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ABSTRACT uitous and incorporate multiple radios. Experience shows

that the performance of each of these can be very variable,
especially while moving. Multipath transport’s ability tice
more than one radio simultaneoustyr the same connec-
tion has the potential to improve both reliability and perfor-

By simultaneously using multiple paths through the Intgrne
multipath transport protocols have the potential to gyeatl
improve performance, resilience and flexibility. Furthsy,
linking the congestion behavior of the subflows of a connec- = k ,
tion, itis possible to move traffic away from congested paths Mance. In addition, multi-homing of server farms has also
allowing network capacity to be pooled and better handling 2€come ubiquitous. To balance load at such multi-homed
surges in traffic. In this paper we show that existing algo- SIt€S, network operators play traffic engineering gameis wit
rithms that achieve such resource pooling have a few prob-BGP routing. BGP, though, is a very slow and imprecise
lems, which stem from the differences between fluid flow 00! for this purpose; in contrast multipath transport can r
models and packet-level behavior. Further, these algosith act on timescales of seconds and can precisely and automat-

are poor at detecting and using capacity when congestionica"y balance load. Finally, in the core of the network mul-
levels vary rapidly, as they do in the Internet. tipath transport protocols can move traffic away from hot-

We propose the principle @&quipoiseas a balance to re- spots in the face of congestion caused by failures such as

source pooling, and present a class of algorithms thateehie IP€r cuts, or overload caused by flash crowds or DDoS at-
different degrees of resource pooling and equipoise. We [@cks. In the hope of gaining these benefits the IETF has
show how to dynamically adapt the aggressiveness of multi- rece_ntly started a working group to standardize multipath e
path flows so they compete fairly in the current Internet. ~ ensionsto TCP[4]. , ,

We use a combination of real deployment and packet-level N this paper we investigate the congestion control dy-

simulation to show that the emergent behavior of these algo-"amics of just such a multipath transport protocol. We start
rithms is robust, the algorithms are fair to existing TCRj an rom the understanding of resource pooling provided by the
achieve both equipoise and resource pooling. previous work on fluid flow models and show that although

they capture the steady-state behavior well, they missairuc

1. INTRODUCTION packet-level dynamics, even in steady-state scenariosnWh
these dynamics are combined with dynamic background load,
solutions that previously appeared optimal no longer do so.

To address these issues, we will first introduce the concept
of equipoiseg(or equal balance) and show that solutions ex-
hibiting equipoise tend to be more robust when network con-
ditions vary rapidly. Through theory and simulation we will
then derive a more robust multipath congestion control al-
gorithm and demonstrate that it works well even in dynamic
network conditions with vastly differing RTTs between the
paths. Finally we will demonstrate that our algorithm works
well under real network conditions when used as part of a
full Multipath TCP protocol stack.

Multipath transport protocols have the potential to greatl
improve the performance and resilience of Internet traffic
flows. The basic idea is that if flows are able to simulta-
neously use more than one path through the network, then
they will be more resilient to problems on particular paths
(e.g. transient problems on a radio interface), and thely wil
be able to pool capacity across multiple links. These mul-
tiple paths might be obtained for example by sending from
multiple interfaces, or sending to different IP addresdes o
the same host, or by some form of explicit path control.

Although Multipath TCP has been suggested many times
over the years (first in [9]), it was really only with the re-
cent development of fluid-flow models[11][6] that the main
potential benefits have become clear. In short, multipath- 2. THE STATE OF THE ART
capable flows should be designed so that they shift their traf ~ Theoretical models for multipath congestion control were
fic from congested paths to uncongested paths, so that the Infirst proposed by [12], and subsequently by [20], [11] and
ternet will be better able to accommodate localized surgesi [6]. The latter two proposals [11, equation (21)] and [6,
traffic and use all available capacity. In effect, multipedim- equation (14)] are particularly interesting because thesy u
gestion control means that the end systems take on a role thathe same mechanism as TCP: they adapt a congestion win-
is normally associated with routing, namely moving traffic dow at the sender, in response to congestion information
onto paths that avoid congestion hotspots, at least to what-transmitted via ACK packets.
ever extent they can given the paths they have available. These models suggest that it is possible for a multipath

The idea is very timely. Smart phones are becoming ubig- sender to split traffic between multiple paths and to control



how traffic is balanced between those paths, on the same
timescale as TCP congestion control. The common conclu-
sion is that it is possible to get many of the benefits of loado
dependent routing, but to do so stably on short timescales
using control mechanisms located at the transport layer of
the end systems.

The specific proposals from [11] and [6] are minor varia-
tionst of the following algorithm:

ALGORITHM: COUPLED SCALABLE

e For each ACK on path, increase windovw,. by a.

¢ Foreach loss on path decrease window,. by wtal/b.
Herew, is the window size on path, andwqy is the total
window size across all pathg;andb are constants.

Both [11] and [6] analyse a fluid-model approximation to
this and related algorithms. That is, they write down a col-
lection of differential equations describing an arbitrast-
work topology with a fixed number of long-lived flows, and
they analyse the behaviour of the dynamical system. A suit-
able equation for the evolution af, is

M - w'r‘(t) ((1 _p,r(t))a —p'r‘(t)

dt ~ RTT,

Wiotal(t) \ 1w (=0]
=)

1)
wherep, (t) is the packet loss probability on patfat timet.
The supserscript meansuif.(t) = 0 then take the positive
part. The fluid model predictghat simply by coupling the
congestion windows, we get three important benefits: load

balancing, fairness, and stability.

Load balancing. Traffic moves away from the more con-
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Figure 1: A scenario where regular TCPs will not bal-
ance load or share capacity fairly, bubGPLED SCAL-
ABLE will. The numbers above the links are packet
drop probabilities, and the numbers to the right are ag-
gregate throughputs in pkt/s.

C5 = 180 andCy = 50 pkt/s, and the common round trip
time is100ms. The left hand diagram shows how capacity
would be shared by running uncoupled TCP congestion con-
trol on each subflow (except that we have scaled the window
increase parameter Hy4 so that each subflow is half as ag-
gressive as a normal TCP). The right hand diagram shows
how capacity would be shared byoOOPLED SCALABLE
congestion is equalized at the four links, and the three flows
achieve the same throughput. In effect, the network is be-
having as if the four links constituted a single link shargd b
three single-path flows.

For intuition about how ©QUPLED SCALABLE achieves
this pooling of resources, suppose it starts out with threug
puts as per the left hand diagram. Fléexperiences higher

gested paths until either the congestion levels on the pathscongestion on link 4, so it shifts some traffic into link 3.

equalize, or no traffic remains to be moved from the more
congested paths. When there are several paths with minima
congestion, the algorithm has no preference for any particu
lar split between them.

These properties may be seen from (1). The equilibrium
point, i.e. the point wherdw, /dt = 0 for every subflow
r, hasw, = 0 for every pathr such thaty, > pmin, where
Pmin IS the minimum of they,.. It also has total window size

Wtotal = ab(l - pmin)/pmin-

Resource pooling. The overall effect of load-balancing is
that a set of disjoint bottleneck links can behave as if they
were a single pooled resource. This is known as ‘resource
pooling’. Figure 1 illustrates. Consider a scenario wittrfo
links traversed by three multipath flows, and suppose that be

This causes congestion on link 3 to increase, so floghifts
gome traffic onto link 2, and so on.

Resource pooling does depend on the subflows taking dif-
ferent paths. There are a range to ways to ensure this hap-
pens, but if the endpoints are multihomed the simplest is to
use multiple IP addresses at each endpoint. With reasonable
probability[1], this will give paths through the networkath
are distinct for much of the way.

Fairness. COUPLED SCALABLE takes a fair share of re-
sources at a bottleneck link, even if several subflows pass
through that same link. Fairness means there is no need for
shared bottleneck detection, as used by [16].

To see why it is fair, note from (1) that at equilibrium
Wiotal = ab(1 — pmin)/Pmin, hence the total window depends

cause of topological constraints each flow has access to onlyonly on the level of congestion and not on the number of

two of the links. The capacities at¢y = 100, Cy = 250,

The two proposals differ slightly in how to respond when tife d
ferent subflows have different RTTs. For convenience, wél sha
in this section only consider the case where all subflows iaee
same RTT. The algorithm in [11] is specified in terms of rabes,
we have recast it here in terms of congestion windows. Baplesa
assume that geueueing delay is negligible.

2Note that these are theoretical predictions; the rest ofpaper
asks how to obtain these benefits in practice.

paths or their intersections.

We assume for now that all RTTs are equal, so fair win-
dow size means fair throughput. Note that @ LED SCAL-
ABLE is not fair against TCP NewReno because its response
to congestion is intrinsically different. In Section 5 wdlwi
show how to achieve the benefits of multipath while account-
ing for different RTTs and maintaining ‘legacy fairness’.

Stability. Fluid model analysis of (1) shows that parame-



tersa andb can be chosen to make the network stable, i.e. The Zen of resource pooling

to ensure that once the equilibrium point has been reached, In order for multipath congestion control to pool

any deviations are damped down and do not grow into os- resources effectively, it should not try too hard to
cillations. This suggests that there will not be any route fla pool resources. Instead of using only the paths
or synchronization between flows, since these effects would that currently look least-congested it should in-
resultin a deviation from equilibrium. stead maintain equipoise, i.e. it should balance

its traffic equally between paths the extent nec-
essaryto smooth out transient fluctuations in con-
3. RESOURCE POOLING IN THE FACE OF gestion and to be ready to adapt to persistent

FLUCTUATING CONGESTION changes.

Our goal, when starting this work, was to take the ideas |, ¢4 e will examine a spectrum of algorithms with dif-

from §2 and implement them in the TCP protocol in @ man- o ent fradeoffs between resource pooling and trafficeizitay,
ner that is acceptable for standardization. We expected tha;, qer to quantify the phrase ‘to the extent necessary’.
any difficulties would be with the protocol embedding, not

the congestion control dynamics. Although there are arange3.1  The algorithm under test

of intere§ting protocol questions to be answered, tlhe more  Thrgughout this paper we care specifically about deploy-
challenging issue has turned out to be the dynamics. Thegpjjity in the current Internet, so our starting point wiks b
key challenge is that congestion levels fluctuate in ways not 5 o dification of ®@UPLED SCALABLE to make it fit better
accounted for by the theory i§2. In order to obtain the i TCP NewReno. We make two chandes.
benefits of resource pooling in the face of fluctuating con- Change 1.n the absence of loss, for each ACK received
gesti_on, we needed to ma}ke significant chang.es to the dy-coupLED SCALABLE increases, by a giving exponential
namics. There are two main sources of fluctuations: _ growth in window size, whereas TCP NewReno grows the
* Packet drops are discrete random events. Even if the qonqestion window linearly. We can easily adapt the mul-
packet loss probability remains constant, there will from in41h a1gorithm to grow windows linearly: simply increase
time to time be chance _bursts of loss on one path or an-,, by a/wew per ACK on pathr, rather than increasing by
other, hence the short-timescale observed loss probabil-,  +cp NewReno also increases its windawoy a/w per
ity will not be constant. The fluid models however use Aci so this will be fair to TCP even when several subflows
a real numbep,.(t) to represent congestion, so they do go through a single bottleneck link.
not take account of the random nature of the signal. Change 2. In COUPLED SCALABLE the windoww, is

 Typically, the background load in a network is variable. ,a5ntto decrease Bifotar/b per l0ss on path. If wiota/b >
When there is a persistent change in the congestion 0N &, " then the decrease has to be truncated: if there are two
path, e.g. a change that lasts Ionger.than several RT_TS’paths and we have chosén= 2 to mimic TCP NewReno,
the flow should quickly adapt. The fluid model analysis heon the smaller congestion window will always be truncated
however deals with a steady-state network and does noty, o g avoid problems of truncation, we will multiply the
give any guidance about how fast it is safe to react. decrease term by, /wiow. We shall also multiply the in-

A multipath flow ought to adapt to persistent changes in .reaqe term by the same amount; the algebra below shows
congestion by moving its traffic away from more-congested 4t this gives us resource pooling and fairess. These two
paths—but if it is hardly using those paths then it will be changes give us:

slow to learn and adapt if and when they decongest. We refer
to this ascaptureby the less-congested paths. Furthermore, ALGORITHM: COUPLED
if multipath is deployed in the Internet and resource paplin  * Each ACK on patl, increase window, by aw, /wg,.
actually works, then we should expect that there will oftenb ¢ Each loss on path, decrease window, by w,. /b.
balanced levels of persistent congestion, which means thatin experiments in this section, we uge= 1 andb = 2 to
transient fluctuations could be enough to trigger capture. ~ mimic TCP.

In this section we investigate capture in a practical vadrian

of COUPLED SCALABLE We show that capture plus tran- A fluid-model approximation for this is

sient fluctuations in congestion tend to make the algorithm dw.(t)  wy(t) awy (t)

flap from one path to another, and that this effect can prevent  —_,— = ——— (( —prlt )W

the algorithm from achieving resource pooling even when ' Wy (£) w0 (0=0]
persistent congestion levels are stable. We also point out — pr(t) Tb )

a protocol problem with timeouts that arises from capture. o _ _
These problems, combined with the difficulty that capture In equilibrium, there can be no traffic on pathfor whichp,.
brings in responding to fluctuations in persistent congasti i not minimal, for if there were then that derivative would

lead us to a new design principle for multipath congestion 2simulation results (not reported) show that the changesado n
control, the principle oéquipoise affect our observations about capture.




80

40-

|
60*1
|
l

20 7\\

0

80

60-

404

20

0 D C—
0 20 40 60 80

w1
Figure 2: Window size dynamics for a two-path flow. The top row showsflhiel model predictions: the arrows show
trajectories of(wy (t), w2 (t)) and the darker areas indicate that andw, are changing slowly. The bottom row shows
simulation results: there is ink at every stéat®s , w-) occupied during the course of the simulation, so the deo$itiie
ink indicates how much time the algorithm spends in eacle stat

be negative. At the equilibrium value afqy, the increase  average window sizes.

and decrease on active paths must balance out, hence Plots(a;) and(b) differ in one respect only. lifa;) the
a 1 loss probabilityp, is greater than the loss probabilipy,
(1 = pmin) —5— = Pminy whereas in plotb,) the drop probabilities are equal.
total The top plots in Fig. 2 show the predictions of the fluid

wherepmin is the lowest congestion level over all paths, hence model. The arrows show how the model prediats , ws)
Wiotal = /ab(1 — pmin) /Pmin- Whenpmin is small this is ap-  will evolve, given an arbitrary starting point. Where the
proximatelyy/ab/pmin, Which agrees with what TCP NewRenomodel predicts a unique equilibrium exists, a black dot is
would get on the least congested path. Note that the totalshown.

window size depends only opmin and not on the number The fluid model shown irfa; ) and the simulation ifay)

of paths or their overlap, hence this algorithm allocateswi  agree: all the traffic shifts to path 1. In Fig. 2(b) they dis-
dow size fairly. Since the increase and decrease terms areagree: the fluid model says that any point with + wy =
both less aggressive tharoGPLED SCALABLE, for which \/2/p1 is an equilibrium point, but the simulation shows that
we know that the fluid model is stable, we conjecture that the flow avoids those equilibria whetg ~ w-.

this fluid model is also stable.

_ What causes flappiness? There are two related causes of
3.2 Flappiness flappiness. (1) The algorithm has a capture effectuwf

In simulations we found that adPLEDflow very rarely ~ happens to be larger tham, at some point in time, then it
uses all its paths simultaneously. It switches betweenspath takes several drops on path 1 to counter the effect of a sin-
but not periodically: rather it is captured on one path for a 9l€ drop on path 2. This means the flow spends some time
random time, then it flaps to the other, and so on. Properly captured on path 1. Another way to express this is that when

speaking this is not oscillation, since the flaps are notperi w2 is small the flow does not probe path 2 frequently, and it
odic, rather it is an example of bistability. does not attempt to increase aggressively. (2) Random fluc-

Consider first the bottom left plots in Fig. 2 labelléa) tuations in congestion mean that over short timescales the
and (by). These come from a simulation where two sub- losses seen by each subflow are never precisely eqoal- C
flows of a multipath flow experience random loss with prob- PLED mistakes this for a persistent difference in congestions,
ability p,. We refer to such random losses as ‘exogeneous SO it load-balances its traffic onto the less congested path.
drops’ because they are outside the influence of the flow it- 10 See these effects more clearly, consider a toy model:
self. This plot graphs the window of one subflaw, against ~ Suppose that the two subflows of @@rLEDflow go through
the window of the other subflowy,. As the simulation pro-  the same bottleneck link, and suppose that wer- w; =
ceeds, the windows increase linearly and backoff multiplic 100 & packetis dropped, and that the probability it is dropped
tively leaving a trace in the plot. The plot is thus a form of from subflowr is proportional tow,.. Fig. 3(a) shows the
histogram—the simulation spends most of its time in the ar- €volution ofw; andw, over the first 4 drops, first two drops
eas of the plot where the ink is darkest. Anmarks the ~ ©n path 2 then 2 drops on path 1, and it shows clearly the



1007 (@) (b) an equilibrium point which is just off-center, at which con-

‘ gestion is balanced. However, the simulation results show
that the algorithm spends much of its time captured by link
1: the average ofv, is 13% lower than the fluid model

w2 50+ predicts, and the consequence is that= 0.055% while
— 3.3 Timeouts with small windows
] | | — For the most part, the precise extensions to the TCP proto-
0 w0 1000 % 10 col to support multipath do not greatly impact the dynamics.

However, one effect cannot be ignored: when a subflow suf-
fers a retransmit timeout due to the ACK clock being lost,
other subflows that were performing well may stall. This is
because the receive buffer needed to put data from the-differ
ent subflows back in order can fill up if data remains missing
for an entire retransmit timeout (RTO) period. There are a
number of ways to mitigate this; selective acknowledgments
Capture is a robust finding. It might be thought that cap-  help a little, and adaptively reducing the dup-ack threghol
ture will not arise in practice, because if the flow flaps onto in the absense of reordering [21] can reduce timeouts. How-
a path then the congestion on that path will increase (we call ever, despite these, the main problem is simply that with
this ‘endogenous drops’), and this will be enough to push the very small windows there are not enough packets in flight
flow away. to trigger a fast retransmission, meaning that a timeout-is i

Fig. 2(c) shows this is only partly true. Consider a sce- evitable. As a result, algorithms that reduce a subflow to a
nario with two paths with bandwidth-delay-product of 96 Very small window tend to much more suscepible to time-
packets, a OUPLED flow using both links, and an addi- outs, and these timeouts risk stalling the other subflows and
tional single-path TCP flow on each of the links. Unlike with  degrading performance overall.

exogenous drops, the endogenous fluid mbdeks show
a unique equilibrium point, to which the drift arrows show 4. UNDERSTANDING THE DESIGN SPACE

convergence. According to§2 a multipath flow should shift its traffic
Despite thiS, the simulation results show that the flow does onto the |east_congested paths in order to achieve resource

not converge to equilibrium, though the capture effect s no pooling, but according t§3 it ought to maintain equipoise

as pronounced as with the exogeneous drops in Fig. 2(b).  over its available paths. In order to explore the tension be-
We expect even more flappiness when the multipath flow tyween equipoise and resource pooling, we shall consider the

in question is Competing with many flows, since more com- following family of algorithms parameterized lay
petition means that, is less sensitive ta,., which brings

Figure 3: Window size dynamics for a two-path flow.

capture effect. Fig. 3(b) shows just the increases over 5000
drops, with the densities of the lines indicating the fraicti

of time spent with a given combination of window sizes, and
it shows that the overall outcome is flappiness.

us closer to the exogenous drops case. ALGORITHM FAMILY : SEMICOUPLED(¢)
e Each ACK on subflowr, increase the windoww, by
Capture can prevent resource pooling. There are some a2—¢w;—¢/wfo;<{’_

situations where a GQuPLED multipath flow can get cap- ¢ Eachloss on subflow, decrease the window, by w;. /b.
tured on one path but not on the other (unlike the exam- Useb = 2 to mimic TCP. Thex parameter controls aggres-
ple in Fig. 2(b), where the multipath flow spends an equal siveness, and is discussed;f
amount of time captured at each extreme). It means that the , s
flow spends a disproportionate amount of time on the path With ¢ :_0’ SEM'COU.PLEDreduces 0 @‘.JPLED ; and
on which it has been captured, which means that that pathas We saw "§_3 th's achieves resource pooling _put does _not
has excessively high average congestion, which means thafh@intain equipoise. It seems to be too sensitive to minor
resource pooling has failed. or s_hort-term changes in loss rates, and it moves too much
Fig. 2(d) illustrates the problem. The scenario is like trafﬂp off the more congested path. .
Fig. 2(c): two links, one multipath flow and two single-path With ¢ = 2, SEM'COUPLEDha.‘S an increase term wa"l
flows. The bandwidth-delay-product of link 1 is 98 packets &nd @ decrease term af./2, which corresponds to running
and that of link 2 is 89 packets. The fluid model predicts separate TCP congestion control on each SUbﬂOV.V' We shal
refer to this as MCOUPLED congestion control. Since the
“The fluid model comes from the following approximation. ket subflows are controlled separately, there is no tendency for
be the rate of the single-path flow on lini and solve two extra traffic to flap from one subflow to another, i.e. this algorithm
equations: the TCP throughput equation for the single-fiatiy maintains equipoise. However it does a poor job of balanc-

Ty = ﬂ/RTTr\/p_T; and an equation that says the link is kept ; P
fully utilized, (1~ p,) (2 + w, /RTT,) = C, whereC, is the link ing load and resource pooling, as seen in Fig. 1.

speed. This gives a solution fpy as a function ofw,. Salthougha in SEMICOUPLEDCOrresponds tq/a in COUPLED
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Figure 4: Impact of¢ on long term Resource Pooling

We shall explore whether it is possible to achieve both the capacity of the middle link to 750, 500 and 250 packets/s.
resource pooling and equipoise, by studying what happensWe wish to see the extent to which multipath TCP can move
when we varyg in the range€0,2]. We do not claim that  traffic away from the middle link towards the top and bottom
by carefully choosing> we can obtain a perfect algorithm, links. The best metric here is the ratio of loss rates between
merely that this is an interesting spectrum with which to be- the middle link and the top link—an algorithm that pools re-
gin an exploration. sources completely will equalize these loss rates, giving a

The casep = 1 is a priori appealing since the increase ratio of one.
and decrease terms can be computed using basic arithmetic. We also examine the aggregate throughputs of each of
The equilibrium window size can be computed by calcu- the multipath flows. Although this is a less effective metric
lating when increase and decrease are balanced,&slin (each flow traverses two links, so congestion is conflated), i
when¢ = 1 and1 — p, = 1 the equilibrium window sizes  serves to verify that the overall outcome is acceptabldier t

are users of these flows, not just for the network operator.
1/p, Fig. 4(b) shows the ratios of loss rates and Fig. 4(c) shows
wy A \/EW- 2) the ratio of best-to-worst throughput. Each data point is

from a single long run (10,000 simulated seconds). ¢As
4.1 Evaluating the SemicoupLED(¢) Family decreases we see that resource pooling (as exhibited by the
_ _ _ loss rate ratio) improves steadily and approaches peiect r
The ¢-parameterized family of algorithms allows us to  source pooling as approaches zero. The ratio of through-
study the balance between resource pooling and equipoisepyts also decreases steadily, but the graph gets a littty noi
The fluid-flow models cannot capture this, so instead we as¢ approaches zero due to increased flappiness.

use packet-level simulation. We developed our own high-  Fig. 4(d) shows the absolute loss rates on all the links for
performance event-based simulator caliesimthat can scale  gjfferent values ofp. The z-axis is truncated to emphasize
from Single flows to many thousands of flows and Gb/s link- the effect a$§ approaches Zero (|osses on the middle flow ac-
speeds, allowing us to examine a wide variety of scenarios. yally extend linearly to 0.25% loss when= 2). The figure

htsimmodels TCP NewReno very similarly 2 Allthe  ¢learly shows the way resource pooling diffuses congestion
simulations in this paper were run wiltsim across the network aSapproacheS Zero.
Resource Pooling in the Steady State . Dynamic Background Load and Equipoise.

First we shall investigate how well the different algorithm In stable steady-state scenarios it is clear that the-C

in the SEmIcouPLED(¢) family balance load and pool re-  p|gp (i.e, ¢ = 0) algorithm achieves close to optimal re-
sources in a stable environment of long-lived flows. We gqyrce pooling, albeit with the possibility of flappinesvid
have examined many topologies and scenarios, but Fig. 4(a)ever, the Internet rarely resembles such a steady-statersce-
shows atorus topology that illustrates the effects paeiity  ysyally there is a constant background of short flows that
nicely. It consists of five bottleneck links, each traverbgd  come and go. This background traffic can change the situa-
two multipath flows. This topology is a good test of resource tion considerably.
pooling because it demonstrates the knock-on nature of load cgonsider a scenario where the background traffic is con-
balancing while at the same time having no end points or stantly changing but where it is still feasible for multipat
special cases which complicate the choice of metric. flows to balance load. If the multipath flows succeeded in
To start with, all five bottleneck links have equal capaci- pajancing the load on average, then for short periods of time
ties of 1000 pkts/second, equal RTTs of 100ms, and the bot-first one path then the other path will be more congested.

tieneck buffers are one bandwidth-delay product. To see theThis resembles the flappiness issue we described earlier, ex
effectiveness of resource pooling we progressively reduce
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Figure 5: Impact of¢ on throughput with dynamic background load

cept that the differences in the loss rates between the pathsng the probability of timeouts. The dashed lines in Fig.)5(b
may be larger, and they may reverse faster as flows slow-startshow the effect on throughput if the receiver buffer is small

or terminate. The capture effect exhibited by theu®LED enough that each of these timeouts also causes the better pat
algorithm can be a problem here. If one path is more con- to stall. A real implementation would lie between the two
gested for a short while, then acOpPLED flow will move curves.

as much traffic as it can off that path. However, if the con-  With three long-lived TCP flows on the bottom link (left
gestion suddenly reduces, as happens when competing flowplot) there is always a short-lived flow on the top link able to
terminate, then GuUPLED will not respond rapidly to re-  use the spare capacity the multipath flow fails up take up, so
balance the network because it has too small a window andthe link utilization is always 100%. With one long-lived TCP

a very low increase rate on the previously congested path.on the bottom link (right plot), when the scenario is evenly
Thus, althouglp = 0 is good at steady-state load balancing, balanced there are too few small flows on the top path to al-
its lack of equipoise makes it less effective at dynamic load ways take up the bandwidth that the multipath flow fails to
balancing. utilize. In fact in the right hand plot, witih = 1.9 the uti-

To illustrate this, consider the very simple scenario in Fig lization is only 68%; this falls to 47% fa = 0.1. Thus with
5(a). Three long lived flows provide background traffic on low levels of highly variable competing traffic, low valuefs o
the bottom path. On the top path eight short-lived flows with ¢ not only reduce throughput, but also can be less effective
idle and active periods with a mean of 5 seconds provide at utilizing the network. This can be regarded as a failure to
a rapidly changing background of slow-starting and termi- effectively pool resources.
nating flows. These particular parameters were chosen to This is even more clear if we examine why the curves lev-
ensure both links are fully utilized for all values ¢fand to els off in the middle and right plots for low values of
provide roughly equal congestion levels on the two paths. The reason is that these flows are sufficiently captured by

Directly measuring short-term resource pooling by mea- the large window they obtain on the lower path that they al-
suring loss rates is difficult because we need to measuremost never increase their window on the top flow above one
short time periods and each period contains few losses. Wepacket, even when there is no traffic on that link at all for
can, however, measure the opportunity cost that the multi- many seconds. Thus these curves level off at their fair share
path flow pays when it becomes captured on a path that is noof the lower path - 333 pkts/s in the middle plot and 500
longer the best. This is shown in Fig. 5(b). The left of the pkts/s in the right plot.
three graphs shows the scenario from Fig. 5(a), whereas the Our conclusion is that while both the fluid flow models
middle and right graphs show the same scenario with lessand steady-state simulations point towapds 0 being opti-
background traffic (2 and 1 long-lived TCP respectively on mal for resource pooling, this does not apply to the dynamic
the bottom link, plus an appropriate level of short flows on conditions seen in most real networks. Under such circum-
the top link). stances it is better to use an algorithm with> 0. We have

The reduction in throughput @s— 0 is due to this lack of examined a wide range of scenarios, both in simulation and
equipoise and the resulting inability to rapidly changerfro  with a full implementation. Unfortunately there is no sin-
prefering one path to prefering the other. For each plot, two gle clear “sweet spot”. However, values in the middle of
curves are shown. The solid line is the raw results flam the range give robust behavior, pooling capacity quiteceffe
sim However these do not model when the receive buffer tively across a wide range of steady and dynamic conditions.
fills up at the receiver during a retransmit timeout on one  Of these robust values,= 1 stands out because it corre-
path, leading to the other path being stalled. Fig. 5(c) show sponds to a simple algorithm that can be implemented easily
the number of RTOs for each of the three scenarios. Clearlyin an operating system kernel without needing floating point
the lack of equipoise with smaller valuesg@is also increas-  arithmetic or expensive calculations. As a result, we will
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Figure 6: SEMICOUPLED(¢ = 1) allocates equal win-
dow sizes when congestion is equal, regardless of RTT.

use the EMICOUPLED(¢ = 1) algorithm as the basis for the Figure 8: By choosinga we control the equilibrium
remainder of this paper. window sizes.

5.1 Fairness Goals

5. FAIRNESS AND DEPLOYABILITY Our overall aim is to compete with TCP in a way that does
not starve competing traffic, but that still gives sufficipat-

formance advantage to provide incentives for deployment.
This leads to three specific goals that any multipath conges-
tion control algorithm should aim to satisfy:

So far we have examined a spectrum of algorithms with
the aim of understanding how well they balance load and
pool resources, and concluded that algorithms that exhibit
better equipoise are more robust (in particular to timeouts
and better able to cope with dynamic operating conditions. Goal 1 (Improve throughput) A multipath flow should per-
However, we have not examined whether these algorithmsform at least as well as a single-path flow would on the best
are fair to competing traffic, or even whether they perform of the paths available to it. This ensures that there is an
better than a single-path TCP. There are two effects to con-incentive for deploying multipath.
sider:
¢ Fairness when several subflows of a multipath flow com- Goal 2 (Do no harm) A multipath flow should not take up

pete with a single TCP flow at a shared bottleneck. For any more capacity on any one of its paths than if it was a
example, it is easy to see that two uncoupled subflows single path flow using only that route. This guarantees that
using TCP-like AIMD parameters would get twice the it will not unduly harm other flows.

throughput of a single TCP flow. _ _
« Fairness when the RTTs seen by the subflows differ sig- G0@l 3 (Balance congestionA multipath flow should move

nificantly. For example, GUPLED always prefers aless @S much traffic as pqssible off its most-congested paths, sub
congested path, even when that path has high RTT andi€ct to meeting the first two goals.

hence low throughput. To understand how these goals interact, consider a two-

For an example of why the RTT can be a problem, con- : ; ilibritmi o
sider the two-path BMICOUPLED(¢ = 1) flow shown in pathAcong.esuon control W'th equilibri mdoyv SIZeSy
Fig. 6 where both paths have the same packet drop proba-aAndl.UQ on Its two pgths. Fig. 7.Sh9WS constraintsionand
bility p — 1%. Use the constanis = 1 andb — 2. Equa- w9 given some arbitrary combination of loss rates and RTTSs.

tion (2) says that the equilibrium window sizes are — The vertical dashed lines show the equilibrium window sizes

ATCP  __ H
ws = 1//p = 10 packets, regardiess of RTT. The total 1. = \/2/p1 that a regular TCP flow would achieve on

throuahout the flow aets does depend on RTT: itris— path 1, and the horizontal line shows the same for path 2.
wl/Rnger wa /RTT5. Igor example P ' (From the figure we can deduce that < ps since we see

thatwi® > wy*.) Goal 2 (do no harm) requires that the
RTT; = 10MS,RTT» = 10ms  givesr = 2000 packets/s multipath flow should not use more capacity on pathan

RTT; = 10ms,RTT, = 100ms givesr = 1100 packets/s. ~ Would a single-path TCP flow, i.e. that. < «@;" for every
pathr.

But a single-path TCP using only the low-RTT path would ~ The total throughput of the multipath flow)s . w,. /RTT,..
get throughput 02000 packets/s, so there is no incentive to The diagonal lines in Fig. 7 are lines of equal throughput;
run SEMICOUPLED(¢ = 1) using the higher-RTT path. their gradient is given by the ratio of the RTTs. The left fig-
Although the two issues above have separate causes, theyre shows a case whergT; > RTT,, and so even though
are part of the same fairmness problem, and we will addresseOur method for compensation only works when the equilibrium

them together. Before we can do so though, we must decidewindow sizes are unique. It does not apply to algorithms Gkeu-
what our fairness goals are. PLED.
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Figure 9: RTT compensation, with equal and unequal loss rates

wi® is smaller, a TCP on path 2 would achieve higher through- Each loss on path, decreasev, by w,./2.

put than one on path 1. In the right figure the RTTs are equal,

so path 1 gives better throughput. The solid diagonal lineis The parameter controls how aggressively to increase

the line of equal throughput equivalent to that of the better window size, hence it controls the overall throughput. To

of the single path TCP flows. The region below this line see the effect od, observe that in equilibrium the increases

and below the dashed lines satisfies Goal 2 (do no harm)—and decreases on each subflow should balance out. Neglect-

points in this region achieve no more throughput on either ing for the moment the cap/w,, balance implies that

path than TCP would on that path, even if the bottleneck a "

turns out to be common to both subflows. The region above (1—p))— =pr—

the solid diagonal line satisfies Goal 1 (improve throughput Weot 2

because points in this region achieve more throughput thanwhereii is total equilibrium window summed over all paths.

TCP would on the better of the two paths. Making the approximation that. is small enough that —
Thus points on the solid diagonal line and inside the dashed, ~ 1, we find w, = 2a/(p-wt). We could equiva-

lines satisfy both Goal 1 and Goal 2. Any congestion control lently express this in terms af" rather thanp,., giving

algorithm with its equilibrium on this line is acceptablehel Wy = (WIF)2a /ot

total throughput at any point on this line is When we also take into account the window cap (as in the
W, Qe right side of Fig. 8), we see that the equilibrium window
= r 3 1 1
Z e L=y 3) sizes must satisfy
' . (If}TCP)QG
wheremax, denotes the maximum over all pathshat the W, = min{'ﬁi, wfcp}. (4)
Wrot

flow can use. Of these points, the specific solution that best
satisfies Goal 3 is shown by the dot, as this puts the |eaStBy Simu|taneou3|y So|\/ing (3) & (4), we find after some al-

traffic on path 1 which has the higher drop probability. gebra that

For the $MICOUPLED(¢ = 1) algorithm, the equilib- ) )
rium point is atw, o 1/p, (from Equation 2), where the P maXrA“’T/RTTr _
constant of proportionality depends an Hence by chang- (32, wr /RTT,)?

ing a we can get different equilibrium points on aradial line, This formula fora obviously requires that we measure the
shown in Fig. 8. The algorithm will satisfy all three goals if rgund trip times. It also involves, and,., the equilib-

we choose: so that it lies on the bottom edge of the shaded rium window sizes. In practice, experiments show these can
triangle. In the left figure this can be achieved purely by-sca pe approximated by the instantaneous window sizes with no
ing a, but in the right figure we must also cap the increases gdverse effect. We chose to compatenly when congestion

on path 1 so as to still satisfy Goal 2 on that path. windows grow to accommodate one more packet, rather than
This leads us to a final algorithm, a version @8cou- every ACK on every subflow. We used a smoothed round trip
PLED(¢ = 1) with RTT compensation. time estimate, computed similarly to TCP.

ALGORITHM: RTT COMPENSATOR

« Each ACK on path, increasew, by min(a/wia, 1/1,). 5.2 Evaluation: high statistical multiplexing
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Figure 10: ‘Fair’ resource allo-  Figure 11: The ratio of flowB’s throughput to the better of flowl andC, from

cation in atwo-link scenariowith ~ figure 10, as we varg’ (shown as line labels) argirT,. The top plot shows the
dissimilar link rates. RTT CoMPENSATORalgorithm, the bottom plot shows it withfixed at1.

flow A
\ C'1 = 250pkt/s

flow B

We simulated a simple topology with two bottleneck links, path 1. In this way the multipath flow can do as well as the
each carrying 1000 single-path TCP flows, and we added abest single-path flow, while still achieving some degree of
multipath flow able to use either or both of the links. There resource pooling. Since the multipath flow is hitting itsitim
are so many other flows that the multipath flow’s actions on path 2, we can deduce that the window increase on path
have hardly any effect on the loss rates, so these simula-2 is persistently hitting its cap.
tions are effectively testing RTT@WPENSATORUNder con-
stant levels of congestion. We describe here two runs of thisg 3 Eyaluation: low statistical multiplexing
topology, corresponding to the two generic cases shown in

figure 8. The propagation delays for both runs s and We also simulated scenarios with low statistical multi-
250ms. plexing. When the multipath flow shifts its traffic, then the

The left hand plot in Fig. 9 shows the first run. We let drop probabilities change and so the throughput of the hy-
the link speeds b&; = 200000pkt/s andCs = 40000pkt/s pothetical single-path TCP flows in our three fairness goals

chosen so to achieve equal loss raes#€ p» ~ 0.57%). will also change.

Taking account of queueing delay the observed round trip 10 9€t an idea of what happens, consider the topology
times arerTT; = 86ms andRTT, = 431ms. The top panel shown in Fig. 10. The obvious resource pooling outcome

shows the window sizes on each path; since the drop prob-Would be for each flow to get throughput of 250 pk's. The
abilities are roughly equal the multipath flow gets a roughly simulation outcome is very different: flowt gets 130pkt/s,
equal window on each path, in accordance with Goal 3 and oW B gets 305pkt/s and flow" gets 315pkt/s; the drop
the principle of equipoise. The second panel shows the girou Probabilities arey, = 0.22% andp, = 0.28%. (Here the

put that the multipath flow gets on each path, and the hori- Propagation delays agerr, = 500ms andrTT; = 50ms.)
zontal lines show the average throughput that the single-pa After some t.houghtwe rea.l|ze that the outc;ome is very nearly
TCP flows are getting; we see that the multipath flow is not What the fairmess goals dictate: the multipath flow aims to
taking more than this on either path, hence Goal 2 is satis- Salisfy Goal 1, but the comparison itis making in that goal is
fied. The bottom panel shows total throughput for the mul- 1© What a single-path TCP flow would achieve when=
tipath flow, and the horizontal line shows the larger of the 0-287' rather than to ‘what it would actually get if it used

two single-path TCP throughputs; we see that the multipath O link 2. The issue is that the multipath flow does not
;. take account of how its actions would affect the drop prob-

flow takes roughly this much in total, hence Goal 1 is sa T i ) =
isfied. We also see that varies a little: when by chance abilities when it calculates its rate. It is difficult to semya
practical alternative. Nonetheless, the outcome in thée ca

ws > w1 thenwy gets most of the window increase and the F'<* > :
total throughput suffers se is made larger to compensate; 'S still better for flowsA and B than if flow B used only link
" 1, anditis better for flow$? andC than if flow B used only

when by chance; < w; thena is made smaller. .
The right hand plot in Fig. 9 shows the second run. We let K 2-

the link speeds bé&’; = 100000pkt/s andC, = 60000pkUs, Parameter exploration. \We now repeat the same experi-
chosen so as to achiepe ~ 1.79% andp: ~ 0.26%. The  ment, put withC; = 400pkt/s,RTT; = 100ms, and a range
observed round trip times arerT; = 93ms andrTT, = of values ofC, andRTT,. The top plot in Fig. 11 shows

414ms. Becausp,; > p», resource pooling indicates thatthe oy well flow B achieves its goal of doing at least as well as
multipath flow should mainly use path 2. But because path 1 he petter of flowd andC. It is within a few percent in all

has a smaller RTT, a single-path flow gets better throughputc4ses except where the bandwidth delay product on link 2 is
on path 1 than on path 2. In order to meet Goal 1 the multi- 1y small; in such cases there are problems due to timeouts.

path flow sends as much as it can on path 2 without falling \yg 4150 experimented with RTT and faimess compensation
foul of Goal 2, and then it takes some further capacity from ,rned off (by setting: = 1): then flow B gets as little as
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Figure 12: Testing the fairness of multipath TCP at a
shared bottleneck

RTT3 = 50ms

47% and as much as 133% of the better of flowandC.

Over all of these scenarios, flow always gets better
throughput by using multipath than if it used just the bet-
ter of the two links; the average improvement is 15%. The
multipath flow also gets more throughput than if it used only
its best path.

Fairness at a shared bottleneck. We also tested the fair-
ness of multipath TCP in the topology shown in Fig. 12.
With the parameters shown, the multipath flow geitspkt/s
and the single path flow ge259pkt/s. The multipath algo-
rithm achieves fairness by tuniagrather than by any sort of
shared bottleneck detection. In this case the average g&lue
a is 0.57; there is some short-term variability and sampling
bias due to fluctuations in measured RTT.

We then repeated the experiment but watiT; = 250ms.
The multipath flow get245pkt/s and the single path flow
gets255pkt/s. The two multipath subflows still see the same
packet drop probability, so they get the same window size,
but the algorithm has increasedo an average value of 0.88
to compensate for the fact that path 1 has a bigger RTT.

6. OVERALL EVALUATION
From the fluid-flow models we learnt how the equilibrium

experiments in which packet drops are caused by queue over-
flow (endogenous drops), validating the simulation results
on RTT fairness, resource pooling and equipoise.

It is more interesting to look at likely deployment scenar-
ios and examine how the full multipath TCP performs. We
will examine two here: a device wirelessly connected via
WiFi and 3G simultaneously, and a server multihomed via
two different network links. These cases are very different
The wireless case is mostly about robustness and verifying
that the algorithms work well, even in the face of very vari-
able wireless links with vastly different characteristarsd
rapidly changing congestion. Under such circumstances we
care less about balancing the load, and more about getting
good reliable throughput. In contrast, the server caseidis pr
marily about the effectiveness of load balancing.

6.1 Multipath Wireless Client

Modern mobile phones and devices such as Apple’s iPad
often have multiple wireless interfaces such as WiFi and 3G,
yet only one of them is used at any given time. With more
and more applications requiring Internet access, from toail
video streaming, multipath can improve mobile users’ expe-
rience by allowing the simultaneous use of both interfaces.
This shields the user from the inherently variable conmecti
ity available over wireless networks.

We ran tests using a laptop equipped with a 3G USB in-
terface and a 802.11 network adapter, both from work and at
home. The tests we present were run in a university build-
ing that provides reasonable WiFi coverage on most floors
but not on the staircases. 3G coverage is acceptable, but is
sometimes heavily congested by other users.

3G and WiFi have quite different link characteristics. WiFi
provides much higher throughput and short RTTs, but we

throughput of an algorithm relates to the loss rates and RTTsobserve its performance to be very variable with quite high

on the different paths. Packet-level simulation, exangnin
how resource pooling is affected by fluctuating congestion,
led us to the 8mICOUPLED(¢ = 1) algorithm. We then

loss rates as we see a lot of interference in the 2.4GHz band.
3G tends to vary on longer timescales and we found that it
is overbuffered leading to RTTs of well over a second. This

used a fluid model to calculate how to set the gain parameterprovides a good real-world test of the adaptation tf cope

a in order to be fair and to compensate for differing RTTs.
Simulation showed that this works well. To gain greater con-
fidence, through, we must move beyond simulation and im-
plement the algorithms in a complete multipath TCP stack.

with differing RTTs.

The experiment starts with one TCP running over the 3G
interface and one over WiFi, both downloading data from an
otherwise idle university server that implements the multi

The main differences between our implementation and our path extensions. A multipath flow then starts, using both 3G

simulator are that the implementation implements a full re- and WiFi interfaces, downloading data from the same server.
order buffer at the receiver and it uses integer arithmetic f  Fig. 13(a) shows the data rates received over each link (each
the computation of the congestion window as floating point point is a ten-second average). WiFi is shown above the
instructions are not permitted in the Linux kernel. We com- dashed line, 3G is shown inverted below the dashed line,
putea using the current window size (compensating for arti- and the total throughput of the multipath flow can be seen
ficial window inflation during fast-retransmit) and use TEP’  clearly from the vertical range of the grey region.
existing smoothed RTT estimator. During the experiment the subject moves around the build-
We cross-validated the implementation against the simu- ing. Both WiFi and 3G are used by the multipath connection
lator using dummynet to generate random loss (exogenousduring the experiment, and it is easy to see that the overall
drops); the results agree for a broad range of parametersthroughput correctly matches quite closely that of the TCP
though they start to diverge somewhat for loss rates aboveflow on the faster WiFi link up until minute 9. Due to the
5% when timeout behavior starts to dominate. We also ranlarge RTT and low loss on the 3G flow, a coupled algo-
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Figure 13: Throughput of multipath and regular TCP running simultarstpover 3G and WiFi. The 3G graph is shown
inverted, so the total multipath throughput (the grey acea)be seen clearly.

rithm would by default prefer to send that way. To achieve Can multipath transport still balance load if only a mingrit
good throughput, the RTT @UPENSATOR algorithm has of the flows support it?
increased:;, and then has to cap the increases on the 3G sub- We ran our multipath TCP implementation on a server
flow to avoid being unfair. dual-homed with 100Mbps links and on a set of client ma-
At 9 minutes the subject walks down the stairs to go to chines. As these machines are all local, we used dummynet
the coffee machine on a different floor—there is no WiFi to add 20ms of latency to emulate a wide-area scenario.
coverage on the stairs, but the 3G coverage is better there so We ran several sets of experiments; we present two here.
the connection adapts and takes advantage. When the subjedthe aim is to load the network asymmetrically with regular
leaves the stairwell, a new WiFi basestation is acquired, an TCP traffic (Linux 2.6 kernel running NewReno), and then
multipath quickly takes advantage of it. see how well a few multipath TCP flows can re-balance it.
This single trace shows the robustness advantages of mul4n the first experiment there are 5 TCP flows on one link and
tipath, and it also shows that it does a good job of utiliz- 15 on the second link. In the second experiment there are 15
ing very different link technologies simultaneously witho ~ TCP flows on one link and 25 on the other. We let conditions
harming competing traffic on those links. stabilize so we can see how unbalanced the starting condi-
From this trace it is difficult to see the importance of RTT tions are, and then after one minute we start ten multipath
compensation. To show this, we re-ran the same experiment,TCP flows and observe the throughput.
taking the same path around the building and down the stairs Figures 14(a) and 14(b) show the average TCP through-
to the coffee machine, but we switched off RTT compen- put on each link and the average multipath TCP through-
sation by setting: = 1, thus reverting to the basice®I- put. Individual flows vary a little from the average on short
COUPLED(¢ = 1) algorithm. Fig. 13(b) shows the results. timescales, but within each category all the flows achieve
The overbuffered 3G link is preferred, and a large window roughly the same throughput when measured over multiple
is maintained over 3G. The coupling then causes the WiFi loss intervals.
path to be much less aggressive, and so the multipath flow Itis clear that even a small fraction of multipath flowg{
receives much less throughput that it should. This illussa in the first case! /5 in the second) can significantly help in

quite clearly the necessity of RTT compensation. balancing load. In neither case is the balance perfect—only
) the CoupLEDalgorithm could do that and it would not work
6.2 Server Load Balancing well in the wireless case. However it is close enough for all

Multihoming of important Internet servers has become practical purposes, and the multipath flows are within about
ubiquitous over the last decade; no company reliant on net-10% of their target rate. In effect multipath transport dasb
work access for their business can afford to be dependentthe links to be used as a single pooled resource, in the way
on a single upstream network. However, balancing traffic 0riginally envisaged by the fluid models.
across these links is difficult, as evidenced by the hoops op-
erators jump though using BGP techniques such as prefix7' RELATED WORK
splitting and AS prepending. Such techniques are coarse- We have already discussedj@ the theoretical work on
grain, very slow, and stress the global routing system. multipath congestion control, and in particular the use of

Multipath transport can balance load, but if it requires all fluid flow models to demonstrate resource pooling. In this
flows to be upgraded to do so, then this would be less useful.paper our intent has been to understand the issues that arise
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Figure 14: Server Load Balancing: 10 Multipath Flows Balance Trafficoas Links

in bringing resource pooling to the Internet. over multiple subflows using an “aggressiveness manager”
There has been much work on building practical multipath which attempts to be fair to TCP. It is not clear from the pa-
transport protocols [9, 22, 14, 8, 10, 3, 16, 4], though none per what the resulting behavior is. In addition, the propose
of this work addresses the problem we have studied of how algorithm does not perform RTT compensation, which will
to achieve resource pooling. be necessary for good performance in scenarios such as Fig.
Most prior work focuses on the protocol mechanisms needeB(a).
to implement multipath transmission, with key goals being . .
robustness to long term path failures and to short term vari- Neétwork layer multipath.  ECMP[18] achieves load bal-
ations in conditions on the paths. The main questions are2Cing at the flow level, without involving end-systems. It
how to split sequence numbers across paths (i.e. whether t€"dS all packets from a given flow along the same route in
use one sequence space for all subflows or one per subfloy?rder thatend-systems should not see any packet re-ogderin
with an extra connection-level sequence number), how to do 10 do this it needs to look at transport-layer parts of the
flow control (subflow, connection level or both), how to ack, Packet header, so it is not a pure network-layer solution.
and so forth. Our implementation uses the current multipath ECMP and end-system multipath differ in the path choices
TCP protocol specification [4]. they ha\{e available, and |t_ is not clear which is more useful
In most existing proposals, there is little consideratimon f ~ OF even if they are compatible. .
the congestion control aspects of multipath transport. som  Horizon [15]is a system for load balancing at the network
do try to detect a shared bottleneck to ensure bottlenesk fai 1Y€, for wireless mesh networks. Horizon network nodes
ness; none of them considers resource pooling, and most omamtaln congestion state gnd_estlmated delay for each pos-
them fail to achieve fairness to other flows. Let us highlight Sible path towards the destination; hop-by-hop backpressu
the congestion control characteristics of these proposals 1S @pplied to achieve near-optimal throughput, and theydela
pTCP [8], CMT over SCTP[10] and M/TCP [16] use un- €Stimates let it avoid re-ordering.
coupled congestion control on each path, and are not fair toAppIication layer multipath.

competing single-path traffic in the general case. ple of application layer multipath. Different chunks of the
mTCP [22] also performs uncoupled congestion control same file are downloaded from different peers to increase
on each path. In an attempt to detect shared congestion iy, o, ghput. BitTorrent works at chunk granularity, andyonl
computes the correlation between fast retransmit interval optimizes for throughput, downloading more chunks from
on different subflows. It is not clear how robust this detecto  ¢;ctar servers. Essentially BitTorrent is behaving in asim
IS. . . ) o ilar way to uncoupled multipath congestion control, albeit
R-MTP [14] targets wireless links: it periodically probes it the paths having different endpoints. While uncoupled
the bandwidth available for each subflow and adjusts the ,gestion control does not balance flow rates, it neverthe-

rates accordingly. To detect congestion it uses packetinte |oqq achieves some degree of load balancing when we take
arrival times and jitter, and infers mounting congestio®wh 4 account flow sizes [13, 19], by virtue of the fact that the
it observes increased jitter. This only works when wireless |oqq congested subflow gets higher throughput and therefore

links are the bottleneck. _ fewer bytes are put on the more congested subflow. This is
The work in [7] examines fairness at shared bottlenecks; .o jeq job-level resource pooling’ as opposed to ‘rateele
that work was also motivated by fluid flow models. The idea ,oqqurce pooling’.

is to constrain the aggregate multipath TCP flow to grow as
a TCP would, by spreading the one packet per RTT increase8 CONCLUSIONS AND FUTURE WORK

BitTorrent [2] is an exam-
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APPENDIX
A. ALINK-FAIR ALGORITHM

In this appendix we describe a modification to RTDMPEN-
SATORthat achieves per-link fairness rather than per-pathdasn

A.1 Introduction

The constraints of the RTT @VUPENSATOR congestion con-
troller are to ensure that a multipath flow gets as much aggeeg
throughput as a single-path TCP flow would on the best of thespa
available to it (so there is an incentive for users to deplaytim
path), while not using any more capacity on any path thangiesin
path TCP flow would (so that it does not unduly harm other flows)
Given these constraints, the controller aims to move traffithe
most-congested paths.

To express the constraints formally, we first introduce some
tation. Suppose the multipath flow is able to use paths in gefini
setR. On pathr € R, letRTT, be the round trip time, le, be
the instantaneous window size, tét be the equilibrium window
size, letp,. be the packet loss probability, and 18}°" be the equi-
librium window size that a single-path TCP flow would get oatth
path when faced with,.. Letz, = w,/RTT, etc. The constraints
of RTT COMPENSATORMay be written

Z &, = max & 5)
reER
rER
and
&, <@ forallr € R. (6)

Figure 15 illustrates a scenario where these constrairghktroe
deemed inadequate. According to (5) the multipath flow ghget
aggregate throughptt; + &2 + 3 = 5. Sinceps < p1, we want
as much of the aggregate traffic to go on paths 2 and 3 as p@ssibl
with no preference between the two (though equipoise stgges
should balance them). The diagram suggests that to avoialyund
harming any other flows that might be using the links, we stoul

ensure
1 <5 and To + 23 < 3, (7)

which suggests that the optimal allocatioftds, 2, 3) = (2, 1.5, 1.5).
Yet (5) & (6) only impose

1+ T2+ 23 =5,

1 <5, x2<3 and T3 <2
which allows (%1, 22,%3) = (0,3,2). This latter allocation is
pathwise-fair, as per the stated goal of RTOMPENSATOR but it
means that the multipath flow takes a total of 5 units of capaui
link 2, more than any of the single-path TCP flows would.

The remedy is to impose a stronger version of (6). Insteaf)of (
& (6) we propose the objectives

Goal 4 (Improve throughput)
>
reER

Goal 5 (Do no harm) Forall S C R,

A ~TCP
E Tr < maxz, .

~TCP
> max T,

reER

€S
res "
~TCP
A , 2% ;77 =5
1= Y
' ijz'cp -3
~TCP __
T3 =2
| P2 = 1%
v

Figure 15: A multipath flow with three subflows.
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This last collection of inequalities ensures that the rpalti
flow takes no more capacity on any link or collection of linkan
would a single-path TCP flow on one of the pathe R. To see
this, let.S be the set of paths that use the links in question: then the
left hand side of (6) is the total throughput of the multipéitiav on
those links, and the right hand side is the throughput of glsin
path flow through those links. In the scenario of Figure 15alGo
requires

1 <5

T1+ 22 <5 22 <3
T1+23<5 23 <2
T1+ 22+ 23<5H To + 23 < 3.

This full set of inequalities is more stringent than (7). Hwer, one
or more of the additional constraints would be appropriathdre
were further shared bottleneck links in addition to thosewsh
here. We take the view that it is better to guarantee doinganmh
for any possible configuration of shared bottlenecks, rathan
attempt to detect shared bottlenecks. See also SectionoAzhf
explanation of why detection of shared bottlenecks is cptuly
problematic.

A.2 A link-fair algorithm

Consider the following algorithm, an extension of RTDI@-
PENSATOR

ALGORITHM: LINK-FAIR
e Each ACK on subflow, increase the window, by

. maxXsecs ws/RTTf
min 5
SCR:r€S (ESES ws/RTTs)

®)

e Each loss on subflow, decrease the window, by w,. /2.

Note that if we took the minimum in (8) ovér} andR, rather than
over all subset$ for whichr € S, the increase term would match
exactly the increase in RTT@VPENSATOR This reflects the fact
that RTT GOMPENSATORguarantees fairness over individual paths
and over the whole, whereasNK-FAIR guarantees fairness over
all possible shared bottlenecks.

The complexity of computing the minimum in (8) is linear ireth
number of paths, if window sizes are kept in the order of (%we

The following lemmas concern the properties of an equilifori
point, i.e. a set of window size8, satisfying the balance equations

Wr

maxscg s /RTT?
ses Ws [RTT, =pr— foreach € R.

srznrigs A 2
(Xses s/RTT;)

They show that an equilibrium point satisfies the two faisgsals.

Lemma 1 Any equilibrium point satisfies Goal 5.

Lemma 2 Let the equilibrium window sizes be ordered such that

Vi o VW2 o YUn 9)
RTT: = RTTy — — RTT,
Then
~ ~TCP
> o = o (10)
- RTT, RTT,
Furthermore, for allr,
~TCP ~TCP
T < = (11)
RTT, RTT,



Proof of Lemma 1 First we will find an expression fab," in terms
of thew,. ForS C R, define

maxXres vV 'lf)r/RTTr
Y oresWr/RTT,

Rewriting the balance equations in terms:6f), and in terms of

ATCP /—2/Pr,

Wy

i(5) =

. . 2 _ & _ w'r
SRS =Py = Ty
hence
W = by ax_ 1 /i(9). (12)
Now, take anyl’ C R. We shall verify the equation in Goal 5
for setT". Rearranging the definition af7’),

> o, /RTT, =

reT

maxXrerT V 'LZ)T/RTTT
i(T)

/%, /i(T)
Vi, max_ 1/i(S)

S:re

< max
reT RTT,

. TCP
w?"

= max
reT RTT,

by (12)
SinceT was arbitrary, we have proved Goal 5. O

Proof of Lemma 2 With the window sizes ordered as in the state-
ment of the lemma, we can rewrite (12):

T _ Ny Y res r/RTTy
= X
RTT, RTT, S:res maXres ﬁ/UA)r/RTTr
vV /lI}T‘ Et<u wt/RTTi
= max — (13)
RTT, u>r /i, /RTT,

which atr = n reduces to (10).
We prove (11) by induction. It is obviously trueat= n. Sup-
poseitistrueat + 1,...,n. Let

De<u Wi /RTTy
=max ————
Y T o RTT,

so that (13) can be rewritten

~TCP =
w'rc W

RTT, RTT, "
'lbr o <Zt<ruﬁt/RTTt )
% o s R
V. rrT,

RTT,

_ max(z W VO )
Z RTT,’ RTT, ")
<r

By (10) the first term is< ;" /RTT,,. By the ordering of the win-
dow sizes, the second term €8 ~y,1v/Wr+1/RTT,4+1, which is
nothing other thamo;S; /RTT,41, and by the induction hypothesis
this too is< ;" /RTT,,. This completes the induction step. Thus
we have proved (11). a

A.3

Weighted increase. Our algorithm LINK-FAIR uses weighted in-
creases, and we proved it is fair. The proposal in [7] als® use
weighted increases: it increases by a2/w, per ACK, so that

Ineffective means for achieving fairness
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Nl Nt

20 8

24 24
.02 = 24

Figure 16: A multipath flow may take a ‘fair share’

at each bottleneck, but nevertheless be unfair in aggre-
gate (left). It would be better to take a fair share of the
pooled bottleneck (right).

wr = a,w, ", and it adjusts the weights. to ensure tha} "~ a,
1. This guarantees Goal 5, since for afy_ R

~TCP

Wy Wy
= a
ZRTTT 2 "RTT,
res res
~TCP
w.
< ( a )max -
< (2o res RTT,
res
~TCP
< max ——.
res RTT,
It achieves Goal 4 if and only if
"< max 5" = ar=0. (14)

The ‘proportion manager’ in [7] chooses the path weightspada
tively: it measures the average " over some long enough in-
terval, and decreases. on paths wherey,“" is small i.e. where
pr is large. This has the same outcome aSUBLED, namely it
moves traffic onto paths with the least congestion. Sincdapts
a, based ono;°" rather than ori[°", this algorithm does not in
general achieve (14), therefore it does not achieve Goaf thel
proportion manager adapted in favor of paths with large]“"
rather than paths with large;", it would achieve Goal 4 but it
would not in general prefer less-congested paths, so itdvdala

poor job of resource pooling.

Shared bottleneck detection. It is not sufficient for a multipath
flow to detect shared bottleneck links, and to ensure it takiesr
share of capacity at each link. To see this, consider theasiceim
the left of Figure 16. The multipath flow uses two disjointkn
and takes a ‘fair’ share of capacity at each of the links—ilit
consequence that it takes an unfair share of the networkjseag
gate capacity. A more desirable outcome is shown in the rightl
diagram. In this scenario the multipath flow enables the agtw
to share capacity as though the two links were a single paeled
source, and so itis more natural to seek fairness acrosssbhance
pool than over individual links.

Our Goal 5 entails fairness across resource pools. In faelys
that a multipath flow should be fair (with respect to TCP) asro
any linkor collection of links therefore it entails fairness whatever
the topology of paths and resource pools.

It has been proposed that a multipath flow should detect ghare
congestion between its paths, and reduce its aggressiven@aths
that share congestion [22]. In one sense, the two links Bgbe-
nario do share congestion, because they are part of the same r
source pool: if there is a traffic surge on link 1, then congest
will increase on link 1, so some of the multipath traffic stbsthift
onto link 2, so congestion will increase on link 2. We beliévis
extremely unlikely that shared congestion can be detegtezb
related fast retransmits (as used by [22]) when the corayesi
shared across a bottleneck resource pool rather than atlizidin
ual link.



