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Abstract. There are moves in the Internet architecture community to
add multipath capabilities to TCP, so that end-systems will be able to
shift their traffic away from congested parts of the network. We study
two problems relating to the design of multipath TCP. (i) We investigate
stochastic packet-level behaviour of some proposed multipath congestion
control algorithms, and find that they do not behave how we might expect
from fluid modeling: they tend to flap randomly between their available
paths. We explain why, and propose a congestion control algorithm that
does not flap. (ii) We consider how the path choice offered by the network
affects the ability of end-systems to shift their traffic between a pool of
resources. We define a ‘resource poolability’ metric, which measures for
each resource how easy it is for traffic to be shifted away from that
resource e.g. in the event of a traffic surge or link failure.
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1 Introduction

It has been argued that the natural next step in the evolution of the Internet
is to harness the responsiveness of end systems to achieve better network-wide
traffic management [1]. If end systems can spread their load across multiple
paths in the right way, with the right reaction to the right congestion signals
from the network, then traffic will quickly and automatically move away from
congested or failed links in favour of uncongested links. This will relieve stress
on the Internet’s routing system (BGP), which is overwhelmed [2].

End-systems already do shape traffic to some extent: TCP backs off in re-
sponse to congestion; peer-to-peer systems choose peers that give good through-
put; content distribution networks route traffic to well-chosen server farms. These
disparate mechanisms can pull in different directions, and they can conflict with
the traffic management algorithms used by network operators [3]. There is now
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an opportunity to do things right: The Internet Engineering Task Force has re-
cently begun to consider the practical design of a multipath version of TCP [4],
and if the longevity of Jacobson’s TCP is any indication then we will be living
with the consequences of their decisions for several decades. This is a perfect
opportunity for mathematical modeling to assist in the design process.

The fundamental challenge of relying on end-systems to manage network-
wide traffic is this: how can the system as a whole achieve a desirable outcome,
when the end-systems only have local knowledge? The key mathematical insight
was provided by Kelly et al. [5], who showed that congestion control at end-
systems can be thought of as a distributed control system for solving a network-
wide optimization problem. They also realized that routing can be seen as an
extension of congestion control—choosing route r1 rather than r2 is an extreme
case of increasing traffic on the first route and reducing it on the second, and
it should presumably be done in response to signals from the network about
congestion levels along the two paths. There has since been a great deal of
theoretical work on congestion control, some of it on multipath. There are six
parts to the multipath-modeling research agenda:

(i) How does a fluid model arise from stochastic packet-level behaviour of a
multipath congestion control algorithm?

(ii) Is the fluid model stable? [6, 7, 8]
(iii) What is the flow-level behaviour, assuming that congestion control works

properly? [9, 10]
(iv) How should a flow learn which of many possible available paths it should

use? What are the consequences for flow-level behaviour, both for mul-
tipath TCP1 and for overlay networks such as peer-to-peer applications?
[11, 13]

(v) What sort of path choice does the network need to offer?
(vi) What signals should the network use to affect the behaviour of multipath

traffic? What will be the impact of end-system multipath on the peering
and pricing contracts between network operators? [3]

This paper fills in some gaps in items (i) & (v). Section 2 is concerned with
item (i). It turns out that the stochastic packet-level behaviour is quite surpris-
ing, and one needs to think carefully about what fluid models actually represent
in order to understand the problem. This is important to get right, if one is to
implement a reliable robust congestion control algorithm. We believe we have
an algorithm that performs reliably enough to be deployed today, and we have
a Linux implementation.

Section 3 is concerned with item (v). There are several technologies with
which path choice might be offered: end-systems could set a few path selector

1 Key et al. [11] propose a simple and appealing answer: ‘if every end-system is given
a choice of two paths, then flow-level behaviour is near optimal’. The theory behind
this answer assumes that paths are chosen independently from a large collection
of equivalent links. However the Internet’s topology is likely to impose correlations
between the choices, and this means that two paths might not be sufficient [12],
unless the paths are well chosen—hence the need for (v).
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bits in each packet header and the network could route according to what those
bits say; or path choice could be achieved via multiple IP addresses at multi-
homed end-systems; or it could be completely managed by overlay networks.
It is vital to be able to judge the benefit of each of these mechanisms, so that
Internet architects can decide if it is worth making wide-ranging changes e.g. to
the Internet’s routing system (BGP) or to the interpretation of the IPv4 ‘type
of service’ bits.

Terminology. We shall use the word flow to refer to a source of traffic. Each flow
can send its traffic over one or more paths. The traffic it sends on a single path
is called a subflow.

2 Designing a multipath congestion control algorithm

There have been four proposals for multipath congestion control algorithms: an
original proof of concept by Kelly et al. [5], a translation of techniques from
optimization and control theory by Wang et al. [6], and algorithms derived from
fluid models by Kelly and Voice [8] and Han et al. [7]. In the latter three pieces
of work, it was assumed that fluid models are an appropriate description of the
system, and the work was to analyse the stability of the fluid models.

We simulated the algorithms suggested by these fluid models, and found
surprising behaviour: even when the stability analysis says the system should
be stable, the algorithms behaved erratically, flipping from sending almost all
traffic on one path to sending almost all traffic on a different path, and the flips
were non-periodic. In this section we describe this behaviour, and explain why
it arises and how the fluid models should be interpreted. We will be concerned
with the behaviour of an individual flow, not with aggregates.

Another issue is that the proposed fluid models are for an Internet in which a
user’s traffic rates are determined by the congestion he/she sees, whereas in the
current Internet it is his/her window size that is determined by congestion, and
traffic rates are determined by window size and round trip time. We describe
how to adapt the multipath congestion control algorithm so that it plays nicely
with today’s protocols (or indeed with any other benchmark for fairness that we
might set).

Notation. Suppose a flow can send its traffic over several paths, indexed by r.
Suppose that the congestion control algorithm is window-based, like TCP, i.e.
it maintains a window size wr on each path and attempts to keep wr packets in
flight on path r. Congestion is controlled by adjusting the wr. Let w =

∑

r wr.
The throughput i.e. traffic rate it gets on path r is xr = wr/RTTr, where RTTr

is the round trip time on that path. Assume that RTTr does not vary with con-
gestion; this is reasonable when the routers along the path all have small buffers,
and a matter for further study when they do not. Let pr be the packet drop prob-
ability (or the packet marking probability, if Explicit Congestion Notification is
enabled).
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2.1 Flappiness and resource pooling

Consider a very simple system consisting of a single flow with two paths, each
path with constant packet drop probability pr. Assume that both paths have
equal round trip time, so that we might as well replace rates by window sizes
in the fluid models. Also, assume that the drop probabilities are small so that
1− pr ≈ 1. A fluid model from [8, equation (21)2] is3

d

dt
wr(t) =

wr(t)

RTTr

[

a− bw(t)pr

]

. (1)

This corresponds to the congestion control algorithm that increases wr by a
whenever it receives an acknowledgement on path r, and decreases it by bw(t)
when it detects a drop. We will refer to this as Algorithm (1). A simulation is
shown in the left column of Figure 1. The horizontal axis shows w1 and the ver-
tical axis shows w2, and we plot lines to show the evolution of (w1, w2) between
drops.
∙ If p1 > p2 then the fixed point of (1) is ŵ1 = 0 and ŵ2 = a/(bp2), and the

simulation confirms that the algorithm uses path 2 almost exclusively.
∙ If p1 = p2 then any solution (ŵ1, ŵ2) with ŵ = ŵ1 + ŵ2 = a/(bp) is a fixed

point of (1). The simulation shows however that the system flaps between
w1 ≈ 0 and w2 ≈ 0. If we plot w1(t) as a function of t, we observe that the
flaps occur at random (non-periodic) times. Note that multipath congestion
control will tend to equalize congestion throughout the network, so the p1 =
p2 case is generic.

We also simulated another algorithm, Algorithm (2), adapted from [7, equation
(14)]:

d

dt
wr(t) =

wr(t)

RTTr

[

a
wr(t)

w(t)
− bwr(t)pr

]

. (2)

This algorithm has the same fixed point as (1) but it has gentler increases and
decreases. We thought it might be less flappy but Figure 1 shows otherwise.

What causes flappiness? To understand how flappiness arises, consider a some-
what contrived scenario in which both paths use a single bottleneck link, and
packet drops occur whenever w1 + w2 = 100, and the flow is using Algorithm
(1) with a = 1 and b = 1/4. Starting from w1 = w2 = 1, both windows increase
until w1 = w2 = 50. Suppose that path 1 experiences a drop and w1 decreases.
The two window sizes will then grow until (w1, w2) = (33.3, 66.7). Just one more
drop on path 1 is enough to push w1 down to 8.3 packets. At this point it will
take six consecutive drops on path 2 for the two windows to equalize again.

2 The control-theoretic analyses in [7, 8] uses xr(t − RTTr) rather than xr(t), to
reflect the fact that acknowledgements received at time t are for packets sent at time
t−RTTr; but they also show that removing the lag to give (1) should only improve
the stability of the dynamical system.

3 It is understood in this and in all other fluid model equations that if wr = 0 then
we take the positive part of the right hand side.
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Fig. 1. Window size dynamics for a two-path flow. The axes are w1 and w2, and the
plots show the increase phases of the process (w1(t), w2(t)).

There seem to be two drivers of flappiness. (i) Both algorithms move traffic
off congested paths and onto uncongested paths. Even when two paths have the
same drop probability, chance fluctuations will mean that from time to time one
path suffers a few extra drops, so it will look momentarily more congested, so the
flow will flip to the other path. To overcome this, it will be necessary either to
accept less perfect resource pooling, or to use smoothed estimates of loss which
will result in a more sluggish response. (ii) The second driver of flappiness in
Algorithm (1) is the problem of capture: if flow 1 experiences a couple of drops,
flow 2 needs to experience many more drops to bring the traffic rates back into
balance.

We have simulated networks where the drop probabilities are not fixed but
instead depend on the offered traffic, and still find flappiness.

Interpretation of fluid models. The issue with the fluid model is that it only
holds in the limit as the number of flows tends to infinity, and in this limit
wr(t) represents the average window size among a large ensemble of equivalent
flows at time t. This was argued heuristically in [14], and proved rigorously for
a simplified model in [15]. In a large ensemble of multipath flows, any linear
combination (�, 1−�)ŵ may appear as the average, if each individual flow flaps
randomly between (w1, w2) = (0, ŵ) and (w1, w2) = (ŵ, 0). We suspect that �
performs a symmetric random walk in [0, 1], since by symmetry it is just as likely
for a flow to flip from path 1 to path 2 as vice versa.
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We note as an aside that the illustrations in this paper come from a semi-
fluid simulator along the lines of [16], which we validated using a packet-level
implementation. Our simulator solves a differential equation for the increase
phase, e.g. ẇr(t) =

(

wr(t)/RTTr

)(

awr(t)/w(t)
)

for algorithm (2), and applies
packet drops randomly according to an inhomogeneous Poisson process.

2.2 Alleviating flappiness

Consider Algorithm (3), the congestion controller corresponding to

d

dt
wr(t) =

wr(t)

RTTr

[ a

w(t)

(awr(t)

w(t)

)1−"

− bprwr(t)
]

. (3)

At " = 0 this is flappy, and if there are several paths with joint lowest drop
probability then the fixed point is not unique. It is much like Algorithm (2),
except for the 1/w(t) in the increase term which we put in so as to better reflect
TCP’s increase rule. At " = 2 the subflows are uncoupled, and Figure 1 shows
that this is completely unflappy and completely useless at shifting traffic away
from the more congested path. At " = 0.8 there is a reasonable compromise
between flappiness and load-shifting.

For any " > 0 it is easy to solve for the fixed point of (3) and to see it is
unique4. The fixed point solves wr = (a2−"/bprŵ

2−")1/". Note that the total

window size ŵ is divided between paths in proportion to 1/p
1/"
r , so the smaller "

the greater the aversion to congestion. We can also use the equation ŵ =
∑

r ŵr

to solve for ŵ. It turns out that if there are several paths through a single
bottleneck link, then ŵ depends on the number of paths that the flow is using;
this is clearly undesirable on grounds of fairness, and it was not the case for
(1) or (2). In the next section we give a general-purpose method for removing
unfairness.

2.3 Compensating for round trip time

Here is a simple way to design a multipath congestion control algorithm so that
it fits in gracefully with other traffic, in particular with TCP and its dependence
on round trip time. We set ourselves two goals. To state them, we first define
x̂TCP

r =
√

2/pr/RTTr to be the throughput that a single-path TCP flow would get
if it experienced packet drop probability pr and had round trip time RTTr. Let
ŵTCP

r =
√

2/pr be the corresponding window size. Our goals are (i) A multipath
flow should not get more than x̂TCP

r on any single path, though it may get less.
This means that other flows cannot suffer, and may benefit, if I deploy multipath
TCP. (ii) A multipath flow should get total throughput maxr x̂

TCP

r . This means
that the more paths I have access to the more I benefit. These goals explicitly
use TCP as a reference, but the argument applies straightforwardly to any other
reference throughput formula ℎxref

r (pr,RTTr).

4 There was also a " > 0 parameter introduced in [7, equation (1)] to guarantee
uniqueness of the fixed point; we however intend that " should be a design parameter,
say " ≈ 0.8, rather than a negligible term for making the maths tractable.
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(ŵTCP

1
, ŵTCP
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Fig. 2. The two design goals place constraints on what the equilibrium window sizes
should be, and a can be chosen to meet them.

Our goals can be achieved using a congestion controller corresponding to the
fluid model

d

dt
wr(t) = xr(t)

[ a

w(t)

(awr(t)

w(t)

)1−"

∧
1

wr(t)
− pr

wr(t)

2

]

(4)

where x ∧ y = min(x, y). The ∧ ensures that a window does not increase any
faster than TCP would, and the decreases are the same as TCP, so goal (i) is
satisfied by a coupling argument. To satisfy goal (ii), we want to choose a so
that the equilibrium window sizes satisfy

∑

r

ŵr

RTTr
= max

r

ŵTCP

r

RTTr
. (5)

Figure 2 illustrates the constraints. The axes show ŵ1 and ŵ2 for a two-path flow
with p1 = 0.025%, p2 = 0.1%, and RTT1 = 2.5RTT2. Goal (i) says that (ŵ1, ŵ2)
should lie below and to the left of the dashed lines. Goal (ii) says that it should
lie on the sloping line. Since p1 < p2 we would ideally put as much traffic as
possible on path 1, i.e. choose the black dot in the leftmost plot. In the middle
plot, the bold line shows the fixed points (ŵ1, ŵ2) that we can get by tuning a
(with " = 0.8); we propose to choose a to just meet goal (ii), i.e. to choose the
black dot. To calculate a, first write out the fixed point equation for (4),

a

ŵ

(aŵr

ŵ

)1−"

∧
1

ŵr
= pr

ŵr

2
,

then rewrite it in terms of ŵTCP

r =
√

2/pr to get

ŵTCP

r = ŵr ∨ ŵ"/2
r (ŵ/a)1−"/2

where x ∨ y = max(x, y). Substituting into (5),

∑

r

ŵr

RTTr
= max

r

{ ŵr

RTTr
∨

ŵ
"/2
r (ŵ/a)1−"/2

RTTr

}

.
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Equality cannot occur when the right hand side is equal to ŵs/RTTs for some
s, since that would require all the other ŵr to be equal to 0, hence

∑

r

ŵr

RTTr
= max

r

ŵ
"/2
r (ŵ/a)1−"/2

RTTr
.

Solving for a gives

a = ŵ
(maxr ŵ

"/2
r /RTTr

∑

r ŵr/RTTr

)1/(1−"/2)

.

From instant to instant the algorithm may not actually know the fixed point
window sizes, so it cannot compute a exactly. We propose using the current
window sizes wr(t) to estimate the fixed point window sizes ŵr, yielding an
estimated value for a. Maybe it might be useful to smooth this estimate, but
in our simulations it was not necessary. The rightmost plot in Figure 2 shows a
simulation trace.

3 Resource poolability

In a multipath network, congestion at one resource can be alleviated by shifting
traffic onto other resources. The extent to which this is possible depends on (i)
how much of a flow’s traffic is shifted between its paths in response to congestion,
and (ii) which paths it has available. This section is concerned with the second
point. we will explain what a resource pool is, and we will define a metric that
measures the poolability of a resource.

Notation. Suppose the network comprises an interconnection of a set of flows S
with a set of resources J . Each flow s ∈ S identifies a unique source-destination
pair. Associated with each flow is a collection of paths, each path being a set
of resources. If path r belongs to flow s then we write r ∈ s. If a path r uses a
resource j we write j ∈ r. (If two flows share a route, we deem there to be two
paths that happen to use exactly the same resources.)

It is helpful to introduce matrices to succinctly express the relationships
between flows, paths and resources. Let Ajr = 1 if j ∈ r i.e. if path r uses
resource j, and let Ajr = 0 otherwise. Let Hsr = 1 if r ∈ s i.e. if path r serves
flow s, and Hsr = 0 otherwise. The two 0–1 matrices A and H express all the
details of the topology and multipath routing that we are concerned with.

Each path r has associated with it a traffic rate xr ≥ 0. The total traffic rate
for flow s is ys =

∑

r∈s xr, and the total traffic at resource j is zj =
∑

r:j∈r xr.
In matrix notation, z = Ax and y = Hx. Also define the traffic intensity at j to
be �j = zj/Cj .

3.1 Five optimization problems.

In the classic multicommodity flow problem, we imagine that there is a fixed
demand y ≥ 0, and that each resource j has a fixed capacity Cj , and we seek an
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allocation x such that Hx = y and Ax ≤ C. The optimization problem

FEAS(y, C) :

minimize � over � ∈ ℝ, x ≥ 0

such that Ax ≤ C + �, Hx = y,

indicates whether this is possible: there exists such an allocation when FEAS(y, C) ≤
0. The dual problem is important—

POOL(y, C) :

maximize
∑

s

ysqs −
∑

j

Cjpj over p ≥ 0, q

such that
∑

j

pj = 1 and qs ≤ min
r∈s

∑

j∈r

pj for all s.

For the case of end-system congestion control, Kelly et al. [5] supposed that
end-systems choose their traffic rates in response to congestion signals from the
network. Let pj(zj/Cj) be the drop probability (or marking probability, or price
signal) at resource j when the load is zj , and define Lj(�) =

∫

pj(�) d�. Assume
that Lj(⋅) is strictly convex. Suppose each flow s has a utility function Us(ys)
associated with its total traffic rate ys, and consider the problem

SYSTEM(C) :

maximize
∑

s

Us(ys)−
∑

j

CjLj(zj/Cj) over y ≥ 0, x ≥ 0, z ≥ 0

such that Ax = z, Hx = y.

In the case of single-path traffic (when H is the identity matrix), the equilib-
rium throughput of TCP is in fact the solution to this optimization problem
with Us(ys) = −1/(RTT2

sys) where RTTs is the round trip time for that flow.
SYSTEM(C) is a natural generalization to multipath; [6, 7, 8] define multipath
congestion control algorithms and show they have equilibrium throughputs which
solve SYSTEM(C) or closely related problems. We can rewrite SYSTEM(C) as
maxy

{
∑

s Us(ys)−MINL(y, C)
}

where the latter optimization is

MINL(y, C) :

minimize
∑

j

CjLj(zj/Cj) over x ≥ 0, z ≥ 0

such that Hx = y, Ax = z.

The dual to MINL(y, C) is

OPTP(y, C) :
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Fig. 3. Three scenarios for examining multipath flow problems. Flows are labelled
I, II, III, paths are labelled a, b, . . . and resources are labelled 1, 2, 3, 4.

maximize
∑

s

ysqs −
∑

j

CjL
∗
j(pj) over p ≥ 0, q ≥ 0

such that qs ≤ min
r∈s

∑

j∈r

pj .

Here L∗
j (p) is the Fenchel-Legendre transform L∗(p) = sup�≥0 p�− L(�).

3.2 Resource pooling in the multicommodity flow problem

Here are some examples that give intuition about POOL. Consider the middle
scenario in Figure 3. From explicit calculation, a flow y is feasible if and only if
yI+yII ≤ C1+C2 and yI+yIII ≤ C1+C3; it is like a single-path system with two
‘resource pools’ Ĉ1 = C1 +C2 and Ĉ2 = C1 +C3 where yII uses Ĉ1, yIII uses Ĉ2

and yI uses both. The two constraints reflect the two extreme feasible solutions
p = (1/2, 1/2, 0) and p = (0, 1/2, 1/2) of POOL. Or consider the rightmost scenario
in Figure 3. Here the single feasibility constraint is 2yI + yII ≤ 2C1 + C2 + C3;
it is like a single-resource system where yI uses the resource twice and yII only
once. The constraint reflects the single extreme feasible solution p = (1/2, 1/4, 1/4)
to POOL. Laws [17] calls these ‘generalized cut constraints’, and gives several
illuminating examples.

We tried running multipath congestion control on these three scenarios (and
thereby solved SYSTEM and OPTP). In the rightmost scenario for example we
found that flow II balances its traffic so that p2 = p3 i.e. so that congestion
is balanced on those two resources, and flow I also balances its traffic so that
p1 = p2 + p3, resulting in p1 = 2p2 = 2p3. This solution to OPTP somehow
corresponds to the POOL solution p = (1/2, 1/4, 1/4)—which suggests that OPTP
also tells us about resource pools. This is discussed further in Section 3.3.

POOL can also tell us about the effect of adding or removing capacity. Con-
sider the leftmost scenario in Figure 3, and suppose y = (6, 5, 5) and C =
(8, 2, 4, 3). This is not feasible, as exemplified by the dual variables p = (0, 1/3, 1/3, 1/3)
and q = (0, 1/3, 1/3): we could add � = qTy − pTC = 1/3 unit of capacity to each
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link to make it feasible. Alternatively, d�/dCj = pj , which means we could make
y feasible by adding �/p4 = 1 unit of capacity to link 4, for example. The corre-
sponding analysis of OPTP is the basis for Section 3.4.

3.3 Finding resource pools

Given the similarity between POOL(y, C) and OPTP(y, C), we conjecture that
the extreme optimal solutions to OPTP(y, C) tell us about which of the re-
source pools are tight, in the same way as do the extreme optimal solutions to
POOL(y, C). In particular, based on simulation experiments, we conjecture the
following:

The extreme optimal solutions to OPTP(y, C) may be found as follows. Find
the solution to SYSTEM(C), for example by simulating the fluid model for a
multipath congestion control algorithm of the sort described by Kelly and Voice
[8]. Denote the optimal flows and drop probabilities by ŷ and p̂. All extreme
optimal solutions p to OPTP(ŷ, C) have the form pj = p̂j1j∈P for some set
P ⊆ J . Call these sets P the resource pools.

If this conjecture is correct, then one might employ heuristic techniques to
discover the resource pools. One might then display them as a visualization aid,
to assist a network operator in choosing alternative paths. For example, if some
resource pool is a bottleneck then there is no point providing alternative paths
that go through the same bottleneck. A well-connected network operator is likely
to be able to find good alternative paths, but a poorly-connected operator is not.
This is how network operators can provide value to their customers, even in a
world of dumb pipes, intelligent end-systems and network neutrality.

3.4 Resource poolability matrix

In a multipath congestion control problem, what is the effect on OPTP(y, C)
when we change the capacity of one of the resources? What is the effect on the
drop probabilities? Intuitively, we might expect that if a resource’s capacity is
reduced then the drop probabilities of all the other resources in the same resource
pool will increase, and other resources will not be affected. We might also expect
that if a resource is in a large pool then drop probabilities are not much affected
if the resource fails, but if it is in a small pool then failure has a much bigger
impact.

Definition of poolability. For each resource j define its poolable capacity C̃j by

C̃j =
Cj

L̈j(�j)

where the dots refer to the second derivative with respect to �j. Also define a
∣J ∣ × ∣J ∣ matrix 	 , called the resource poolability matrix, and a ∣S∣ × ∣J ∣ matrix
�, called the sensitivity matrix, by

[

	
�

]

=

[

Ā 0
0 I

] [

M −H̄T

H̄ 0

]−1 [
ĀT d(C̃−1)

0

]
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Here Ā denotes the adjacency matrix A restricted to those paths with non-zero
traffic, H̄ denotes H restricted similarly, M = ĀT d(C̃−1)Ā, and d(C̃−1) denotes
the diagonal matrix with diagonal entry j given by 1/C̃j. If the inverse of the
middle matrix does not exist, then use the Moore-Penrose pseudoinverse. It is
shown in Section 3.5 that dzi/dCj = �j	ij .

The resource poolability matrix lets us read off a variety of interesting quan-
tities. For example, if the capacity of link j changes from Cj to (1− �)Cj , then
how much does the traffic intensity at that link change? It changes by roughly

−�Cj
d�j
dCj

= −�Cj

( 1

Cj

dzj
dCj

−
zj
C2

j

)

= ��j(1− 	jj).

What is the impact on drop probability at that link? It changes by roughly

−�Cj
d

dCj
L̇j(�j) =

�Cj

C̃j

�j(1− 	jj).

From these two equations, we see that 	jj = 1 means perfect resource pooling—if
link j looses capacity then its traffic can be routed elsewhere and drop probability
at j does not increase. If 	jj = 0 then there is no resource pooling, and the
answers are exactly what they would be for an isolated resource.

If the capacity of link j changes from Cj to (1 − �)Cj , the total traffic at
some other link i changes by roughly

−�Cj
dzi
dCj

= −�Cj�j	ij .

Observe that �Cj�j is roughly the amount of traffic that has to move away from
link j, hence −	ij tells us what share link i takes of the knock-on traffic.

Examples of resource poolability. The resource poolability matrices for the three
examples in Figure 3, assuming that all the shown routes are in use, are as
follows. For the leftmost network 	 is

1
∑

j
C̃j

⎡

⎢

⎢

⎣

C̃2 + C̃3 + C̃4 −C̃1 −C̃1 −C̃1

−C̃2 C̃1 + C̃3 + C̃4 −C̃2 −C̃2

−C̃3 −C̃3 C̃1 + C̃2 + C̃4 −C̃3

−C̃4 −C̃4 −C̃4 C̃1 + C̃2 + C̃3

⎤

⎥

⎥

⎦

and for the middle and rightmost networks respectively 	 is

1
∑

j
C̃−1

j

⎡

⎣

C̃−1

1
−C̃−1

2
−C̃−1

3

−C̃−1

1
C̃−1

2
−C̃−1

3

−C̃−1

1
−C̃−1

2
C̃−1

3

⎤

⎦ ,
1

4C̃1 + C̃2 + C̃3

⎡

⎣

C̃2 + C̃3 −2C̃1 −2C̃1

−2C̃2 4C̃1 + C̃3 −C̃2

−2C̃3 −C̃3 4C̃1 + C̃2

⎤

⎦

There seems to be some sort of algebra here, akin to the algebra of electrical
circuits in series and parallel, but we have not uncovered it.
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3.5 Derivation of resource poolability

First write down the Lagrangian for MINL(y, C) or equivalently OPTP(y, C):

ℒ(x, z; p, q) =
∑

j

CjLj(zj/Cj)−
∑

j

pj

(

zj−
∑

r

Ajrxr

)

+
∑

s

qs

(

ys−
∑

r

Hsrxr

)

.

The complementary slackness conditions are

pj = L̇j(�j) for all j, where �j = zj/Cj

qs =
∑

j

Ajrpj for all paths r in use by s

zj =
∑

r

Ajrxr for all j

ys =
∑

r

Hsrxr for all s. (6)

The dot in L̇j(�j) refers to the derivative with respect to �j . Substituting for pj
and zj , the first three become

qs =
∑

j

AjrL̇j

(

C−1
j

∑

v

Ajvxv

)

. (7)

Now consider changing the capacity of resource Ci while leaving the other re-
sources C and the total flow rates y unchanged. Differentiating (6) & (7) with
respect to Ci we obtain

q′s =
∑

j

AjrL̈j

(

�j)
{ 1

Cj

∑

v

Ajvx
′
v −

�j
Cj

1i=j

}

(8)

0 =
∑

r

Hsrx
′
r . (9)

Here the primes q′s and x′
r refer to derivatives with respect to Ci, the dots L̈j(�j)

refer as before to a double derivative with respect to �j , and 1{⋅} is the indicator
function, 1true = 1 and 1false = 0. Assume for now that all derivatives exist.
Rearranging (8),

�iAir
L̈i(�i)

Ci
=

∑

v

x′
v

(

∑

j

AjrAjv
L̈j(�j)

Cj

)

−
∑

s

q′sHsr. (10)

In matrix terms we can write (9) & (10) as

Hx′ = 0 and
[

Mx′ −HTq′
]

r
= �iAir/C̃i for each r in use (11)

where C̃j = Cj/L̈j(�j) and M = AT d(C̃−1)A and d(C̃−1) denotes the diagonal

matrix with diagonal entry j given by 1/C̃j. These equations are easier to deal
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with if we expand our focus and work simultaneously with derivatives with re-
spect to each of the link capacities. It will also be convenient to rescale by �−1

i .
Accordingly, define the matrix x̃′ by x̃′

ri = �−1
i dxr/dCi, and the matrix q̃′ by

q̃′si = �−1
i dqs/dCi. With these definitions (11) becomes

[

M −HT

H 0

] [

x̃′

q̃′

]

=

[

AT d(C̃−1)
0

]

(12)

We want to know how drop probability is affected by a change in capacity, and
this is straightforward to calculate from dzj/dCi, which it is convenient to rescale:
let z̃′ji = �−1

i dzj/dCi. If we knew x̃′ we could simply compute z̃′ = Ax̃′, which
is what we named as the poolability matrix 	 . We named q̃′ as the sensitivity
matrix �.

Existence and uniqueness. Now we must answer the questions: are x̃′, q̃′ and z̃′

uniquely determined? Do they even exist?
First, note that the original optimization problem MINL(y, C) always has a

unique solution for z, because we assumed that L is strictly convex. It may be
that z̃′ does not exist, in corner cases, e.g. when a path swaps in or out of use as
capacities change. But if we are in a part of the capacity space where marginal
changes in C do not alter the set of paths in use, z̃′ exists and is unique.

Second, observe that x may not be unique, for example when two flows have
exactly the same choice of resources to use. However, if z̃′ exists then there must
be some solution for x̃′ even if it is not unique. Therefore we might as well take
the pseudo-inverse of the matrix in (12), since any solution for x̃′ is as good as
any other for the purpose of computing z̃′.

Third, z determines p which determines q, so q̃′ is unique when it exists.

Final thoughts. Our analysis of resource poolability asks what happens when
the network changes, assuming the total demand y does not change. This leads
to clean maths. It also reflects a division of responsibilities—it is the role of
the network to provide good paths, and the role of end-systems to decide how
much traffic to send, and it is reasonable for the network to assume that end-
systems will use low-congestion paths when they are available. We conjecture
that our technique may be extended to other forms of load balancing that can
be described by means of an optimization problem; congestion controllers such
as (3) fall into this category.
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