
Balancing Resource Pooling and Equipoise in Multipath Transport

Damon Wischik
University College London

d.wischik@cs.ucl.ac.uk

Costin Raiciu
University College London

c.raiciu@cs.ucl.ac.uk

Mark Handley
University College London
m.handley@cs.ucl.ac.uk

ABSTRACT
By simultaneously using multiple paths through the Internet,
multipath transport protocols have the potential to greatly
improve performance, resilience and flexibility. Further,by
linking the congestion behavior of the subflows of a connec-
tion, it is possible to move traffic away from congested paths,
allowing network capacity to be pooled and better handling
surges in traffic. In this paper we show that existing algo-
rithms that achieve such resource pooling have a few prob-
lems, which stem from the differences between fluid flow
models and packet-level behavior. Further, these algorithms
are poor at detecting and using capacity when congestion
levels vary rapidly, as they do in the Internet.

We propose the principle ofequipoiseas a balance to re-
source pooling, and present a class of algorithms that achieve
different degrees of resource pooling and equipoise. We
show how to dynamically adapt the aggressiveness of multi-
path flows so they compete fairly in the current Internet.

We use a combination of real deployment and packet-level
simulation to show that the emergent behavior of these algo-
rithms is robust, the algorithms are fair to existing TCP, and
achieve both equipoise and resource pooling.

1. INTRODUCTION
Multipath transport protocols have the potential to greatly

improve the performance and resilience of Internet traffic
flows. The basic idea is that if flows are able to simulta-
neously use more than one path through the network, then
they will be more resilient to problems on particular paths
(e.g. transient problems on a radio interface), and they will
be able to pool capacity across multiple links. These mul-
tiple paths might be obtained for example by sending from
multiple interfaces, or sending to different IP addresses of
the same host, or by some form of explicit path control.

Although Multipath TCP has been suggested many times
over the years (first in [9]), it was really only with the re-
cent development of fluid-flow models[11][6] that the main
potential benefits have become clear. In short, multipath-
capable flows should be designed so that they shift their traf-
fic from congested paths to uncongested paths, so that the In-
ternet will be better able to accommodate localized surges in
traffic and use all available capacity. In effect, multipathcon-
gestion control means that the end systems take on a role that
is normally associated with routing, namely moving traffic
onto paths that avoid congestion hotspots, at least to what-
ever extent they can given the paths they have available.

The idea is very timely. Smart phones are becoming ubiq-

uitous and incorporate multiple radios. Experience shows
that the performance of each of these can be very variable,
especially while moving. Multipath transport’s ability touse
more than one radio simultaneouslyfor the same connec-
tion has the potential to improve both reliability and perfor-
mance. In addition, multi-homing of server farms has also
become ubiquitous. To balance load at such multi-homed
sites, network operators play traffic engineering games with
BGP routing. BGP, though, is a very slow and imprecise
tool for this purpose; in contrast multipath transport can re-
act on timescales of seconds and can precisely and automat-
ically balance load. Finally, in the core of the network mul-
tipath transport protocols can move traffic away from hot-
spots in the face of congestion caused by failures such as
fiber cuts, or overload caused by flash crowds or DDoS at-
tacks. In the hope of gaining these benefits the IETF has
recently started a working group to standardize multipath ex-
tensions to TCP[4].

In this paper we investigate the congestion control dy-
namics of just such a multipath transport protocol. We start
from the understanding of resource pooling provided by the
previous work on fluid flow models and show that although
they capture the steady-state behavior well, they miss crucial
packet-level dynamics, even in steady-state scenarios. When
these dynamics are combined with dynamic background load,
solutions that previously appeared optimal no longer do so.

To address these issues, we will first introduce the concept
of equipoise(or equal balance) and show that solutions ex-
hibiting equipoise tend to be more robust when network con-
ditions vary rapidly. Through theory and simulation we will
then derive a more robust multipath congestion control al-
gorithm and demonstrate that it works well even in dynamic
network conditions with vastly differing RTTs between the
paths. Finally we will demonstrate that our algorithm works
well under real network conditions when used as part of a
full Multipath TCP protocol stack.

2. THE STATE OF THE ART
Theoretical models for multipath congestion control were

first proposed by [12], and subsequently by [20], [11] and
[6]. The latter two proposals [11, equation (21)] and [6,
equation (14)] are particularly interesting because they use
the same mechanism as TCP: they adapt a congestion win-
dow at the sender, in response to congestion information
transmitted via ACK packets.

These models suggest that it is possible for a multipath
sender to split traffic between multiple paths and to control

1

how traffic is balanced between those paths, on the same
timescale as TCP congestion control. The common conclu-
sion is that it is possible to get many of the benefits of load-
dependent routing, but to do so stably on short timescales
using control mechanisms located at the transport layer of
the end systems.

The specific proposals from [11] and [6] are minor varia-
tions1 of the following algorithm:

ALGORITHM: COUPLED SCALABLE
• For each ACK on pathr, increase windowwr by a.
• For each loss on pathr, decrease windowwr bywtotal/b.
Herewr is the window size on pathr, andwtotal is the total
window size across all paths;a andb are constants.

Both [11] and [6] analyse a fluid-model approximation to
this and related algorithms. That is, they write down a col-
lection of differential equations describing an arbitrarynet-
work topology with a fixed number of long-lived flows, and
they analyse the behaviour of the dynamical system. A suit-
able equation for the evolution ofwr is

dwr(t)

dt
=

wr(t)

RTTr

(

(

1− pr(t)
)

a− pr(t)
wtotal(t)

b

)+[wr(t)=0]

(1)
wherepr(t) is the packet loss probability on pathr at timet.
The supserscript means ifwr(t) = 0 then take the positive
part. The fluid model predicts2 that simply by coupling the
congestion windows, we get three important benefits: load
balancing, fairness, and stability.

Load balancing. Traffic moves away from the more con-
gested paths until either the congestion levels on the paths
equalize, or no traffic remains to be moved from the more
congested paths. When there are several paths with minimal
congestion, the algorithm has no preference for any particu-
lar split between them.

These properties may be seen from (1). The equilibrium
point, i.e. the point wheredwr/dt = 0 for every subflow
r, haswr = 0 for every pathr such thatpr > pmin, where
pmin is the minimum of thepr. It also has total window size
wtotal = ab(1− pmin)/pmin.

Resource pooling. The overall effect of load-balancing is
that a set of disjoint bottleneck links can behave as if they
were a single pooled resource. This is known as ‘resource
pooling’. Figure 1 illustrates. Consider a scenario with four
links traversed by three multipath flows, and suppose that be-
cause of topological constraints each flow has access to only
two of the links. The capacities areC1 = 100, C2 = 250,

1The two proposals differ slightly in how to respond when the dif-
ferent subflows have different RTTs. For convenience, we shall
in this section only consider the case where all subflows havethe
same RTT. The algorithm in [11] is specified in terms of rates,but
we have recast it here in terms of congestion windows. Both papers
assume that qeueueing delay is negligible.
2Note that these are theoretical predictions; the rest of ourpaper
asks how to obtain these benefits in practice.

flow A

flow B

flow C

link 1

link 2

link 3

link 4

0.71%

0.38%

0.73%

2.67%

198

196

125

0.67%

0.67%

0.67%

0.67%

172

172

172

Figure 1: A scenario where regular TCPs will not bal-
ance load or share capacity fairly, but COUPLED SCAL-
ABLE will. The numbers above the links are packet
drop probabilities, and the numbers to the right are ag-
gregate throughputs in pkt/s.

C3 = 180 andC4 = 50 pkt/s, and the common round trip
time is100ms. The left hand diagram shows how capacity
would be shared by running uncoupled TCP congestion con-
trol on each subflow (except that we have scaled the window
increase parameter by1/4 so that each subflow is half as ag-
gressive as a normal TCP). The right hand diagram shows
how capacity would be shared by COUPLED SCALABLE:
congestion is equalized at the four links, and the three flows
achieve the same throughput. In effect, the network is be-
having as if the four links constituted a single link shared by
three single-path flows.

For intuition about how COUPLED SCALABLE achieves
this pooling of resources, suppose it starts out with through-
puts as per the left hand diagram. FlowC experiences higher
congestion on link 4, so it shifts some traffic into link 3.
This causes congestion on link 3 to increase, so flowB shifts
some traffic onto link 2, and so on.

Resource pooling does depend on the subflows taking dif-
ferent paths. There are a range to ways to ensure this hap-
pens, but if the endpoints are multihomed the simplest is to
use multiple IP addresses at each endpoint. With reasonable
probability[1], this will give paths through the network that
are distinct for much of the way.

Fairness. COUPLED SCALABLE takes a fair share of re-
sources at a bottleneck link, even if several subflows pass
through that same link. Fairness means there is no need for
shared bottleneck detection, as used by [16].

To see why it is fair, note from (1) that at equilibrium
wtotal = ab(1− pmin)/pmin, hence the total window depends
only on the level of congestion and not on the number of
paths or their intersections.

We assume for now that all RTTs are equal, so fair win-
dow size means fair throughput. Note that COUPLED SCAL-
ABLE is not fair against TCP NewReno because its response
to congestion is intrinsically different. In Section 5 we will
show how to achieve the benefits of multipath while account-
ing for different RTTs and maintaining ‘legacy fairness’.

Stability. Fluid model analysis of (1) shows that parame-

2

tersa andb can be chosen to make the network stable, i.e.
to ensure that once the equilibrium point has been reached,
any deviations are damped down and do not grow into os-
cillations. This suggests that there will not be any route flap
or synchronization between flows, since these effects would
result in a deviation from equilibrium.

3. RESOURCE POOLING IN THE FACE OF
FLUCTUATING CONGESTION

Our goal, when starting this work, was to take the ideas
from §2 and implement them in the TCP protocol in a man-
ner that is acceptable for standardization. We expected that
any difficulties would be with the protocol embedding, not
the congestion control dynamics. Although there are a range
of interesting protocol questions to be answered, the more
challenging issue has turned out to be the dynamics. The
key challenge is that congestion levels fluctuate in ways not
accounted for by the theory in§2. In order to obtain the
benefits of resource pooling in the face of fluctuating con-
gestion, we needed to make significant changes to the dy-
namics. There are two main sources of fluctuations:
• Packet drops are discrete random events. Even if the

packet loss probability remains constant, there will from
time to time be chance bursts of loss on one path or an-
other, hence the short-timescale observed loss probabil-
ity will not be constant. The fluid models however use
a real numberpr(t) to represent congestion, so they do
not take account of the random nature of the signal.

• Typically, the background load in a network is variable.
When there is a persistent change in the congestion on a
path, e.g. a change that lasts longer than several RTTs,
the flow should quickly adapt. The fluid model analysis
however deals with a steady-state network and does not
give any guidance about how fast it is safe to react.

A multipath flow ought to adapt to persistent changes in
congestion by moving its traffic away from more-congested
paths—but if it is hardly using those paths then it will be
slow to learn and adapt if and when they decongest. We refer
to this ascaptureby the less-congested paths. Furthermore,
if multipath is deployed in the Internet and resource pooling
actually works, then we should expect that there will often be
balanced levels of persistent congestion, which means that
transient fluctuations could be enough to trigger capture.

In this section we investigate capture in a practical variant
of COUPLED SCALABLE. We show that capture plus tran-
sient fluctuations in congestion tend to make the algorithm
flap from one path to another, and that this effect can prevent
the algorithm from achieving resource pooling even when
persistent congestion levels are stable. We also point out
a protocol problem with timeouts that arises from capture.
These problems, combined with the difficulty that capture
brings in responding to fluctuations in persistent congestion,
lead us to a new design principle for multipath congestion
control, the principle ofequipoise.

The Zen of resource pooling

In order for multipath congestion control to pool
resources effectively, it should not try too hard to
pool resources. Instead of using only the paths
that currently look least-congested it should in-
stead maintain equipoise, i.e. it should balance
its traffic equally between pathsto the extent nec-
essaryto smooth out transient fluctuations in con-
gestion and to be ready to adapt to persistent
changes.

In §4 we will examine a spectrum of algorithms with dif-
ferent tradeoffs between resource pooling and traffic-balancing,
in order to quantify the phrase ‘to the extent necessary’.

3.1 The algorithm under test
Throughout this paper we care specifically about deploy-

ability in the current Internet, so our starting point will be
a modification of COUPLED SCALABLE to make it fit better
with TCP NewReno. We make two changes.3

Change 1.In the absence of loss, for each ACK received
COUPLED SCALABLE increaseswr by a giving exponential
growth in window size, whereas TCP NewReno grows the
congestion window linearly. We can easily adapt the mul-
tipath algorithm to grow windows linearly: simply increase
wr by a/wtotal per ACK on pathr, rather than increasing by
a. TCP NewReno also increases its windoww by a/w per
ACK, so this will be fair to TCP even when several subflows
go through a single bottleneck link.

Change 2. In COUPLED SCALABLE the windowwr is
meant to decrease bywtotal/b per loss on pathr. If wtotal/b >
wr then the decrease has to be truncated; if there are two
paths and we have chosenb = 2 to mimic TCP NewReno,
then the smaller congestion window will always be truncated
to 0. To avoid problems of truncation, we will multiply the
decrease term bywr/wtotal. We shall also multiply the in-
crease term by the same amount; the algebra below shows
that this gives us resource pooling and fairness. These two
changes give us:

ALGORITHM: COUPLED
• Each ACK on pathr, increase windowwr byawr/w

2
total.

• Each loss on pathr, decrease windowwr bywr/b.
In experiments in this section, we usea = 1 andb = 2 to
mimic TCP.

A fluid-model approximation for this is

dwr(t)

dt
=

wr(t)

RTTr

(

(

1− pr(t)
) awr(t)

wtotal(t)2

− pr(t)
wr(t)

b

)+[wr(t)=0]

In equilibrium, there can be no traffic on pathsr for whichpr
is not minimal, for if there were then that derivative would
3Simulation results (not reported) show that the changes do not
affect our observations about capture.

3

40 60 80 40 60 80 40 60 80 40 60 80

40

60

80

40

60

80

0

0

0000

20

20

20202020

w1

w2

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 2: Window size dynamics for a two-path flow. The top row shows thefluid model predictions: the arrows show
trajectories of(w1(t), w2(t)) and the darker areas indicate thatw1 andw2 are changing slowly. The bottom row shows
simulation results: there is ink at every state(w1, w2) occupied during the course of the simulation, so the densityof the
ink indicates how much time the algorithm spends in each state.

be negative. At the equilibrium value ofwtotal, the increase
and decrease on active paths must balance out, hence

(1− pmin)
a

w2
total

= pmin
1

b

wherepmin is the lowest congestion level over all paths, hence
wtotal =

√

ab(1− pmin)/pmin. Whenpmin is small this is ap-
proximately

√

ab/pmin, which agrees with what TCP NewReno
would get on the least congested path. Note that the total
window size depends only onpmin and not on the number
of paths or their overlap, hence this algorithm allocates win-
dow size fairly. Since the increase and decrease terms are
both less aggressive than COUPLED SCALABLE, for which
we know that the fluid model is stable, we conjecture that
this fluid model is also stable.

3.2 Flappiness
In simulations we found that a COUPLED flow very rarely

uses all its paths simultaneously. It switches between paths,
but not periodically: rather it is captured on one path for a
random time, then it flaps to the other, and so on. Properly
speaking this is not oscillation, since the flaps are not peri-
odic, rather it is an example of bistability.

Consider first the bottom left plots in Fig. 2 labelled(a2)
and (b2). These come from a simulation where two sub-
flows of a multipath flow experience random loss with prob-
ability pr. We refer to such random losses as ‘exogeneous
drops’ because they are outside the influence of the flow it-
self. This plot graphs the window of one subflow,w1, against
the window of the other subflow,w2. As the simulation pro-
ceeds, the windows increase linearly and backoff multiplica-
tively leaving a trace in the plot. The plot is thus a form of
histogram—the simulation spends most of its time in the ar-
eas of the plot where the ink is darkest. An× marks the

average window sizes.
Plots(a2) and(b2) differ in one respect only. In(a2) the

loss probabilityp2 is greater than the loss probabilityp1,
whereas in plot(b2) the drop probabilities are equal.

The top plots in Fig. 2 show the predictions of the fluid
model. The arrows show how the model predicts(w1, w2)
will evolve, given an arbitrary starting point. Where the
model predicts a unique equilibrium exists, a black dot is
shown.

The fluid model shown in(a1) and the simulation in(a2)
agree: all the traffic shifts to path 1. In Fig. 2(b) they dis-
agree: the fluid model says that any point withw1 + w2 =
√

2/p1 is an equilibrium point, but the simulation shows that
the flow avoids those equilibria wherew1 ≈ w2.

What causes flappiness? There are two related causes of
flappiness. (1) The algorithm has a capture effect. Ifw1

happens to be larger thanw2 at some point in time, then it
takes several drops on path 1 to counter the effect of a sin-
gle drop on path 2. This means the flow spends some time
captured on path 1. Another way to express this is that when
w2 is small the flow does not probe path 2 frequently, and it
does not attempt to increase aggressively. (2) Random fluc-
tuations in congestion mean that over short timescales the
losses seen by each subflow are never precisely equal. COU-
PLED mistakes this for a persistent difference in congestions,
so it load-balances its traffic onto the less congested path.

To see these effects more clearly, consider a toy model:
suppose that the two subflows of a COUPLEDflow go through
the same bottleneck link, and suppose that whenw1 +w2 =
100 a packet is dropped, and that the probability it is dropped
from subflowr is proportional towr. Fig. 3(a) shows the
evolution ofw1 andw2 over the first 4 drops, first two drops
on path 2 then 2 drops on path 1, and it shows clearly the

4

0
00

50

5050

100

100100
w1

w2

(a) (b)

Figure 3: Window size dynamics for a two-path flow.

capture effect. Fig. 3(b) shows just the increases over 5000
drops, with the densities of the lines indicating the fraction
of time spent with a given combination of window sizes, and
it shows that the overall outcome is flappiness.

Capture is a robust finding. It might be thought that cap-
ture will not arise in practice, because if the flow flaps onto
a path then the congestion on that path will increase (we call
this ‘endogenous drops’), and this will be enough to push the
flow away.

Fig. 2(c) shows this is only partly true. Consider a sce-
nario with two paths with bandwidth-delay-product of 96
packets, a COUPLED flow using both links, and an addi-
tional single-path TCP flow on each of the links. Unlike with
exogenous drops, the endogenous fluid model4 does show
a unique equilibrium point, to which the drift arrows show
convergence.

Despite this, the simulation results show that the flow does
not converge to equilibrium, though the capture effect is not
as pronounced as with the exogeneous drops in Fig. 2(b).

We expect even more flappiness when the multipath flow
in question is competing with many flows, since more com-
petition means thatpr is less sensitive towr , which brings
us closer to the exogenous drops case.

Capture can prevent resource pooling. There are some
situations where a COUPLED multipath flow can get cap-
tured on one path but not on the other (unlike the exam-
ple in Fig. 2(b), where the multipath flow spends an equal
amount of time captured at each extreme). It means that the
flow spends a disproportionate amount of time on the path
on which it has been captured, which means that that path
has excessively high average congestion, which means that
resource pooling has failed.

Fig. 2(d) illustrates the problem. The scenario is like
Fig. 2(c): two links, one multipath flow and two single-path
flows. The bandwidth-delay-product of link 1 is 98 packets
and that of link 2 is 89 packets. The fluid model predicts

4The fluid model comes from the following approximation. Letxr

be the rate of the single-path flow on linkr, and solve two extra
equations: the TCP throughput equation for the single-pathflow,
xr =

√
2/RTTr

√
pr; and an equation that says the link is kept

fully utilized, (1− pr)(xr +wr/RTTr) = Cr whereCr is the link
speed. This gives a solution forpr as a function ofwr.

an equilibrium point which is just off-center, at which con-
gestion is balanced. However, the simulation results show
that the algorithm spends much of its time captured by link
1: the average ofw2 is 13% lower than the fluid model
predicts, and the consequence is thatp1 = 0.055% while
p2 = 0.047%.

3.3 Timeouts with small windows
For the most part, the precise extensions to the TCP proto-

col to support multipath do not greatly impact the dynamics.
However, one effect cannot be ignored: when a subflow suf-
fers a retransmit timeout due to the ACK clock being lost,
other subflows that were performing well may stall. This is
because the receive buffer needed to put data from the differ-
ent subflows back in order can fill up if data remains missing
for an entire retransmit timeout (RTO) period. There are a
number of ways to mitigate this; selective acknowledgments
help a little, and adaptively reducing the dup-ack threshold
in the absense of reordering [21] can reduce timeouts. How-
ever, despite these, the main problem is simply that with
very small windows there are not enough packets in flight
to trigger a fast retransmission, meaning that a timeout is in-
evitable. As a result, algorithms that reduce a subflow to a
very small window tend to much more suscepible to time-
outs, and these timeouts risk stalling the other subflows and
degrading performance overall.

4. UNDERSTANDING THE DESIGN SPACE
According to§2 a multipath flow should shift its traffic

onto the least-congested paths in order to achieve resource
pooling, but according to§3 it ought to maintain equipoise
over its available paths. In order to explore the tension be-
tween equipoise and resource pooling, we shall consider the
following family of algorithms parameterized byφ:

ALGORITHM FAMILY : SEMICOUPLED(φ)
• Each ACK on subflowr, increase the windowwr by

a2−φw1−φ
r /w2−φ

total .
• Each loss on subflowr, decrease the windowwr bywr/b.
Useb = 2 to mimic TCP. Thea parameter controls aggres-
siveness, and is discussed in§5.

With φ = 0, SEMICOUPLED reduces to COUPLED 5, and
as we saw in§3 this achieves resource pooling but does not
maintain equipoise. It seems to be too sensitive to minor
or short-term changes in loss rates, and it moves too much
traffic off the more congested path.

With φ = 2, SEMICOUPLEDhas an increase term of1/wr

and a decrease term ofwr/2, which corresponds to running
separate TCP congestion control on each subflow. We shall
refer to this as UNCOUPLED congestion control. Since the
subflows are controlled separately, there is no tendency for
traffic to flap from one subflow to another, i.e. this algorithm
maintains equipoise. However it does a poor job of balanc-
ing load and resource pooling, as seen in Fig. 1.
5althougha in SEMICOUPLEDcorresponds to

√
a in COUPLED

5

(a) Torus topology

 0

 5

 10

 15

 20

 25

 30

 0.5 1 1.5 2

R
at

io
 o

f l
os

s
ra

te
s

φ

750pkt/s bottleneck
500pkt/s bottleneck
250pkt/s bottleneck

(b) Loss rates ratio for differing
values ofφ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.5 1 1.5 2

M
ax

/m
in

 th
ro

ug
hp

ut

φ

750pkt/s bottleneck
500pkt/s bottleneck
250pkt/s bottleneck

(c) Throughput ratio for differing
values ofφ

(d) Loss rates on each link for differing
values ofφ (bottleneck=250pkt/s)

Figure 4: Impact ofφ on long term Resource Pooling

We shall explore whether it is possible to achieve both
resource pooling and equipoise, by studying what happens
when we varyφ in the range[0, 2]. We do not claim that
by carefully choosingφ we can obtain a perfect algorithm,
merely that this is an interesting spectrum with which to be-
gin an exploration.

The caseφ = 1 is a priori appealing since the increase
and decrease terms can be computed using basic arithmetic.
The equilibrium window size can be computed by calcu-
lating when increase and decrease are balanced, as in§3.1;
whenφ = 1 and1 − pr ≈ 1 the equilibrium window sizes
are

wr ≈
√
ab

1/pr
√
∑

s 1/ps
. (2)

4.1 Evaluating theSEMICOUPLED(φ) Family
The φ-parameterized family of algorithms allows us to

study the balance between resource pooling and equipoise.
The fluid-flow models cannot capture this, so instead we
use packet-level simulation. We developed our own high-
performance event-based simulator calledhtsimthat can scale
from single flows to many thousands of flows and Gb/s link-
speeds, allowing us to examine a wide variety of scenarios.
htsimmodels TCP NewReno very similarly tons2. All the
simulations in this paper were run withhtsim.

Resource Pooling in the Steady State
First we shall investigate how well the different algorithms

in the SEMICOUPLED(φ) family balance load and pool re-
sources in a stable environment of long-lived flows. We
have examined many topologies and scenarios, but Fig. 4(a)
shows a torus topology that illustrates the effects particularly
nicely. It consists of five bottleneck links, each traversedby
two multipath flows. This topology is a good test of resource
pooling because it demonstrates the knock-on nature of load
balancing while at the same time having no end points or
special cases which complicate the choice of metric.

To start with, all five bottleneck links have equal capaci-
ties of 1000 pkts/second, equal RTTs of 100ms, and the bot-
tleneck buffers are one bandwidth-delay product. To see the
effectiveness of resource pooling we progressively reduce

the capacity of the middle link to 750, 500 and 250 packets/s.
We wish to see the extent to which multipath TCP can move
traffic away from the middle link towards the top and bottom
links. The best metric here is the ratio of loss rates between
the middle link and the top link—an algorithm that pools re-
sources completely will equalize these loss rates, giving a
ratio of one.

We also examine the aggregate throughputs of each of
the multipath flows. Although this is a less effective metric
(each flow traverses two links, so congestion is conflated), it
serves to verify that the overall outcome is acceptable for the
users of these flows, not just for the network operator.

Fig. 4(b) shows the ratios of loss rates and Fig. 4(c) shows
the ratio of best-to-worst throughput. Each data point is
from a single long run (10,000 simulated seconds). Asφ
decreases we see that resource pooling (as exhibited by the
loss rate ratio) improves steadily and approaches perfect re-
source pooling asφ approaches zero. The ratio of through-
puts also decreases steadily, but the graph gets a little noisy
asφ approaches zero due to increased flappiness.

Fig. 4(d) shows the absolute loss rates on all the links for
different values ofφ. The z-axis is truncated to emphasize
the effect asφ approaches zero (losses on the middle flow ac-
tually extend linearly to 0.25% loss whenφ = 2). The figure
clearly shows the way resource pooling diffuses congestion
across the network asφ approaches zero.

Dynamic Background Load and Equipoise.
In stable steady-state scenarios it is clear that the COU-

PLED (i.e, φ = 0) algorithm achieves close to optimal re-
source pooling, albeit with the possibility of flappiness. How-
ever, the Internet rarely resembles such a steady-state scenario—
usually there is a constant background of short flows that
come and go. This background traffic can change the situa-
tion considerably.

Consider a scenario where the background traffic is con-
stantly changing but where it is still feasible for multipath
flows to balance load. If the multipath flows succeeded in
balancing the load on average, then for short periods of time
first one path then the other path will be more congested.
This resembles the flappiness issue we described earlier, ex-

6

(a) Topology

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.5 1 1.5 2

pk
t/s

φ

3 long-lived TCPs

No RTO stalls
With RTO stalls

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2

φ

2 long-lived TCPs

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2

φ

1 long-lived TCP

(b) Effect ofφ on throughput

 0

 100

 200

 300

 400

 500

 600

 0.5 1 1.5 2

R
T

O
 C

ou
nt

φ

Competing
TCPs

1
2
3

(c) Retransmit Timeouts

Figure 5: Impact ofφ on throughput with dynamic background load

cept that the differences in the loss rates between the paths
may be larger, and they may reverse faster as flows slow-start
or terminate. The capture effect exhibited by the COUPLED

algorithm can be a problem here. If one path is more con-
gested for a short while, then a COUPLED flow will move
as much traffic as it can off that path. However, if the con-
gestion suddenly reduces, as happens when competing flows
terminate, then COUPLED will not respond rapidly to re-
balance the network because it has too small a window and
a very low increase rate on the previously congested path.
Thus, althoughφ = 0 is good at steady-state load balancing,
its lack of equipoise makes it less effective at dynamic load
balancing.

To illustrate this, consider the very simple scenario in Fig.
5(a). Three long lived flows provide background traffic on
the bottom path. On the top path eight short-lived flows with
idle and active periods with a mean of 5 seconds provide
a rapidly changing background of slow-starting and termi-
nating flows. These particular parameters were chosen to
ensure both links are fully utilized for all values ofφ, and to
provide roughly equal congestion levels on the two paths.

Directly measuring short-term resource pooling by mea-
suring loss rates is difficult because we need to measure
short time periods and each period contains few losses. We
can, however, measure the opportunity cost that the multi-
path flow pays when it becomes captured on a path that is no
longer the best. This is shown in Fig. 5(b). The left of the
three graphs shows the scenario from Fig. 5(a), whereas the
middle and right graphs show the same scenario with less
background traffic (2 and 1 long-lived TCP respectively on
the bottom link, plus an appropriate level of short flows on
the top link).

The reduction in throughput asφ → 0 is due to this lack of
equipoise and the resulting inability to rapidly change from
prefering one path to prefering the other. For each plot, two
curves are shown. The solid line is the raw results fromht-
sim. However these do not model when the receive buffer
fills up at the receiver during a retransmit timeout on one
path, leading to the other path being stalled. Fig. 5(c) shows
the number of RTOs for each of the three scenarios. Clearly
the lack of equipoise with smaller values ofφ is also increas-

ing the probability of timeouts. The dashed lines in Fig. 5(b)
show the effect on throughput if the receiver buffer is small
enough that each of these timeouts also causes the better path
to stall. A real implementation would lie between the two
curves.

With three long-lived TCP flows on the bottom link (left
plot) there is always a short-lived flow on the top link able to
use the spare capacity the multipath flow fails up take up, so
the link utilization is always 100%. With one long-lived TCP
on the bottom link (right plot), when the scenario is evenly
balanced there are too few small flows on the top path to al-
ways take up the bandwidth that the multipath flow fails to
utilize. In fact in the right hand plot, withφ = 1.9 the uti-
lization is only 68%; this falls to 47% forφ = 0.1. Thus with
low levels of highly variable competing traffic, low values of
φ not only reduce throughput, but also can be less effective
at utilizing the network. This can be regarded as a failure to
effectively pool resources.

This is even more clear if we examine why the curves lev-
els off in the middle and right plots for low values ofφ.
The reason is that these flows are sufficiently captured by
the large window they obtain on the lower path that they al-
most never increase their window on the top flow above one
packet, even when there is no traffic on that link at all for
many seconds. Thus these curves level off at their fair share
of the lower path - 333 pkts/s in the middle plot and 500
pkts/s in the right plot.

Our conclusion is that while both the fluid flow models
and steady-state simulations point towardsφ = 0 being opti-
mal for resource pooling, this does not apply to the dynamic
conditions seen in most real networks. Under such circum-
stances it is better to use an algorithm withφ > 0. We have
examined a wide range of scenarios, both in simulation and
with a full implementation. Unfortunately there is no sin-
gle clear “sweet spot”. However, values in the middle of
the range give robust behavior, pooling capacity quite effec-
tively across a wide range of steady and dynamic conditions.

Of these robust values,φ = 1 stands out because it corre-
sponds to a simple algorithm that can be implemented easily
in an operating system kernel without needing floating point
arithmetic or expensive calculations. As a result, we will

7

srcsrc

dstdst

p1 = 1%
w1 = 10pkt

p2 = 1%
w2 = 10pkt

p1 = 1%
w1 = 10pkt

p2 = 1%
w2 = 10pkt

Figure 6: SEMICOUPLED(φ = 1) allocates equal win-
dow sizes when congestion is equal, regardless of RTT.

use the SEMICOUPLED(φ = 1) algorithm as the basis for the
remainder of this paper.

5. FAIRNESS AND DEPLOYABILITY
So far we have examined a spectrum of algorithms with

the aim of understanding how well they balance load and
pool resources, and concluded that algorithms that exhibit
better equipoise are more robust (in particular to timeouts)
and better able to cope with dynamic operating conditions.
However, we have not examined whether these algorithms
are fair to competing traffic, or even whether they perform
better than a single-path TCP. There are two effects to con-
sider:
• Fairness when several subflows of a multipath flow com-

pete with a single TCP flow at a shared bottleneck. For
example, it is easy to see that two uncoupled subflows
using TCP-like AIMD parameters would get twice the
throughput of a single TCP flow.

• Fairness when the RTTs seen by the subflows differ sig-
nificantly. For example, COUPLED always prefers a less
congested path, even when that path has high RTT and
hence low throughput.

For an example of why the RTT can be a problem, con-
sider the two-path SEMICOUPLED(φ = 1) flow shown in
Fig. 6 where both paths have the same packet drop proba-
bility p = 1%. Use the constantsa = 1 andb = 2. Equa-
tion (2) says that the equilibrium window sizes arew1 =
w2 = 1/

√
p = 10 packets, regardless of RTT. The total

throughput the flow gets does depend on RTT: it isx =
w1/RTT1 + w2/RTT2. For example,

RTT1 = 10ms,RTT2 = 10ms givesx = 2000 packets/s
RTT1 = 10ms,RTT2 = 100ms givesx = 1100 packets/s.

But a single-path TCP using only the low-RTT path would
get throughput of2000 packets/s, so there is no incentive to
run SEMICOUPLED(φ = 1) using the higher-RTT path.

Although the two issues above have separate causes, they
are part of the same fairness problem, and we will address
them together. Before we can do so though, we must decide
what our fairness goals are.

0 10 20 30 0 10 20 30
0

10

ŵ2

ŵ1

(ŵTCP
1

, ŵTCP
2

)

Figure 7: The three design goals place constraints on
what the equilibrium window sizes should be.

0 10 20 30 0 10 20 30 40
0

10

20

ŵ2

ŵ1

Figure 8: By choosinga we control the equilibrium
window sizes.

5.1 Fairness Goals
Our overall aim is to compete with TCP in a way that does

not starve competing traffic, but that still gives sufficientper-
formance advantage to provide incentives for deployment.
This leads to three specific goals that any multipath conges-
tion control algorithm should aim to satisfy:

Goal 1 (Improve throughput) A multipath flow should per-
form at least as well as a single-path flow would on the best
of the paths available to it. This ensures that there is an
incentive for deploying multipath.

Goal 2 (Do no harm) A multipath flow should not take up
any more capacity on any one of its paths than if it was a
single path flow using only that route. This guarantees that
it will not unduly harm other flows.

Goal 3 (Balance congestion)A multipath flow should move
as much traffic as possible off its most-congested paths, sub-
ject to meeting the first two goals.

To understand how these goals interact, consider a two-
path congestion control with equilibrium6 window sizesŵ1

andŵ2 on its two paths. Fig. 7 shows constraints onŵ1 and
ŵ2 given some arbitrary combination of loss rates and RTTs.
The vertical dashed lines show the equilibrium window sizes
ŵTCP

1 =
√

2/p1 that a regular TCP flow would achieve on
path 1, and the horizontal line shows the same for path 2.
(From the figure we can deduce thatp1 < p2 since we see
that ŵTCP

1 > ŵTCP
2 .) Goal 2 (do no harm) requires that the

multipath flow should not use more capacity on pathr than
would a single-path TCP flow, i.e. that̂wr ≤ ŵTCP

r for every
pathr.

The total throughput of the multipath flow is
∑

r ŵr/RTTr.
The diagonal lines in Fig. 7 are lines of equal throughput;
their gradient is given by the ratio of the RTTs. The left fig-
ure shows a case whereRTT1 > RTT2, and so even though
6Our method for compensation only works when the equilibrium
window sizes are unique. It does not apply to algorithms likeCOU-
PLED.

8

50 100 150 200

0

10

20

30

40

0

100

200

300

0

1

2

0

100

200

300

400

window
[pkt]

throughput
[pkt/s]

a

total
throughput

[pkt/s]

time [s]

p1 = 0.57%
RTT1 = 86ms

p2 = 0.56%
RTT2 = 431ms

50 100 150 200

0

20

40

0
50

100
150
200

0

1

2

0

100

200

300

window
[pkt]

throughput
[pkt/s]

a

total
throughput

[pkt/s]

single-
path TCP
throughputs

target
throughput

time [s]

p1 = 1.79%
RTT1 = 93ms

p2 = 0.26%
RTT2 = 414ms

Figure 9: RTT compensation, with equal and unequal loss rates

ŵTCP
2 is smaller, a TCP on path 2 would achieve higher through-

put than one on path 1. In the right figure the RTTs are equal,
so path 1 gives better throughput. The solid diagonal line is
the line of equal throughput equivalent to that of the better
of the single path TCP flows. The region below this line
and below the dashed lines satisfies Goal 2 (do no harm)—
points in this region achieve no more throughput on either
path than TCP would on that path, even if the bottleneck
turns out to be common to both subflows. The region above
the solid diagonal line satisfies Goal 1 (improve throughput),
because points in this region achieve more throughput than
TCP would on the better of the two paths.

Thus points on the solid diagonal line and inside the dashed
lines satisfy both Goal 1 and Goal 2. Any congestion control
algorithm with its equilibrium on this line is acceptable. The
total throughput at any point on this line is

∑

r

ŵr

RTTr
= max

r

ŵTCP
r

RTTr
(3)

wheremaxr denotes the maximum over all pathsr that the
flow can use. Of these points, the specific solution that best
satisfies Goal 3 is shown by the dot, as this puts the least
traffic on path 1 which has the higher drop probability.

For the SEMICOUPLED(φ = 1) algorithm, the equilib-
rium point is atwr ∝ 1/pr (from Equation 2), where the
constant of proportionality depends ona. Hence by chang-
ing a we can get different equilibrium points on a radial line,
shown in Fig. 8. The algorithm will satisfy all three goals if
we choosea so that it lies on the bottom edge of the shaded
triangle. In the left figure this can be achieved purely by scal-
ing a, but in the right figure we must also cap the increases
on path 1 so as to still satisfy Goal 2 on that path.

This leads us to a final algorithm, a version of SEMICOU-
PLED(φ = 1) with RTT compensation.

ALGORITHM: RTT COMPENSATOR
• Each ACK on pathr, increasewr bymin(a/wtotal, 1/wr).

• Each loss on pathr, decreasewr bywr/2.

The parametera controls how aggressively to increase
window size, hence it controls the overall throughput. To
see the effect ofa, observe that in equilibrium the increases
and decreases on each subflow should balance out. Neglect-
ing for the moment the cap1/wr, balance implies that

(1 − pr)
a

ŵtot

= pr
ŵr

2

whereŵtot is total equilibrium window summed over all paths.
Making the approximation thatpr is small enough that1 −
pr ≈ 1, we find ŵr = 2a/(prŵtot). We could equiva-
lently express this in terms of̂wTCP

r rather thanpr, giving
ŵr = (ŵTCP

r)2a/ŵtot.
When we also take into account the window cap (as in the

right side of Fig. 8), we see that the equilibrium window
sizes must satisfy

ŵr = min
{ (ŵTCP

r)2a

ŵtot
, ŵTCP

r

}

. (4)

By simultaneously solving (3) & (4), we find after some al-
gebra that

a = ŵtot
maxr ŵr/RTT2r
(
∑

r ŵr/RTTr)2
.

This formula fora obviously requires that we measure the
round trip times. It also involveŝwr andŵtot, the equilib-
rium window sizes. In practice, experiments show these can
be approximated by the instantaneous window sizes with no
adverse effect. We chose to computea only when congestion
windows grow to accommodate one more packet, rather than
every ACK on every subflow. We used a smoothed round trip
time estimate, computed similarly to TCP.

5.2 Evaluation: high statistical multiplexing

9

flow A

flow B

flow C

C1 = 250pkt/s

C2 = 500pkt/s

Figure 10: ‘Fair’ resource allo-
cation in a two-link scenario with
dissimilar link rates.

12 25 50 100 200 400 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RTT2

400
800

1600
3200

(a)

12 25 50 100 200 400 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RTT2

800
400

1600
3200

(b)

Figure 11: The ratio of flowB’s throughput to the better of flowA andC, from
figure 10, as we varyC2 (shown as line labels) andRTT2. The top plot shows the
RTT COMPENSATORalgorithm, the bottom plot shows it witha fixed at1.

We simulated a simple topology with two bottleneck links,
each carrying 1000 single-path TCP flows, and we added a
multipath flow able to use either or both of the links. There
are so many other flows that the multipath flow’s actions
have hardly any effect on the loss rates, so these simula-
tions are effectively testing RTT COMPENSATORunder con-
stant levels of congestion. We describe here two runs of this
topology, corresponding to the two generic cases shown in
figure 8. The propagation delays for both runs are50ms and
250ms.

The left hand plot in Fig. 9 shows the first run. We let
the link speeds beC1 = 200000pkt/s andC2 = 40000pkt/s,
chosen so to achieve equal loss rates (p1 ≈ p2 ≈ 0.57%).
Taking account of queueing delay the observed round trip
times areRTT1 = 86ms andRTT2 = 431ms. The top panel
shows the window sizes on each path; since the drop prob-
abilities are roughly equal the multipath flow gets a roughly
equal window on each path, in accordance with Goal 3 and
the principle of equipoise. The second panel shows the through-
put that the multipath flow gets on each path, and the hori-
zontal lines show the average throughput that the single-path
TCP flows are getting; we see that the multipath flow is not
taking more than this on either path, hence Goal 2 is satis-
fied. The bottom panel shows total throughput for the mul-
tipath flow, and the horizontal line shows the larger of the
two single-path TCP throughputs; we see that the multipath
flow takes roughly this much in total, hence Goal 1 is sat-
isfied. We also see thata varies a little: when by chance
w2 > w1 thenw2 gets most of the window increase and the
total throughput suffers soa is made larger to compensate;
when by chancew2 < w1 thena is made smaller.

The right hand plot in Fig. 9 shows the second run. We let
the link speeds beC1 = 100000pkt/s andC2 = 60000pkt/s,
chosen so as to achievep1 ≈ 1.79% andp2 ≈ 0.26%. The
observed round trip times areRTT1 = 93ms andRTT2 =
414ms. Becausep1 > p2, resource pooling indicates that the
multipath flow should mainly use path 2. But because path 1
has a smaller RTT, a single-path flow gets better throughput
on path 1 than on path 2. In order to meet Goal 1 the multi-
path flow sends as much as it can on path 2 without falling
foul of Goal 2, and then it takes some further capacity from

path 1. In this way the multipath flow can do as well as the
best single-path flow, while still achieving some degree of
resource pooling. Since the multipath flow is hitting its limit
on path 2, we can deduce that the window increase on path
2 is persistently hitting its cap.

5.3 Evaluation: low statistical multiplexing
We also simulated scenarios with low statistical multi-

plexing. When the multipath flow shifts its traffic, then the
drop probabilities change and so the throughput of the hy-
pothetical single-path TCP flows in our three fairness goals
will also change.

To get an idea of what happens, consider the topology
shown in Fig. 10. The obvious resource pooling outcome
would be for each flow to get throughput of 250 pkt/s. The
simulation outcome is very different: flowA gets 130pkt/s,
flow B gets 305pkt/s and flowC gets 315pkt/s; the drop
probabilities arep1 = 0.22% andp2 = 0.28%. (Here the
propagation delays areRTT1 = 500ms andRTT2 = 50ms.)
After some thought we realize that the outcome is very nearly
what the fairness goals dictate: the multipath flow aims to
satisfy Goal 1, but the comparison it is making in that goal is
to ‘what a single-path TCP flow would achieve whenp2 =
0.28%’ rather than to ‘what it would actually get if it used
only link 2’. The issue is that the multipath flow does not
take account of how its actions would affect the drop prob-
abilities when it calculates its rate. It is difficult to see any
practical alternative. Nonetheless, the outcome in this case
is still better for flowsA andB than if flowB used only link
1, and it is better for flowsB andC than if flowB used only
link 2.

Parameter exploration. We now repeat the same experi-
ment, but withC1 = 400pkt/s,RTT1 = 100ms, and a range
of values ofC2 andRTT2. The top plot in Fig. 11 shows
how well flowB achieves its goal of doing at least as well as
the better of flowA andC. It is within a few percent in all
cases except where the bandwidth delay product on link 2 is
very small; in such cases there are problems due to timeouts.
We also experimented with RTT and fairness compensation
turned off (by settinga = 1): then flowB gets as little as

10

500pkt/s
RTT1 = 50ms

RTT2 = 50ms

RTT3 = 50ms

Figure 12: Testing the fairness of multipath TCP at a
shared bottleneck

47% and as much as 133% of the better of flowsA andC.
Over all of these scenarios, flowB always gets better

throughput by using multipath than if it used just the bet-
ter of the two links; the average improvement is 15%. The
multipath flow also gets more throughput than if it used only
its best path.

Fairness at a shared bottleneck. We also tested the fair-
ness of multipath TCP in the topology shown in Fig. 12.
With the parameters shown, the multipath flow gets241pkt/s
and the single path flow gets259pkt/s. The multipath algo-
rithm achieves fairness by tuninga, rather than by any sort of
shared bottleneck detection. In this case the average valueof
a is 0.57; there is some short-term variability and sampling
bias due to fluctuations in measured RTT.

We then repeated the experiment but withRTT1 = 250ms.
The multipath flow gets245pkt/s and the single path flow
gets255pkt/s. The two multipath subflows still see the same
packet drop probability, so they get the same window size,
but the algorithm has increaseda to an average value of 0.88
to compensate for the fact that path 1 has a bigger RTT.

6. OVERALL EVALUATION
From the fluid-flow models we learnt how the equilibrium

throughput of an algorithm relates to the loss rates and RTTs
on the different paths. Packet-level simulation, examining
how resource pooling is affected by fluctuating congestion,
led us to the SEMICOUPLED(φ = 1) algorithm. We then
used a fluid model to calculate how to set the gain parameter
a in order to be fair and to compensate for differing RTTs.
Simulation showed that this works well. To gain greater con-
fidence, through, we must move beyond simulation and im-
plement the algorithms in a complete multipath TCP stack.

The main differences between our implementation and our
simulator are that the implementation implements a full re-
order buffer at the receiver and it uses integer arithmetic for
the computation of the congestion window as floating point
instructions are not permitted in the Linux kernel. We com-
putea using the current window size (compensating for arti-
ficial window inflation during fast-retransmit) and use TCP’s
existing smoothed RTT estimator.

We cross-validated the implementation against the simu-
lator using dummynet to generate random loss (exogenous
drops); the results agree for a broad range of parameters,
though they start to diverge somewhat for loss rates above
5% when timeout behavior starts to dominate. We also ran

experiments in which packet drops are caused by queue over-
flow (endogenous drops), validating the simulation results
on RTT fairness, resource pooling and equipoise.

It is more interesting to look at likely deployment scenar-
ios and examine how the full multipath TCP performs. We
will examine two here: a device wirelessly connected via
WiFi and 3G simultaneously, and a server multihomed via
two different network links. These cases are very different.
The wireless case is mostly about robustness and verifying
that the algorithms work well, even in the face of very vari-
able wireless links with vastly different characteristicsand
rapidly changing congestion. Under such circumstances we
care less about balancing the load, and more about getting
good reliable throughput. In contrast, the server case is pri-
marily about the effectiveness of load balancing.

6.1 Multipath Wireless Client
Modern mobile phones and devices such as Apple’s iPad

often have multiple wireless interfaces such as WiFi and 3G,
yet only one of them is used at any given time. With more
and more applications requiring Internet access, from mailto
video streaming, multipath can improve mobile users’ expe-
rience by allowing the simultaneous use of both interfaces.
This shields the user from the inherently variable connectiv-
ity available over wireless networks.

We ran tests using a laptop equipped with a 3G USB in-
terface and a 802.11 network adapter, both from work and at
home. The tests we present were run in a university build-
ing that provides reasonable WiFi coverage on most floors
but not on the staircases. 3G coverage is acceptable, but is
sometimes heavily congested by other users.

3G and WiFi have quite different link characteristics. WiFi
provides much higher throughput and short RTTs, but we
observe its performance to be very variable with quite high
loss rates as we see a lot of interference in the 2.4GHz band.
3G tends to vary on longer timescales and we found that it
is overbuffered leading to RTTs of well over a second. This
provides a good real-world test of the adaptation ofa to cope
with differing RTTs.

The experiment starts with one TCP running over the 3G
interface and one over WiFi, both downloading data from an
otherwise idle university server that implements the multi-
path extensions. A multipath flow then starts, using both 3G
and WiFi interfaces, downloading data from the same server.
Fig. 13(a) shows the data rates received over each link (each
point is a ten-second average). WiFi is shown above the
dashed line, 3G is shown inverted below the dashed line,
and the total throughput of the multipath flow can be seen
clearly from the vertical range of the grey region.

During the experiment the subject moves around the build-
ing. Both WiFi and 3G are used by the multipath connection
during the experiment, and it is easy to see that the overall
throughput correctly matches quite closely that of the TCP
flow on the faster WiFi link up until minute 9. Due to the
large RTT and low loss on the 3G flow, a coupled algo-

11

3

2

1

0

1

2

3

4

5

6

7

 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

M
bp

s)

Time (min)

Multipath Subflows
Regular TCP Flows

WiFi Interface

3G Interface

(a) RTT Compensation

3

2

1

0

1

2

3

4

5

6

7

 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

M
bp

s)

Time (min)

Multipath Subflows
Regular TCP Flows

WiFi Interface

3G Interface

(b) RTT Compensation off, a=1

Figure 13: Throughput of multipath and regular TCP running simultaneously over 3G and WiFi. The 3G graph is shown
inverted, so the total multipath throughput (the grey area)can be seen clearly.

rithm would by default prefer to send that way. To achieve
good throughput, the RTT COMPENSATOR algorithm has
increaseda, and then has to cap the increases on the 3G sub-
flow to avoid being unfair.

At 9 minutes the subject walks down the stairs to go to
the coffee machine on a different floor—there is no WiFi
coverage on the stairs, but the 3G coverage is better there so
the connection adapts and takes advantage. When the subject
leaves the stairwell, a new WiFi basestation is acquired, and
multipath quickly takes advantage of it.

This single trace shows the robustness advantages of mul-
tipath, and it also shows that it does a good job of utiliz-
ing very different link technologies simultaneously without
harming competing traffic on those links.

From this trace it is difficult to see the importance of RTT
compensation. To show this, we re-ran the same experiment,
taking the same path around the building and down the stairs
to the coffee machine, but we switched off RTT compen-
sation by settinga = 1, thus reverting to the basic SEMI-
COUPLED(φ = 1) algorithm. Fig. 13(b) shows the results.
The overbuffered 3G link is preferred, and a large window
is maintained over 3G. The coupling then causes the WiFi
path to be much less aggressive, and so the multipath flow
receives much less throughput that it should. This illustrates
quite clearly the necessity of RTT compensation.

6.2 Server Load Balancing
Multihoming of important Internet servers has become

ubiquitous over the last decade; no company reliant on net-
work access for their business can afford to be dependent
on a single upstream network. However, balancing traffic
across these links is difficult, as evidenced by the hoops op-
erators jump though using BGP techniques such as prefix
splitting and AS prepending. Such techniques are coarse-
grain, very slow, and stress the global routing system.

Multipath transport can balance load, but if it requires all
flows to be upgraded to do so, then this would be less useful.

Can multipath transport still balance load if only a minority
of the flows support it?

We ran our multipath TCP implementation on a server
dual-homed with 100Mbps links and on a set of client ma-
chines. As these machines are all local, we used dummynet
to add 20ms of latency to emulate a wide-area scenario.

We ran several sets of experiments; we present two here.
The aim is to load the network asymmetrically with regular
TCP traffic (Linux 2.6 kernel running NewReno), and then
see how well a few multipath TCP flows can re-balance it.
In the first experiment there are 5 TCP flows on one link and
15 on the second link. In the second experiment there are 15
TCP flows on one link and 25 on the other. We let conditions
stabilize so we can see how unbalanced the starting condi-
tions are, and then after one minute we start ten multipath
TCP flows and observe the throughput.

Figures 14(a) and 14(b) show the average TCP through-
put on each link and the average multipath TCP through-
put. Individual flows vary a little from the average on short
timescales, but within each category all the flows achieve
roughly the same throughput when measured over multiple
loss intervals.

It is clear that even a small fraction of multipath flows (1/3
in the first case,1/5 in the second) can significantly help in
balancing load. In neither case is the balance perfect—only
the COUPLEDalgorithm could do that and it would not work
well in the wireless case. However it is close enough for all
practical purposes, and the multipath flows are within about
10% of their target rate. In effect multipath transport enables
the links to be used as a single pooled resource, in the way
originally envisaged by the fluid models.

7. RELATED WORK
We have already discussed in§2 the theoretical work on

multipath congestion control, and in particular the use of
fluid flow models to demonstrate resource pooling. In this
paper our intent has been to understand the issues that arise

12

(a) 5 and 15 TCP Flows (b) 15 and 25 TCP Flows

Figure 14: Server Load Balancing: 10 Multipath Flows Balance Traffic across Links

in bringing resource pooling to the Internet.
There has been much work on building practical multipath

transport protocols [9, 22, 14, 8, 10, 3, 16, 4], though none
of this work addresses the problem we have studied of how
to achieve resource pooling.

Most prior work focuses on the protocol mechanisms needed
to implement multipath transmission, with key goals being
robustness to long term path failures and to short term vari-
ations in conditions on the paths. The main questions are
how to split sequence numbers across paths (i.e. whether to
use one sequence space for all subflows or one per subflow
with an extra connection-level sequence number), how to do
flow control (subflow, connection level or both), how to ack,
and so forth. Our implementation uses the current multipath
TCP protocol specification [4].

In most existing proposals, there is little consideration for
the congestion control aspects of multipath transport. Some
do try to detect a shared bottleneck to ensure bottleneck fair-
ness; none of them considers resource pooling, and most of
them fail to achieve fairness to other flows. Let us highlight
the congestion control characteristics of these proposals.

pTCP [8], CMT over SCTP[10] and M/TCP [16] use un-
coupled congestion control on each path, and are not fair to
competing single-path traffic in the general case.

mTCP [22] also performs uncoupled congestion control
on each path. In an attempt to detect shared congestion it
computes the correlation between fast retransmit intervals
on different subflows. It is not clear how robust this detector
is.

R-MTP [14] targets wireless links: it periodically probes
the bandwidth available for each subflow and adjusts the
rates accordingly. To detect congestion it uses packet inter-
arrival times and jitter, and infers mounting congestion when
it observes increased jitter. This only works when wireless
links are the bottleneck.

The work in [7] examines fairness at shared bottlenecks;
that work was also motivated by fluid flow models. The idea
is to constrain the aggregate multipath TCP flow to grow as
a TCP would, by spreading the one packet per RTT increase

over multiple subflows using an “aggressiveness manager”
which attempts to be fair to TCP. It is not clear from the pa-
per what the resulting behavior is. In addition, the proposed
algorithm does not perform RTT compensation, which will
be necessary for good performance in scenarios such as Fig.
13(a).

Network layer multipath. ECMP[18] achieves load bal-
ancing at the flow level, without involving end-systems. It
sends all packets from a given flow along the same route in
order that end-systems should not see any packet re-ordering.
To do this it needs to look at transport-layer parts of the
packet header, so it is not a pure network-layer solution.
ECMP and end-system multipath differ in the path choices
they have available, and it is not clear which is more useful
or even if they are compatible.

Horizon [15] is a system for load balancing at the network
layer, for wireless mesh networks. Horizon network nodes
maintain congestion state and estimated delay for each pos-
sible path towards the destination; hop-by-hop backpressure
is applied to achieve near-optimal throughput, and the delay
estimates let it avoid re-ordering.

Application layer multipath. BitTorrent [2] is an exam-
ple of application layer multipath. Different chunks of the
same file are downloaded from different peers to increase
throughput. BitTorrent works at chunk granularity, and only
optimizes for throughput, downloading more chunks from
faster servers. Essentially BitTorrent is behaving in a sim-
ilar way to uncoupled multipath congestion control, albeit
with the paths having different endpoints. While uncoupled
congestion control does not balance flow rates, it neverthe-
less achieves some degree of load balancing when we take
into account flow sizes [13, 19], by virtue of the fact that the
less congested subflow gets higher throughput and therefore
fewer bytes are put on the more congested subflow. This is
called ‘job-level resource pooling’ as opposed to ‘rate-level
resource pooling’.

8. CONCLUSIONS AND FUTURE WORK

13

We have demonstrated a working multipath congestion
control algorithm. It brings immediate practical benefits:in
§6 we saw it seamlessly balance traffic over 3G and WiFi
radio links, as signal strength faded in and out. It is safe
to use: the fairness mechanism from§5 ensures that it does
not harm other traffic, and that there is always an incentive
to turn it on because its aggregate throughput is at least as
good as would be achieved on the best of its available paths.
It should be beneficial to the operation of the Internet, since
it balances congestion and pools resources as promised in
§2, at least in so far as it can given topological constraints
and the requirements of fairness.

Our main theoretical finding is that if a multipath conges-
tion control tries myopically to balance congestion, then it
is not robust to transient noise in congestion feedback nor
to dynamically varying background load. We formulated
the principle of equipoise, which says that these problems
may be resolved by balancing traffic across paths, to some
suitable extent. Our proposed congestion control algorithm
makes a reasonable compromise between myopic resource
pooling and balance.

We believe our multipath congestion control algorithm is
safe to deploy as part of the IETF’s ongoing efforts to stan-
dardize Multipath TCP[4] or with SCTP, and it will perform
well. This is timely, as the rise of multipath-capable smart
phones and similar devices has made it crucial to find a good
way to use multiple interfaces more effectively. Currently
such devices use heuristics to periodically choose the bestin-
terface, terminating existing connections and re-establishing
new ones each time a switch is made. Combined with a
transport protocol such as Multipath TCP or SCTP, our con-
gestion control mechanism avoids the need to make such bi-
nary decisions, but instead allows continuous and rapid re-
balancing on short timescales as wireless conditions change.

Our congestion control scheme is designed to be compat-
ible with existing TCP behavior. However, existing TCP has
well-known limitations when coping with long high-speed
paths. To this end, Microsoft incorporate Compound TCP[17]
in Vista and Windows 7, although it is not enabled by de-
fault, and recent Linux kernels use Cubic TCP[5]. We be-
lieve that Compound TCP should be a very good match for
our congestion control algorithm. Compound TCP kicks in
when a link is underutilized to rapidly fill the pipe, but it falls
back to NewReno-like behavior once a queue starts to build.
Such a delay-based mechanism would be complementary to
the work described in this paper, but would further improve
a multipath TCP’s ability to switch to a previously congested
path that suddenly has spare capacity. We intend to investi-
gate this in future work.

9. REFERENCES
[1] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and

R. Sitaraman. A measurement-based analysis of
multihoming. InProc. ACM SIGCOMM ’03, 2003.

[2] B. Cohen. Incentives build robustness in BitTorrent, 2003.
[3] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multi-path

load balancing in transport layer. InProc. 3rd EuroNGI

Conference on Next Generation Internet Networks, 2007.
[4] A. Ford, C. Raiciu, M. Handley, and S. Barre. TCP

Extensions for Multipath Operation with Multiple
Addresses. Internet-draft, IETF, 2009.

[5] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant.SIGOPS Oper. Syst. Rev., 42(5),
2008.

[6] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley. Multi-path TCP: a joint congestion control and
routing scheme to exploit path diversity in the Internet.
IEEE/ACM Trans. Networking, 14(6), 2006.

[7] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and
H. Tokuda. Multipath Congestion Control for Shared
Bottleneck. InProc. PFLDNeT workshop, May 2009.

[8] H.-Y. Hsieh and R. Sivakumar. A transport layer approach
for achieving aggregate bandwidths on multi-homed mobile
hosts. InProc. MobiCom ’02, pages 83–94, New York, NY,
USA, 2002. ACM.

[9] C. Huitema. Multi-homed TCP. Internet draft, IETF, 1995.
[10] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent

multipath transfer using SCTP multihoming over
independent end-to-end paths.IEEE/ACM Trans. Netw.,
14(5):951–964, 2006.

[11] F. Kelly and T. Voice. Stability of end-to-end algorithms for
joint routing and rate control.CCR, 35(2), Apr. 2005.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability.Journal of the Operational Research
Society, 49, 1998.

[13] P. Key, L. Massoulié, and D. Towsley. Path selection and
multipath congestion control. InProc. IEEE Infocom, May
2007. Also appeared in proceedings of IEEE ICASSP 2007.

[14] L. Magalhaes and R. Kravets. Transport level mechanisms
for bandwidth aggregation on mobile hosts.ICNP, page
0165, 2001.

[15] B. Radunović, C. Gkantsidis, D. Gunawardena, and P. Key.
Horizon: balancing TCP over multiple paths in wireless
mesh network. InProc. MobiCom ’08, 2008.

[16] K. Rojviboonchai and H. Aida. An evaluation of multi-path
transmission control protocol (M/TCP) with robust
acknowledgement schemes.IEICE Trans. Communications,
2004.

[17] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound
TCP approach for high-speed and long distance networks. In
Proc. IEEE INFOCOM 2006, pages 1–12, April 2006.

[18] D. Thaler and C. Hopps. Multipath Issues in Unicast and
Multicast Next-Hop Selection. RFC 2991 (Informational),
Nov. 2000.

[19] B. Wang, W. Wei, J. Kurose, D. Towsley, K. R. Pattipati,
Z. Guo, and Z. Peng. Application-layer multipath data
transfer via TCP: schemes and performance tradeoffs.
Performance Evaluation, 64(9–12), 2007.

[20] W.-H. Wang, M. Palaniswami, and S. H. Low. Optimal flow
control and routing in multi-path networks.Performance
Evaluation, 52(2–3), 2003.

[21] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
reordering-robust TCP with DSACK. InProc ICNP 03,
2003.

[22] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. InProc USENIX ’04, 2004.

14

APPENDIX

A. A LINK-FAIR ALGORITHM
In this appendix we describe a modification to RTT COMPEN-

SATOR that achieves per-link fairness rather than per-path fairness.

A.1 Introduction
The constraints of the RTT COMPENSATOR congestion con-

troller are to ensure that a multipath flow gets as much aggregate
throughput as a single-path TCP flow would on the best of the paths
available to it (so there is an incentive for users to deploy multi-
path), while not using any more capacity on any path than a single-
path TCP flow would (so that it does not unduly harm other flows).
Given these constraints, the controller aims to move trafficoff the
most-congested paths.

To express the constraints formally, we first introduce someno-
tation. Suppose the multipath flow is able to use paths in a finite
setR. On pathr ∈ R, let RTTr be the round trip time, letwr be
the instantaneous window size, letŵr be the equilibrium window
size, letpr be the packet loss probability, and letŵTCP

r be the equi-
librium window size that a single-path TCP flow would get on that
path when faced withpr. Let xr = wr/RTTr etc. The constraints
of RTT COMPENSATORmay be written

∑

r∈R

x̂r = max
r∈R

x̂TCP
r (5)

and
x̂r ≤ x̂TCP

r for all r ∈ R. (6)
Figure 15 illustrates a scenario where these constraints might be

deemed inadequate. According to (5) the multipath flow should get
aggregate throughput̂x1 + x̂2 + x̂3 = 5. Sincep2 < p1, we want
as much of the aggregate traffic to go on paths 2 and 3 as possible,
with no preference between the two (though equipoise suggests we
should balance them). The diagram suggests that to avoid unduly
harming any other flows that might be using the links, we should
ensure

x̂1 ≤ 5 and x̂2 + x̂3 ≤ 3, (7)
which suggests that the optimal allocation is(x̂1, x̂2, x̂3) = (2, 1.5, 1.5).
Yet (5) & (6) only impose

x̂1 + x̂2 + x̂3 = 5,

x̂1 ≤ 5, x̂2 ≤ 3 and x̂3 ≤ 2

which allows (x̂1, x̂2, x̂3) = (0, 3, 2). This latter allocation is
pathwise-fair, as per the stated goal of RTT COMPENSATOR, but it
means that the multipath flow takes a total of 5 units of capacity on
link 2, more than any of the single-path TCP flows would.

The remedy is to impose a stronger version of (6). Instead of (5)
& (6) we propose the objectives

Goal 4 (Improve throughput)
∑

r∈R

x̂r ≥ max
r∈R

x̂TCP
r

Goal 5 (Do no harm) For all S ⊆ R,
∑

r∈S

x̂r ≤ max
r∈S

x̂TCP
r .

x̂TCP
1

= 5

x̂TCP
2

= 3

x̂TCP
3

= 2

p1 = 2%

p2 = 1%

Figure 15: A multipath flow with three subflows.

This last collection of inequalities ensures that the multipath
flow takes no more capacity on any link or collection of links than
would a single-path TCP flow on one of the pathsr ∈ R. To see
this, letS be the set of paths that use the links in question: then the
left hand side of (6) is the total throughput of the multipathflow on
those links, and the right hand side is the throughput of a single-
path flow through those links. In the scenario of Figure 15, Goal 5
requires

x̂1 ≤ 5

x̂1 + x̂2 ≤ 5 x̂2 ≤ 3

x̂1 + x̂3 ≤ 5 x̂3 ≤ 2

x̂1 + x̂2 + x̂3 ≤ 5 x̂2 + x̂3 ≤ 3.

This full set of inequalities is more stringent than (7). However, one
or more of the additional constraints would be appropriate if there
were further shared bottleneck links in addition to those shown
here. We take the view that it is better to guarantee doing no harm
for any possible configuration of shared bottlenecks, rather than
attempt to detect shared bottlenecks. See also Section A.3 for an
explanation of why detection of shared bottlenecks is conceptually
problematic.

A.2 A link-fair algorithm
Consider the following algorithm, an extension of RTT COM-

PENSATOR:

ALGORITHM: L INK -FAIR
• Each ACK on subflowr, increase the windowwr by

min
S⊆R : r∈S

maxs∈S ws/RTT2
s

(
∑

s∈S
ws/RTTs

)2
. (8)

• Each loss on subflowr, decrease the windowwr bywr/2.

Note that if we took the minimum in (8) over{r} andR, rather than
over all subsetsS for whichr ∈ S, the increase term would match
exactly the increase in RTT COMPENSATOR. This reflects the fact
that RTT COMPENSATORguarantees fairness over individual paths
and over the whole, whereas LINK -FAIR guarantees fairness over
all possible shared bottlenecks.

The complexity of computing the minimum in (8) is linear in the
number of paths, if window sizes are kept in the order of (9) below.

The following lemmas concern the properties of an equilibrium
point, i.e. a set of window sizeŝwr satisfying the balance equations

min
S : r∈S

maxs∈S ŵs/RTT2
s

(
∑

s∈S
ŵs/RTTs

)2
= pr

ŵr

2
for eachr ∈ R.

They show that an equilibrium point satisfies the two fairness goals.

Lemma 1 Any equilibrium point satisfies Goal 5.

Lemma 2 Let the equilibrium window sizes be ordered such that
√
ŵ1

RTT1

≤
√
ŵ2

RTT2

≤ · · · ≤
√
ŵn

RTTn

. (9)

Then
∑

r

ŵr

RTTr

=
ŵTCP

n

RTTn

. (10)

Furthermore, for allr,

ŵTCP
r

RTTr

≤ ŵTCP
n

RTTn

. (11)

15

Proof of Lemma 1.First we will find an expression for̂wTCP
r in terms

of theŵr. ForS ⊆ R, define

i(S) =
maxr∈S

√
ŵr/RTTr

∑

r∈S
ŵr/RTTr

.

Rewriting the balance equations in terms ofi(·), and in terms of
ŵTCP

r =
√

2/pr,

min
S : r∈S

i(S)2 = pr
ŵr

2
=

ŵr

(ŵTCP
r)2

hence
ŵTCP

r =
√
ŵr max

S : r∈S

1/i(S). (12)

Now, take anyT ⊆ R. We shall verify the equation in Goal 5
for setT . Rearranging the definition ofi(T),

∑

r∈T

ŵr/RTTr =
maxr∈T

√
ŵr/RTTr

i(T)

= max
r∈T

1

RTTr

√
ŵr/i(T)

≤ max
r∈T

1

RTTr

√
ŵr max

S : r∈S

1/i(S)

= max
r∈T

1

RTTr

ŵTCP
r by (12).

SinceT was arbitrary, we have proved Goal 5. 2

Proof of Lemma 2.With the window sizes ordered as in the state-
ment of the lemma, we can rewrite (12):

ŵTCP
r

RTTr

=

√
ŵr

RTTr

max
S : r∈S

∑

r∈S
ŵr/RTTr

maxr∈S

√
ŵr/RTTr

=

√
ŵr

RTTr

max
u≥r

∑

t≤u
ŵt/RTTt√

ŵu/RTTu

(13)

which atr = n reduces to (10).
We prove (11) by induction. It is obviously true atr = n. Sup-

pose it is true atr + 1, . . . , n. Let

γr = max
u≥r

∑

t≤u
ŵt/RTTt√

ŵu/RTTu

so that (13) can be rewritten

ŵTCP
r

RTTr

=

√
ŵr

RTTr

γr

=

√
ŵr

RTTr

max
(

∑

t≤r
ŵt/RTTt√

ŵr/RTTr

, γr+1

)

= max
(

∑

t≤r

ŵt

RTTt

,

√
ŵr

RTTr

γr+1

)

.

By (10) the first term is≤ ŵTCP
n /RTTn. By the ordering of the win-

dow sizes, the second term is≤ γr+1

√
ŵr+1/RTTr+1, which is

nothing other than̂wTCP
r+1/RTTr+1, and by the induction hypothesis

this too is≤ ŵTCP
n /RTTn. This completes the induction step. Thus

we have proved (11). 2

A.3 Ineffective means for achieving fairness

Weighted increase. Our algorithm LINK -FAIR uses weighted in-
creases, and we proved it is fair. The proposal in [7] also uses
weighted increases: it increaseswr by a2

r/wr per ACK, so that

20

20
24

32

8
24

C1 = 40

C2 = 24

Figure 16: A multipath flow may take a ‘fair share’
at each bottleneck, but nevertheless be unfair in aggre-
gate (left). It would be better to take a fair share of the
pooled bottleneck (right).

ŵr = arŵ
TCP
r , and it adjusts the weightsar to ensure that

∑

r
ar =

1. This guarantees Goal 5, since for anyS ⊆ R

∑

r∈S

ŵr

RTTr

=
∑

r∈S

ar

ŵTCP
r

RTTr

≤
(

∑

r∈S

ar

)

max
r∈S

ŵTCP
r

RTTr

≤ max
r∈S

ŵTCP
r

RTTr

.

It achieves Goal 4 if and only if

x̂TCP
r < max

t
x̂TCP
t =⇒ ar = 0. (14)

The ‘proportion manager’ in [7] chooses the path weights adap-
tively: it measures the averagêwTCP

r over some long enough in-
terval, and decreasesar on paths wherêwTCP

r is small i.e. where
pr is large. This has the same outcome as COUPLED, namely it
moves traffic onto paths with the least congestion. Since it adapts
ar based onŵTCP

r rather than on̂xTCP
r , this algorithm does not in

general achieve (14), therefore it does not achieve Goal 4. If the
proportion manager adaptedar in favor of paths with largêxTCP

r

rather than paths with largêwTCP
r , it would achieve Goal 4 but it

would not in general prefer less-congested paths, so it would do a
poor job of resource pooling.

Shared bottleneck detection. It is not sufficient for a multipath
flow to detect shared bottleneck links, and to ensure it takesa fair
share of capacity at each link. To see this, consider the scenario in
the left of Figure 16. The multipath flow uses two disjoint links,
and takes a ‘fair’ share of capacity at each of the links—withthe
consequence that it takes an unfair share of the network’s aggre-
gate capacity. A more desirable outcome is shown in the righthand
diagram. In this scenario the multipath flow enables the network
to share capacity as though the two links were a single pooledre-
source, and so it is more natural to seek fairness across the resource
pool than over individual links.

Our Goal 5 entails fairness across resource pools. In fact itsays
that a multipath flow should be fair (with respect to TCP) across
any linkor collection of links, therefore it entails fairness whatever
the topology of paths and resource pools.

It has been proposed that a multipath flow should detect shared
congestion between its paths, and reduce its aggressiveness on paths
that share congestion [22]. In one sense, the two links in this sce-
nario do share congestion, because they are part of the same re-
source pool: if there is a traffic surge on link 1, then congestion
will increase on link 1, so some of the multipath traffic should shift
onto link 2, so congestion will increase on link 2. We believeit is
extremely unlikely that shared congestion can be detected by cor-
related fast retransmits (as used by [22]) when the congestion is
shared across a bottleneck resource pool rather than at an individ-
ual link.

16

