(0)

Proof. The first claim relies on the standard result that for any x ∈ RN+ and β > 1,

(53)
1

N1−1/β

∑
n

xn ≤
(∑

n

xβn

)
1/β ≤

∑
n

xn.
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Using the Lyapunov function from Definition 5.3,

1·q(t) ≤ N1−1/(1+α)
(∑

n

qn(t)1+α
)

1/(1+α) by the first inequality in (53)

= Nα/(1+α)L
(
q(t)

)1/(1+α)
by definition of L(·)

≤ Nα/(1+α)L
(
q(0)

)1/(1+α)
since L̇(q(t)) ≤ 0 by Theorem 5.4(i)

≤ Nα/(1+α)1·q(0) by the second inequality in (53).

The second claim is a simple consequence of Lemma 5.10. (This lemma is for a
single-hop network. The multihop version, Lemma 6.8, does not have such a simple
interpretation.) 2

Theorem 8.3 (I is sensitive to α for an input-queued switch) Consider an
M ×M input-queued switch running MW-α, as introduced in Section 2.4. Let λij
be the arrival rate at the queue at input port i of packets destined for output port j,
λ ∈ RM×M+ . Suppose that λ > 0 componentwise, and furthermore that every input
port and every output port is critically loaded, i.e.

(54)
M∑
j=1

λı̂j = 1 and
M∑
i=1

λî = 1 for every 1 ≤ ı̂, ̂ ≤M.

Then λ satisfies the complete loading condition, and the critically loaded virtual
resources are

Ξ(λ) =
{
rı̂ for all 1 ≤ ı̂ ≤M

}
∪
{
ĉ for all 1 ≤ ̂ ≤M

}
where rı̂ and ĉ are the row and column indicator matrices, (rı̂)i,j = 1i=ı̂ and (ĉ)i,j =
1j=̂. Define the workload map W : RM×M+ → R2M

+ by W (q) = [ξ·q]ξ∈Ξ(λ). Denoting
the invariant set by I(α),

(i) If w is in the relative interior of {W (q) : q ∈ RM×M+ } then w is in {W (q) :
q ∈ I(α)} for sufficiently small α > 0

(ii) For a 2× 2 input-queued switch, {W (q) : q ∈ I(α)} is strictly increasing as
α%0

Item (i) essentially says that W (I(α)) becomes as large as possible as α%0, except
for some possible issues at the boundary. We have only been able to prove (ii) for a
2 × 2 switch, but we believe it holds for any M ×M switch. The proofs are rather
long, and depend on the specific structure of the input-queued switch, so they are
left to the appendix.

Conjecture 3.1 claims that, for an input-queued switch, performance improves as
α%0. Examples due to Ji, Athanasopoulou, and Srikant [15] and Stolyar (personal
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communication) show that this is not true for general switched networks. However,
Theorem 8.2 suggests that the conjecture might apply not just to input-queued
switches but also to generalized switches under the complete loading condition; the
examples of Ji et al. and Stolyar do not satisfy this condition. We therefore extend
Conjecture 3.1 as follows.

Conjecture 8.4 Consider a general single-hop switched network as described in
Section 2, running MW-α. Consider the diffusion scaling limit (described in Con-
jecture 7.2) and let λ be the limiting arrival rates; assume λ satisfies the complete
loading condition. For every α > 0 there is a limiting stationary queue size dis-
tribution. The expected value of the sum of queue sizes under this distribution is
non-increasing as α%0.

Theorem 8.2 says that MW-α approaches optimal as α % 0, under the complete
loading condition. It is natural to ask if there is a policy that is optimal, rather
than just a sequence of policies that approach optimal. Given that MW-α chooses
a schedule π to maximize π ·qα (where the exponent is taken componentwise), and
since

xα =

{
1 + α log x+O(α2) if x > 0

0 if x = 0

we propose the following formal limit policy, which we call MSMW-log: At each
timestep, look at all maximum-size schedules, i.e. those π ∈ S for which

∑
n πn1Qn>0

is maximal. Among these, pick one which has maximal log-weight, i.e. for which∑
n:Qn>0 πn logQn is maximal, breaking ties randomly.

Conjecture 8.5 Consider a general single-hop switched network running MSMW-
log. Consider the diffusion scaling limit and let λ be the limiting arrival rates; assume
λ satisfies the complete loading condition. There is a limiting stationary queue size
distribution. This distribution minimizes the expected value of the sum of the queue
sizes, over all scheduling policies for which this expected value is defined.

Scheduling policies based on MW are computationally difficult to implement,
because there are so many comparisons to be made. In future work we plan to
investigate whether the techniques described in this paper can be applied to policies
that may have worse performance but simpler implementation.
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APPENDIX A: RESULTS FOR INPUT-QUEUED SWITCHES

In this section we prove Theorem 8.3. Throughout this appendix we are consid-
ering a M ×M input-queued switch. The set of schedules S consists of all M ×M
permutation matrices. We assume the arrival rate matrix λ satisfies the complete
loading condition (54) and that λ > 0 componentwise. We let the scheduling algo-
rithm be MW-α, and define I(α) to be the set of invariant states.

A.1. Identifying Λ, S∗, Ξ, and Ξ+. The Birkhoff–von-Neumann decompo-
sition result says that a matrix is doubly substochastic if and only if it is less than
or equal to a convex combination of permutation matrices, which yields

Λ =
{
λ ∈ [0, 1]M×M :

M∑
j=1

λı̂,j ≤ 1 and

M∑
i=1

λi,̂ ≤ 1 for all ı̂, ̂
}
.

Since λ satisfies the complete loading condition (54), λ ∈ Λ.

Lemma A.1 below gives S∗, the set of virtual resources i.e. maximal extreme points
of the set of feasible solutions to DUAL(λ). From the complete loading condition,
it is clear that Ξ(λ) = S∗ as claimed in the theorem. It will also be useful, for the
proof of Theorem 8.3(i), to identify Ξ+(λ) as defined by (34). We claim that

(55) Ξ+(λ) = Ξ(λ).

To see this, suppose ξ is a non-maximal extreme point of the set of feasible solutions
to DUAL(λ); then there exists some other extreme point ζ such that ξ ≤ ζ and
ξ 6= ζ; but because λ > 0 componentwise it must be that ξ ·λ < ζ ·λ. We have
found that λ ∈ Λ, so the solution to DUAL(λ) is ≤ 1, hence ξ ·λ < 1. Therefore
ξ 6∈ Ξ+(λ), i.e. Ξ+(λ) consists only of maximal extreme points.

Lemma A.1 The set of maximal extreme points of the set

F =
{
ξ ∈ RM×M+ : ξ ·π ≤ 1 for all π ∈ S

}
.

is given by

S∗ =
{
rı̂ for all 1 ≤ ı̂ ≤M

}
∪
{
ĉ for all 1 ≤ ̂ ≤M

}
where the row and column indicator matrices rı̂ and ĉ are defined by (rı̂)i,j = 1i=ı̂
and (ĉ)i,j = 1j=̂.

Proof. First we argue that every ξ ∈ S∗ is a maximal extreme point of F . It is
simple to check that ξ ∈ F . Also, ξ is extreme because F ⊂ [0, 1]M×M . Finally, ξ
is maximal, because if it were not then there would be some ε ≥ 0, ε 6= 0, such
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that ξ + ε ∈ F ; but for any such ε there is a matching π such that ε ·π > 0 hence
ξ + ε 6∈ F .

Next we argue the converse, that all maximal extreme points of F are in S∗. The
first step is to characterize the extreme points of F . We claim that if ζ ∈ F then it
can be written ζ ≤ ξ for some ξ ∈ 〈S∗〉. Consider the optimization problem

minimize
M∑
ı̂=1

xı̂ +
M∑
̂=1

ŷ over xı̂ ≥ 0, ŷ ≥ 0 for all ı̂, ̂(56)

such that ζ ≤
∑
ı̂

xı̂rı̂ +
∑
̂

ŷĉ.

The dual of this problem is

maximize a·ζ over a ∈ RM×M+(57)

such that a·rı̂ ≤ 1, a·ĉ ≤ 1 for all ı̂, ̂.

(These problems are just PRIMAL(ζ) and DUAL(ζ) respectively, but with respect to
the ‘virtual’ schedule set S∗ rather than the actual schedule set S.) By Slater’s condi-
tion, strong duality holds. Now, any matrix a that is feasible for (57) is non-negative
and doubly substochastic, hence by the Birkhoff–von-Neumann decomposition re-
sult it can be written as a a ≤ b where b is a convex combination of permutation
matrices, i.e. b ∈ 〈S〉. But by the assumption that ζ ∈ F , ζ ·π ≤ 1 for all π ∈ S,
hence b·ζ ≤ 1, hence a·ζ ≤ 1, so the value of the optimization problem (57) is ≤ 1.
By strong duality, the value of the optimization problem (56) is also ≤ 1. Therefore
ζ ≤ ξ for some ξ ∈ 〈S〉.

We now claim that if ζ ∈ F then it can be written ζ =
∑
ξ aξξ where the sum is

over some finite collection of values drawn from the set

E =
{
ξ ∈ RM×M+ : ξ ≤ rı̂ or ξ ≤ ĉ for some ı̂, ̂

}
and all aξ are ≥ 0. We have just shown that

(58) ζ =
∑
ξ

aξξ − z for some z ≥ 0 and aξ ≥ 0, ξ ∈ E.

If z = 0 we are done. Otherwise, pick some (k, l) such that zk,l > 0 and define nk,l

by (nk,l)i,j = 1− 1i=k and j=l. Noting that
∑
aξξk,l ≥ zk,l > 0, we can rewrite ζ as

ζ =
zk,l∑
aξξk,l

∑
aξξ +

(
1−

zk,l∑
aξξk,l

)∑
aξξn

k,l − znk,l

where matrix multiplication is componentwise as per the notation specified in Section
1. We have thus rewritten ζ in the form (58), but now z has one fewer non-zero
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element. Continuing in this way we can remove all non-zero elements of z, until we
are left with ζ ∈ 〈E〉.

We have therefore shown that all extreme points of F are in E. Clearly, all maximal
points of E are in S∗. Therefore, all the maximal extreme points of F are in S∗ as
claimed. 2

A.2. Proof of Theorem 8.3(i). We first state two lemmas which will be
needed in the proof. The first is a general closure property of permutation ma-
trices, and the second is a property of invariant states of MW-α. We then prove the
theorem and the two lemmas.

Lemma A.2 Let x ∈ RM×M+ , and define A ∈ RM×M+ by Ai,j = 1 if there is some
matching ρ ∈ S whose weight ρ ·x is maximal (i.e. ρ ·x = maxσ∈S σ ·x) and for
which ρi,j = 1; and Ai,j = 0 otherwise. Then, for any matching π such that

πi,j = 1 =⇒ Ai,j = 1,

π is itself a maximum weight matching.

Lemma A.3 Fix any λ ∈ Λ, and any q ∈ I(α). For every 1 ≤ i, j ≤ M such
that λi,j > 0, there exists a matching π ∈ S whose weight π ·qα is maximal (i.e.
π ·qα = maxσ∈S σ ·qα, where the exponent is taken componentwise) and for which
πi,j = 1.

Proof of Theorem 8.3(i). Suppose the claim of the theorem is not true, i.e. that
there exists a sequence α% 0 such that w 6∈ W(α) = {W (q) : q ∈ I(α)} for each α
in the sequence.

Write w = (w1·, . . . , wM ·, w·1, . . . , w·M ), and define the function ∆α : R2M
+ →

RM×M+ to give the (unique) solution to the optimization problem

minimize
1

1 + α

∑
i,j

q1+α
i,j over q ∈ RM×M+

such that rı̂ ·q ≥ wı̂· and ĉ ·q ≥ w·̂ for all 1 ≤ ı̂, ̂ ≤M.

This is the optimization problem defined in (35); we have simply written out Ξ+(λ)
explicitly using (55). By Lemma 5.6, the map ∆W : RM×M+ → RM×M+ that defines

I(α) is simply the composition of W : RM×M+ → R2M
+ and ∆α : R2M

+ → RM×M+ . Let
q(α) = ∆α(w). Note that q(α) ∈ I(α); this is because q(α) is optimal for ∆α(w),
therefore it is optimal for ∆α(W (q(α))) which has a smaller feasible region, therefore
q(α) = ∆α(W (q(α))) = ∆W (q(α)) i.e. q(α) ∈ I(α).

We next establish this claim: that for each α in the sequence, there exists i, j, i′

and j′ such that qi,j(α) = 0, qi′,j(α) ≥ w·j/M and qi,j′(α) ≥ wi·/M . To prove this
claim, observe that W (q(α)) ≥ w by the constraints of the optimization problem ∆α;
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and that q(α) ∈ I(α) hence W (q(α)) ∈ W(α); hence W (q(α)) 6= w by assumption
that w 6∈ W(α). Therefore W (q(α)) > w in some component, i.e. there is some i or
j such that ri·q(α) > wi· or cj·q(α) > w·j . Indeed, there must be both such an i and
j, since otherwise the sum of row workloads and column workloads would not be
equal. Therefore qi,j(α) = 0, since if qi,j(α) > 0 then we could reduce qi,j(α) and still
have a feasible solution to the problem that defines ∆α(w) but with a smaller value
of the objective function, which contradicts optimality of q(α). There must also be
a j′ such that qi,j′(α) ≥ wi·/M since otherwise the workload constraint ri·q(α) ≥ wi·
would not be met. Likewise for i′.

We assumed that w ∈ R2M
+ is in the relative interior of Wmax = {W (q) : q ∈

RM×M+ }. This set is clearly convex, and from the characterization of relative interior
for convex sets, for all x ∈ Wmax there exists y ∈ Wmax and 0 < a < 1 such
that w = ax + (1 − a)y. In particular, by choosing x = W (1), we find that w > 0
componentwise.

For each α in the sequence we can find indices (i(α), j(α), i′(α), j′(α)) as above.
Some set of indices (i, j, i′, j′) must be repeated infinitely often, since there are only
finitely many choices. Restrict attention to the subsequence of α for which i(α) = i,
j(α) = j, i′(α) = i′, j′(α) = j′.

Now, consider the submatrix(
qi,j(α) qi,j′(α)
qi′,j(α) qi′,j′(α)

)
Recall that q(α) ∈ I(α). By Lemma A.3, and the assumption that λ > 0 compo-
nentwise, every queue is involved in some maximum weight matching. By Lemma
A.2, every matching is a maximum weight matching. Let π be any matching with
πi,j = πi′,j′ = 1, and let ρ be like π except with (i, j) and (i′, j′) flipped, i.e.
ρi,j = ρi′,j′ = 0 and ρi,j′ = ρi′,j = 1. We can write out explicitly the difference in
weight between these two matchings:

ρ·q(α)α − π ·q(α)α = qi′,j(α)α + qi,j′(α)α − qi′,j′(α)α − qi,j(α)α.

Here, q(α)α denotes component-wise exponentiation. Recall that along the subse-
quence we have chosen, qi,j(α) = 0, qi,j′(α) ≥ wi·/M and qi′,j(α) ≥ w·j/M . Therefore
lim infα→0 ρ·q(α)α−π·q(α)α > 0. This contradicts the finding that every matching
is a maximum weight matching for q(α).

Thus, we have contradicted our original assumption that there exists a sequence
α%0 with w 6∈ W(α). This completes the proof. 2

Proof of Lemma A.2. Let a = maxρ ρ ·x be the weight of the maximum weight
matching, let A = {ρ : ρ·x = a}, and let σ =

∑
ρ∈A ρ. Observe that σ ∈ ZM×M+ and

Ai,j = 1{σi,j>0}. Therefore, σ ≥ A componentwise. Further, by definition A ≥ π.

imsart-aap ver. 2007/04/13 file: netsched.tex date: December 2, 2010



NETWORK SCHEDULING 59

Therefore, the matrix σ − π is non-negative. Since σ is sum of |A| permutation
matrices, all its row sums and column sums are equal to |A|. And since π is a
permutation matrix as well, the matrix σ−π has all its row sums and column sums
equal to |A| − 1; therefore by the Birkhoff–von-Neumann decomposition

σ = π +
∑
ρ∈S

αρρ

where each αρ ≥ 0 and
∑
αρ = |A| − 1. Now, σ ·x = |A|a by construction of σ.

Therefore

|A|a = σ ·x = π ·x +
∑
ρ∈S

αρρ·x

≤ π ·x +
(
|A| − 1

)
a because a = max

ρ∈S
ρ·x.

Rearranging, π ·x ≥ a. But a is the weight of the maximum weight matching, thus
π ·x = a. 2

Proof of Lemma A.3. Since λ ∈ Λ, λ ≤ σ for some σ ∈ 〈S〉 i.e. σ =
∑
π∈S aππ

where
∑
aπ = 1 and each aπ ≥ 0. Therefore

λ·qα ≤ σ ·qα =
∑

aππ ·qα ≤
(∑

aπ

)
max
π∈S

π ·qα = max
π∈S

π ·qα.

But by Lemma 5.11(iv), λ ·qα = maxπ π ·qα, therefore both the inequalities in
the above must be equalities. In particular, all matchings π for which aπ > 0 are
maximum weight matchings. If λi,j > 0 then at least one of these matchings has
πi,j = 1. 2

A.3. Proof of Theorem 8.3(ii). Consider a 2 × 2 switch with arrival rate
matrix λ. Since λ satisfies (54), we may write it

λ =

(
λ1,1 1− λ1,1

1− λ1,1 λ1,1

)
for some λ1,1 ∈ (0, 1). To find I(α) we use the characterization from Lemma 5.11(iv),
which says that q ∈ I(α) if and only if λ·qα = maxπ π ·qα, i.e. if and only if

λ1,1

(
qα1,1 + qα2,2

)
+ (1− λ1,1)

(
qα1,2 + qα2,1

)
=
(
qα1,1 + qα2,2

)
∨
(
qα1,2 + qα2,1

)
.

Now, the equation λ1,1x+ (1− λ1,1)y = x ∨ y is satisfied if and only if x = y, given
0 < λ1,1 < 1. Therefore

I(α) =
{

q ∈ R2×2
+ : qα1,1 + qα2,2 = qα1,2 + qα2,1

}
.
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We wish show that {W (q) : q ∈ I(α)} is strictly increasing as α%0, where W (q) =(
r1 ·q, r2 ·q, c1 ·q, c2 ·q

)
. It suffices to show that Ŵ(α) = {Ŵ (q) : q ∈ I(α)} is

strictly increasing, where Ŵ (q) =
(
r1·q, c1·q, 1·q

)
, since there is a straightforward

bijection between W (q) and Ŵ (q). Now, (w1·, w·1, w··) ∈ R3
+ is in Ŵ(α) iff there

exists q ∈ R2×2
+ such that

qα1,1 + qα2,2 = qα1,2 + qα2,1, r1 ·q = w1·, c1 ·q = w·1, 1·q = w··

i.e. iff there exists x ∈ R such that

xα + (w·· − w1· − w·1 + x)α − (w1· − x)α − (w·1 − x)α = 0,(59)

max
(
0, w1· + w·1 − w··

)
≤ x ≤ min

(
w1·, w·1

)
.(60)

Write θ(x) for the left hand side of (59). Since θ(x) is increasing in x, there exists
a solution to (59) iff θ(x) ≤ 0 at the lower bound in (60) and θ(x) ≥ 0 at the upper
bound. By considering four separate cases of which of the bounds in (60) are tight,
and after some algebra, we find that there exists a solution iff

(61) wi· + w·j +
(
wαi· + wα·j

)
1/α ≥ w·· for each i, j ∈ {1, 2}

where w2· = w·· − w1· and w·2 = w·· − w·1. Now, it is a standard inequality that for
any x > 0 and y > 0, and any 0 < α < β,

(xα + yα)1/α > (xβ + yβ)1/β.

Applying this inequality to (61), it follows that Ŵ(α) is strictly increasing as α%0.
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